Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Water Health ; 22(6): 1102-1110, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935460

RESUMO

Ferrate (Fe(VI): HFeO4- /FeO42-), a potent oxidant, has been investigated as an alternative chemical disinfectant in water treatment due to its reduced production of disinfection by-products. In this study, we assessed the disinfecting ability of potassium ferrate against a variety of microorganisms, including waterborne pathogens, under varying pH and water temperature conditions. We presented CT values, a metric of ferrate concentrations (C) and contact time (T), to quantify microbial inactivation rates. Among the tested microorganisms, human adenovirus was the least resistant to ferrate, followed by waterborne bacteria such as Escherichia coli and Vibrio cholerae, and finally, the protozoan parasite Giardia duodenalis. We further investigated the impact of two pH values (7 and 8) and two temperatures (5 and 25 °C) on microbial inactivation rates, observing that inactivation rates increased with lower pH and higher temperature. In addition to showcasing ferrate's capacity to effectively inactivate a range of the tested microorganisms, we offer a ferrate CT table to facilitate the comparison of the effectiveness of various disinfection methods.


Assuntos
Desinfetantes , Giardia lamblia , Temperatura , Concentração de Íons de Hidrogênio , Desinfetantes/farmacologia , Giardia lamblia/efeitos dos fármacos , Adenovírus Humanos/efeitos dos fármacos , Compostos de Potássio/farmacologia , Compostos de Potássio/química , Microbiologia da Água , Desinfecção/métodos , Purificação da Água/métodos , Compostos de Ferro/farmacologia , Compostos de Ferro/química , Humanos , Escherichia coli/efeitos dos fármacos
2.
Food Microbiol ; 121: 104516, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637078

RESUMO

Oxidation-reduction potential (ORP) is commonly used as a rapid measurement of the antimicrobial potential of free chlorine during industrial fresh produce washing. The current study tested the hypothesis that ORP can act as a "single variable" measurement of bacterial (vegetative and endospores) inactivation effectiveness with free chlorine irrespective of the water pH value. This situation has on occasion been assumed but never confirmed nor disproven. Chlorine-dosed pH 6.5 and 8.5 phosphate buffer solutions were inoculated with Escherichia coli (E. coli), Listeria innocua (L. innocua), or Bacillus subtilis (B. subtilis) endospores. ORP, free chlorine (FC), and log reduction were monitored after 5 s (for E. coli and L. innocua) and up to 30 min (for B. subtilis spores) of disinfection. Logistic and exponential models were developed to describe how bacteria reduction varied as a function of ORP at different pH levels. Validation tests were performed in phosphate buffered pH 6.5 and 8.5 cabbage wash water periodically dosed with FC, cabbage extract and a cocktail of Escherichia coli O157:H7 (E. coli O157:H7) and Listeria monocytogenes (L. monocytogenes). The built logistic and exponential models confirmed that at equal ORP values, the inactivation of the surrogate strains was not consistent across pH 6.5 and pH 8.5, with higher reductions at higher pH. This is the opposite of the well-known free chlorine-controlled bacterial inactivation, where the antibacterial effect is higher at lower pH. The validation test results indicated that in the cabbage wash water, the relationship between disinfection efficiency and ORP was consistent with the oxidant demand free systems. The study suggests that ORP cannot serve as a reliable single variable measurement to predict bacterial disinfection in buffered systems. When using ORP to monitor and control the antibacterial effectiveness of the chlorinated wash water, it is crucial to take into account (and control) the pH.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Listeria , Desinfecção/métodos , Cloro/farmacologia , Cloro/análise , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Oxidantes , Contagem de Colônia Microbiana , Manipulação de Alimentos/métodos , Cloretos , Oxirredução , Água/química , Antibacterianos , Concentração de Íons de Hidrogênio , Fosfatos
3.
J Sci Food Agric ; 104(12): 7713-7721, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38591367

RESUMO

BACKGROUND: Goat milk is considered a nutritionally superior resource, owing to its advantageous nutritional attributes. Nevertheless, it is susceptible to spoilage and the persistence of pathogens. Electron beam irradiation stands as a promising non-thermal processing technique capable of prolonging shelf life with minimal residue and a high degree of automation. RESULTS: The effects of electron beam irradiation (2, 3, 5, and 7 kGy) on microorganisms, physicochemical properties, and protein structure of goat milk compared with conventional pasteurized goat milk (PGM) was evaluated. It was found that a 2 kGy electron beam irradiation reduces the total microbial count of goat milk by 6-logs, and the irradiated goat milk protein secondary structure showed a significant decrease in ɑ-helix content. Low irradiation doses led to microaggregation and crosslinking. In contrast, high doses (≥ 5 kGy) slightly disrupted the aggregates and decreased the particle size, disrupting the microscopic surface structure of goat milk, verified by scanning electron microscopy and confocal laser scanning microscopy. CONCLUSION: The irradiation of goat milk with a 2 kGy electron beam may effectively inactivate harmful microorganisms in the milk and maintain/or improve the physicochemical quality and protein structure of goat milk compared to thermal pasteurization. © 2024 Society of Chemical Industry.


Assuntos
Elétrons , Irradiação de Alimentos , Cabras , Leite , Animais , Leite/microbiologia , Leite/química , Leite/efeitos da radiação , Irradiação de Alimentos/métodos , Proteínas do Leite/química , Bactérias/efeitos da radiação , Pasteurização/métodos , Microbiologia de Alimentos
4.
Appl Environ Microbiol ; 89(10): e0065023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800967

RESUMO

Light-based technologies of different wavelengths can inactivate pathogenic microorganisms, but each wavelength has its limitations. This work explores the potential of sequential treatments with different wavelengths for enhancing the disinfection performance of individual treatments by employing various bactericidal mechanisms. The effectiveness, inactivation kinetics, and bactericidal mechanisms of treatments with 222/405, 280/405, and 405 nm alone against Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, Salmonella Typhimurium, and Pseudomonas aeruginosa were evaluated. Inactivation experiments were performed in thin liquid bacterial suspensions that were treated either individually with 48 h of 405-nm light or sequentially with (i) 30 s of 222-nm far-UV-C light, followed by 48 h of 405-nm light, or (ii) 30 s of 280-nm far-UV-C light, followed by 48 h of 405-nm light. Survivors were recovered and enumerated by standard plate counting. All inactivation curves were non-linear and followed the Weibull model (0.99 ≥ R2 ≥ 0.70). Synergistic effects were found for E. coli, L. monocytogenes, and S. Typhimurium, with maximum inactivation level increases of 2.9, 3.3, and 1.1 log CFU after the sequential treatments, respectively. Marginal synergy was found for S. aureus, and an antagonistic effect was found for P. aeruginosa after sequential treatments. Significant differences in reactive oxygen species accumulation were found (P < 0.05) after various treatment combinations, and the performance of sequential treatments was correlated with cellular oxidative damage. The sequential wavelength treatments proposed demonstrate the potential for enhanced disinfection of multiple foodborne pathogens compared with individual wavelength treatments, which can have significant food safety benefits. IMPORTANCE Nonthermal light-based technologies offer a chemical-free method to mitigate microbial contamination in the food and healthcare industries. However, each individual wavelength has different limitations in terms of efficacy and operating conditions, which limits their practical applicability. In this study, bactericidal synergism of sequential treatments with different wavelengths was identified. Pre-treatments with 280 and 222 nm enhanced the disinfection performance of follow-up 405-nm treatments for multiple foodborne pathogens by inducing higher levels of cellular membrane damage and oxidative stress. These findings deliver useful information for light equipment manufacturers, food processors, and healthcare users, who can design and optimize effective light-based systems to realize the full potential of germicidal light technologies. The results from the sequential treatments offer practical solutions to improve the germicidal efficacy of visible light systems, as well as provide inspiration for future hurdle disinfection systems design, with a positive impact on food safety and public health.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Staphylococcus aureus , Raios Ultravioleta , Luz , Desinfecção/métodos , Microbiologia de Alimentos , Contagem de Colônia Microbiana
5.
J Nutr ; 153(9): 2598-2611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423385

RESUMO

BACKGROUND: Donor human milk banks use Holder pasteurization (HoP; 62.5°C, 30 min) to reduce pathogens in donor human milk, but this process damages some bioactive milk proteins. OBJECTIVES: We aimed to determine minimal parameters for high-pressure processing (HPP) to achieve >5-log reductions of relevant bacteria in human milk and how these parameters affect an array of bioactive proteins. METHODS: Pooled raw human milk inoculated with relevant pathogens (Enterococcus faecium, Staphylococcus aureus, Listeria monocytogenes, Cronobacter sakazakii) or microbial quality indicators (Bacillus subtilis and Paenibacillus spp. spores) at 7 log CFU/mL was processed at 300-500 MPa at 16-19°C (due to adiabatic heating) for 1-9 min. Surviving microbes were enumerated using standard plate counting methods. For raw milk, and HPP-treated and HoP-treated milk, the immunoreactivity of an array of bioactive proteins was assessed via ELISA and the activity of bile salt-stimulated lipase (BSSL) was determined via a colorimetric substrate assay. RESULTS: Treatment at 500 MPa for 9 min resulted in >5-log reductions of all vegetative bacteria, but <1-log reduction in B. subtilis and Paenibacillus spores. HoP decreased immunoglobulin A (IgA), immunoglobulin M (IgM), immunoglobulin G, lactoferrin, elastase and polymeric immunoglobulin receptor (PIGR) concentrations, and BSSL activity. The treatment at 500 MPa for 9 min preserved more IgA, IgM, elastase, lactoferrin, PIGR, and BSSL than HoP. HoP and HPP treatments up to 500 MPa for 9 min caused no losses in osteopontin, lysozyme, α-lactalbumin and vascular endothelial growth factor. CONCLUSION: Compared with HoP, HPP at 500 MPa for 9 min provides >5-log reduction of tested vegetative neonatal pathogens with improved retention of IgA, IgM, lactoferrin, elastase, PIGR, and BSSL in human milk.


Assuntos
Lactoferrina , Leite Humano , Recém-Nascido , Humanos , Leite Humano/microbiologia , Viabilidade Microbiana , Fator A de Crescimento do Endotélio Vascular , Pasteurização/métodos , Imunoglobulina A , Imunoglobulina M , Elastase Pancreática
6.
Crit Rev Food Sci Nutr ; : 1-22, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37194650

RESUMO

Compared with traditional methods, cavitation-based processing technology has received extensive attention for its low energy consumption and high processing efficiency. The cavitation phenomenon releases high energy due to the generation and collapse of bubbles, which improves the efficiency of various food processing. This review details the cavitation mechanism of ultrasonic cavitation (UC) and hydrodynamic cavitation (HC), factors affecting cavitation, the application of cavitation technology in food processing, and the application of cavitation technology in the extraction of various natural ingredients. The safety and nutrition of food processed by cavitation technology and future research directions are also discussed. The mechanism of UC refers to longitudinal displacement of the particles of the medium induced by ultrasonic waves causing a series of alternating compression and rarefaction of particles, whereas HC occurs when liquid enters a narrow section and undergoes large pressure differentials, both of which can trigger the generation, growth, and collapse of microbubbles. Cavitation could be applied in microbial inactivation, and drying and freezing processing. In addition, cavitation bubbles can have mechanical and thermal effects on plant cells. In general, cavitation technology is a new sustainable, green, and innovative technology with broad application prospects and capabilities.

7.
Crit Rev Food Sci Nutr ; 63(22): 5643-5660, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34969340

RESUMO

Milk is an important nutritional food source characterized by a perishable nature and conventionally thermally treated to guarantee its safety. In recent years, an increasing focus on competing non-thermal food processing technologies has been driven mainly by consumers' expectations for minimally processed products. Due to the heat sensitivity of milk, much research interest has been addressed to mild non-thermal pasteurization processing to keep safety, 'fresh-like' taste and to maintain the organoleptic qualities of raw milk. This review provides an overview of the current literature on non-thermal treatments as standalone alternative technologies to high-temperature short-time (HTST) pasteurization of drinking milk. Results of lab-scale experimentations suggest the feasibility of most emerging non-thermal processing technologies, including high hydrostatic pressure, pulsed electric field, cold plasma, cavitation and light-based technologies, as alternative to thermal treatment of drinking milk with premium in shelf life duration. Nevertheless, a series of regulatory, technological and economical hurdles hinder the industrial scaling-up for most of these substitutes. To date, only high hydrostatic pressure treatments are applied as alone alternative to HTSH pasteurization for processing of "cold pasteurized" drinking milk. Milk submitted to HTST treatment combined to ultraviolet light is currently accepted in EU countries as novel food.


Assuntos
Temperatura Alta , Pasteurização , Animais , Pasteurização/métodos , Temperatura , Leite , Manipulação de Alimentos/métodos
8.
Food Microbiol ; 109: 104155, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309451

RESUMO

Some water disinfection treatments, such as chlorine and chlorine dioxide, used in the fresh-cut industry to maintain the microbiological quality of process water (PW), inactivate bacterial cells in the water but they also lead to the induction of an intermediate state between viable and non-viable known as viable but non-culturable (VBNC) state. Viable cells can participate in cross-contamination events but the significance of VBNC cells in PW, transfer to the product and potential resuscitation capacity during storage is unclear. The present study aims to determine first, if VBNC cells present in PW can cross-contaminate leafy greens during washing and secondly its potential revival during shelf-life. Process water characterized by a high chemical oxygen demand, due to the presence of high levels of organic matter, was inoculated with Listeria monocytogenes or Escherichia coli O157:H7. Inoculated PW was then treated for 1 min with chlorine dioxide (3 mg/L) or chlorine (5 mg/L) to generate VBNC cells. Absence of culturable cells was confirmed by plate count and VBNC cells by viability quantitative polymerase chain reaction (v-qPCR) complemented with two dyes, ethidium (EMA) and propidium (PMAxx) monoazide. Cross-contamination of shredded lettuce was demonstrated by monitoring the VBNC cells after washing the product for 1 min in the contaminated PW and during shelf life (15 days at 7 °C). In the case of L. monocytogenes, considering the total concentration of L. monocytogenes VBNC cells present in the PW, only a low proportion of cells were able to cross-contaminate the product during washing. VBNC L. monocytogenes cells were able to resuscitate on the product during shelf life, although levels of cultivable bacteria, close to the limit if detection (0.7 ± 0.0 log CFU/g), were only detected at the end of storage. On the other hand, VBNC cells of E. coli O157:H7 present in PW were not able to cross-contaminate shredded lettuce during washing. Moreover, when shredded lettuce was artificially inoculated with VBNC E. coli O157:H7, resuscitation of the VBNC cells during storage (15 days at 7 °C) was not observed. Based on the results obtained, injured L. monocytogenes cells present in the PW are able to be transferred to the product during washing. If VBNC L. monocytogenes cells present in leafy greens (shredded lettuce and baby spinach), they can resuscitate, although cultivable numbers remained very low. Taking all the results together, it could be concluded that under industrial conditions, VBNC cells can be transferred from water to product during washing, but their capacity to resuscitate in the leafy greens during storage is low.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Cloro/farmacologia , Cloro/análise , Manipulação de Alimentos/métodos , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Lactuca/microbiologia , Água/análise , Contagem de Colônia Microbiana , Microbiologia de Alimentos
9.
Chem Eng J ; 454: 140188, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36373160

RESUMO

Ozone - a powerful antimicrobial agent, has been extensively applied for decontamination purposes in several industries (including food, water treatment, pharmaceuticals, textiles, healthcare, and the medical sectors). The advent of the COVID-19 pandemic has led to recent developments in the deployment of different ozone-based technologies for the decontamination of surfaces, materials and indoor environments. The pandemic has also highlighted the therapeutic potential of ozone for the treatment of COVID-19 patients, with astonishing results observed. The key objective of this review is to summarize recent advances in the utilisation of ozone for decontamination applications in the above-listed industries while emphasising the impact of key parameters affecting microbial reduction efficiency and ozone stability for prolonged action. We realise that aqueous ozonation has received higher research attention, compared to the gaseous application of ozone. This can be attributed to the fact that water treatment represents one of its earliest applications. Furthermore, the application of gaseous ozone for personal protective equipment (PPE) and medical device disinfection has not received a significant number of contributions compared to other applications. This presents a challenge for which the correct application of ozonation can mitigate. In this review, a critical discussion of these challenges is presented, as well as key knowledge gaps and open research problems/opportunities.

10.
Food Control ; 145: 109401, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36186659

RESUMO

During the pandemic of coronavirus disease 2019, the fact that frozen foods can carry the relevant virus raises concerns about the microbial safety of cold-chain foods. As a non-thermal processing technology, high pressure carbon dioxide (HPCD) is a potential method to reduce microbial load on cold-chain foods. In this study, we explored the microbial inactivation of low temperature (5-10 °C) HPCD (LT-HPCD) and evaluated its effect on the quality of prawn during freeze-chilled and frozen storage. LT-HPCD treatment at 6.5 MPa and 10 °C for 15 min could effectively inactivate E. coli (99.45%) and S. aureus (94.6%) suspended in 0.85% NaCl, SARS-CoV-2 Spike pseudovirus (>99%) and human coronavirus 229E (hCoV-229E) (>1-log virus tilter reduction) suspended in DMEM medium. The inactivation effect of LT-HPCD was weakened but still significant when the microorganisms were inoculated on the surface of food or package. LT-HPCD treatment at 6.5 MPa and 10 °C for 15 min achieved about 60% inactivation of total aerobic count while could maintain frozen state and quality of prawn. Moreover, LT-HPCD treated prawn exhibited significant slower microbial proliferation and no occurrence of melanosis compared with the untreated samples during chilled storage. A comprehensive quality investigation indicated that LT-HPCD treatment could maintain the color, texture and sensory of prawn during chilled or frozen storage. Consequently, LT-HPCD could improve the microbial safety of frozen prawn while maintaining its original quality, and could be a potential method for food industry to improve the microbial safety of cold-chain foods.

11.
Molecules ; 28(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446565

RESUMO

The cost-effectiveness and high efficiency of atmospheric cold plasma (ACP) incentivise researchers to explore its potentials within the food industry. Presently, the destructive nature of this nonthermal technology can be utilised to inactivate foodborne pathogens, enzymatic ripening, food allergens, and pesticides. However, by adjusting its parameters, ACP can also be employed in other novel applications including food modification, drying pre-treatment, nutrient extraction, active packaging, and food waste processing. Relevant studies were conducted to investigate the impacts of ACP and posit that reactive oxygen and nitrogen species (RONS) play the principal roles in achieving the set objectives. In this review article, operations of ACP to achieve desired results are discussed. Moreover, the recent progress of ACP in food processing and safety within the past decade is summarised while current challenges as well as its future outlook are proposed.


Assuntos
Gases em Plasma , Eliminação de Resíduos , Alimentos , Indústria Alimentícia , Manipulação de Alimentos/métodos
12.
Toxicol Mech Methods ; 33(9): 741-754, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37496379

RESUMO

Cellulose nanofibers (CNFs) are fibrous nanomaterials produced from plants. Since some nanomaterials are toxic, toxicity evaluation, including in vitro examinations using cultured cells, is essential for the effective use of CNFs. On the other hand, microorganisms in the environment can contaminate CNF suspensions. The contamination of CNF samples and the effects of contaminating microorganisms on in vitro examinations were investigated in this study. Microorganism contamination in CNF samples was examined, and microbial inactivation of CNF suspensions using gamma irradiation was evaluated. After gamma-ray irradiation at absorbed doses of 0.5, 1, 5, and 10 kGy, the cellular effects of CNF suspensions were examined using 6 types of cultured cell, HaCaT, A549, Caco-2, MeT-5A, THP-1, and NR8383 cells. CNF samples were contaminated with bacteria and CNF suspensions exhibited endotoxin activity. Gamma irradiation effectively inactivated the microorganisms contained in the CNF suspensions. When the absorbed dose was 10 kGy, the fiber length of CNF was shortened, but the effect on CNF was small at 1.0 kGy or less. CNF suspensions showed lipopolysaccharides (LPS)-like cellular responses and strongly induced interleukin-8, especially in macrophages. Absorbed doses of at least 10 kGy did not affect the LPS-like activity. In this study, it was shown that the CNF suspension may be contaminated with microorganisms. Gamma irradiation was effective for microbial inactivation of suspension for invitor toxicity evaluation of CNF. In vitro evaluation of CNFs requires attention to the effects of contaminants such as LPS.


Assuntos
Celulose , Nanofibras , Humanos , Celulose/toxicidade , Nanofibras/toxicidade , Células CACO-2 , Viabilidade Microbiana , Lipopolissacarídeos
13.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36476053

RESUMO

The concepts of "D-value," "thermal death time" and "commercial sterility," innovative and useful at their inception, are based on untenable assumptions, notably that the log-linear isothermal inactivation model has universal applicability, that extrapolation over several orders of magnitude below the detection level is permissible, and that total microbial inactivation is theoretically impossible. Almost all commonly observed inactivation patterns, the log-linear is just a special case, can be described by both deterministic and fully stochastic models, examples of which are given. Unlike the deterministic, the stochastic models predict either complete elimination of the targeted cells or spores in realistic finite time, or residual survival. In most cases, the published survival data do not contain enough information to establish which actually happens. The microbial safety of thermally processed foods can be compromised not only by under-processing but also by a variety of mishaps whose occurrence probabilities are unrelated to the inactivation kinetics. Moreover, the available sampling plans to detect microbial contamination in sterilized containers through incubation alone are insensitive to levels of potential safety concerns. In principle, many of these issues could be resolved by developing new dramatically improved detection methods and/or verifiable methods to predict very low levels of microbial survival.

14.
Crit Rev Food Sci Nutr ; 62(24): 6535-6548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33938772

RESUMO

The purpose of this study was to review the possibility of using supercritical CO2 as a green and sustainable technology for microbial inactivation of raw material for further application in the food industry. The history of the development of supercritical CO2 microbial inactivation has been widely described in this article. The fundamental scientific part of the process like mechanism of bactericidal action of CO2 or inactivation of key enzymes were characterized in detail. In summary, this study provides an overview of the latest literature on the use of supercritical carbon dioxide in microbial inactivation of food raw materials and products.


Assuntos
Dióxido de Carbono , Conservação de Alimentos , Viabilidade Microbiana
15.
Crit Rev Food Sci Nutr ; 62(4): 980-988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33938777

RESUMO

Underwater shockwave processing (USP) is a non-thermal food processing method where a high-energy impulse is generated near a food product submerged in a liquid. The resulting shockwave transfers energy to the food, and is used to improve quality, safety, and nutritional aspects. This review presents the origin and evolution of the technology, principles of shockwave generation, mechanism of action, and applications in the food industry. The most common food application of USP is currently meat tenderization, where it is used to improve the sensory characteristics of meat as a value-added process. The use of USP as a pretreatment process has also been investigated to increase the yield and nutritional value of extracted juice and oil via softening of plant tissues. This technique also has an impact on food-borne pathogens and spoilage microorganisms in food, however, it is more effective when combined with other hurdles. Major challenges facing the industrial implementation of underwater shockwave technology include the lack of appropriate packaging materials resistant to the disruptive effects of shockwaves, the capital investment required, and a lack of regulatory information pertaining to USP. So far, most studies of underwater shockwaves on food are at the laboratory scale and validation stage. Further research endeavors and collaboration between food scientists, engineers, and regulators are necessary to scale up this technology to industrial implementation.


Assuntos
Manipulação de Alimentos , Tecnologia de Alimentos , Indústria de Processamento de Alimentos , Carne/análise , Valor Nutritivo
16.
J Appl Microbiol ; 132(4): 2521-2530, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34839567

RESUMO

Non-thermal technologies can maintain fruit and vegetable products quality better than traditional thermal processing. Pulsed light (PL) is a non-thermal method for microbial inactivation (vegetative cells and spores) in fruits and vegetables. The PL treatment involves the application of intense and short-duration pulses of broad spectrum wavelengths ranging from UV to near-infrared (100-1100 nm). This review summarized application of PL technology to control microbial contamination and increasing shelf-life of some fruits and vegetables including apple, blueberries, grape, orange, strawberries, carrot, lettuce, spinach, and tomato. The microbial inactivation in very short treatment times, low energy used by this system, flexibility for solid or liquid samples, few residual compounds and no synthetic chemicals that cause environmental pollution or harm humans, is benefits of PL technique. The efficiency of PL disinfection is closely associated with the input voltage, fluence (energy dose), composition of the emitted light spectrum, number of lamps, the distance between samples and light source, and frequency and number of applied pulses. The PL treatments control pathogenic and spoilage microorganisms, so it facilitates the growth and development of the starter microorganisms affecting product quality.


Assuntos
Mirtilos Azuis (Planta) , Verduras , Desinfecção , Microbiologia de Alimentos , Frutas , Humanos , Luz , Tecnologia , Raios Ultravioleta
17.
Appl Microbiol Biotechnol ; 106(9-10): 3439-3448, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35536405

RESUMO

Giardia cysts exposed to short sublethal ozonation in lake waters continue to die-off well after the ozone complete dissipation. This delayed inactivation can be the manifestation of injured cysts' mortality, which the traditional Chick-Watson-Hom type models of disinfection do not account for. But it can be described by a slightly modified version of a general microbial survival model adapted for injured cysts or other targeted microorganisms surviving disinfection. The downward concavity of the cysts' semi-logarithmic survival ratio vs. time relationships suggests that the cysts' deaths had unimodal temporal distribution. Indeed, the cumulative (CDF) forms of the Weibull and lognormal distribution functions both had excellent fit to the experimental survival data. Such a survival pattern can also be described by a fully probabilistic model devised from the injured cysts' Markov chain, where the mortality's probability rate rises linearly with time. The stochastic model explains the ubiquitous observation that microbial survival curves become increasingly irregular and irreproducible as the number of survivors dwindles, regardless of their concavity degree and direction. Although based on ozonated Giardia cyst data, the concept should be applicable to the delayed mortality of other microorganisms surviving sublethal treatments of other kinds but unable to recover and/or multiply. KEY POINTS: • Deterministic and stochastic survival models can describe delayed inactivation. • The Weibull and lognormal distributions can describe cysts' times to mortality. • Stochastic model explains the progressively growing scatter in survival curves.


Assuntos
Cryptosporidium , Cistos , Animais , Giardia , Cinética , Oocistos
18.
Food Microbiol ; 105: 104031, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35473969

RESUMO

A new nonthermal food pasteurization approach is here presented for the first time, proposed to be called low-pressure long-time (LPLT) pasteurization or moderate pressure pasteurization (MPP) by hyperbaric inactivation (HI). To test this novel pasteurization process on raw milk, MPP by HI was carried out at three different pressure levels (150, 200 and 250 MPa), over 24 h, at naturally variable uncontrolled room temperature (≈20 °C) and compared with high pressure processing (HPP) at 600 MPa (one cycle for 90 s and a second cycle of 120 s) followed by storage under refrigeration for 21 days. Based on the results obtained, MPP at 250 MPa over 24 h caused higher microbial inactivation on total aerobic mesophiles (TAM), lactic acid bacteria (LAB) and Enterobacteriaceae (ENT) (of at least 2.2, 1.7 and 1.3 log CFU/mL, respectively) than HPP (1.1, 1.0 and 1.2 log CFU/mL, for the same microorganisms). Moreover, MPP showed a clear reduction of inoculated microorganisms to below the detection limit, in only 16 h for all pressures with reductions of at least 5.7, 5.4 and 5.5 for Listeria innocua, Salmonella senftenberg, and Escherichia coli, respectively. Additionally, during preservation under refrigeration, MPP samples (200 MPa and 250 MPa), maintained lower TAM/LAB/ENT compared to HPP, being the counts below the quantification/detection limit for at least 21 days for MPP by HI. MPP (200 MPa and 250 MPa) resulted also in counts below the detection limit for the inoculated microorganisms up to at least 21 days under refrigeration. The results of MPP by HI are very promising as a new nonthermal food pasteurization, since over 5 log reduction of vegetative bacteria were achieved, with counts maintained below the quantification/detection limit for at least 21 days under refrigeration.


Assuntos
Lactobacillales , Pasteurização , Animais , Microbiologia de Alimentos , Leite/microbiologia , Refrigeração , Temperatura
19.
Foodborne Pathog Dis ; 19(5): 349-358, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35443788

RESUMO

Shigella flexneri, a common Gram-negative foodborne pathogen, is widely distributed in fresh-cut fruits and vegetables, unpasteurized milk, and food processing environments. The aims of this study were to evaluate the antibacterial effects of 405-nm light-emitting diode (LED) treatment on S. flexneri and to investigate the possible mechanism. The results showed that LED irradiation (360 min) reduced the number of S. flexneri in phosphate-buffered saline by 3.29 log colony-forming unit (CFU)/mL (initial bacterial count: 6.81 log CFU/mL). The cells in reconstituted infant formula, cells on fresh-cut carrot slices, and biofilm-associated cells on stainless steel surfaces were reduced by 1.83 log CFU/mL, 7.00 log CFU/cm2, and 4.35 log CFU/cm2 following LED treatment for 360, 120, and 120 min, respectively. LED treatment damaged both DNA and cell wall of S. flexneri and changed cell morphology and cell membrane permeability. In addition, LED treatment decreased total cell protein concentration of S. flexneri. These results indicated that 405-nm LED treatment effectively controlled S. flexneri contamination of foods and food contact surfaces and that the bacterial inactivation may be the result of damage to multiple cellular components. These findings highlight the potential of LED technology in controlling S. flexneri during food processing, storage, and preparation.


Assuntos
Microbiologia de Alimentos , Shigella flexneri , Contagem de Colônia Microbiana , Manipulação de Alimentos , Humanos , Aço Inoxidável
20.
J Appl Microbiol ; 130(2): 325-340, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32797725

RESUMO

Cold plasma technology is an efficient, environmental-friendly, economic and noninvasive technology; and in recent years these advantages placed this novel technology at the centre of diverse studies for food industry applications. Dried food ingredients including spices, herbs, powders and seeds are an important part of the human diet; and the growing demands of consumers for higher quality and safe food products have led to increased research into alternative decontamination methods. Numerous studies have investigated the effect of nonthermal plasma on dried food ingredients for food safety and quality purposes. This review provides critical review on potential of cold plasma for disinfection of dried food surfaces (spices, herbs and seeds), improvement of functional and rheological properties of dried ingredients (powders, proteins and starches). The review further highlights the benefits of plasma treatment for enhancement of seeds performance and germination yield which could be applied in agricultural sector in near future. Different studies applying plasma technology for control of pathogens and spoilage micro-organisms and modification of food quality and germination of dried food products followed by benefits and current challenges are presented. However, more systemic research needs to be addressed for successful adoption of this technology in food industry.


Assuntos
Ingredientes de Alimentos/normas , Qualidade dos Alimentos , Alimentos em Conserva/normas , Gases em Plasma , Manipulação de Alimentos , Ingredientes de Alimentos/análise , Ingredientes de Alimentos/microbiologia , Inocuidade dos Alimentos , Alimentos em Conserva/análise , Alimentos em Conserva/microbiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA