Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biol Pharm Bull ; 47(8): 1415-1421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39111843

RESUMO

The efficacy of mesenchymal stem cell (MSC) transplantation has been reported for various diseases. We previously developed a drug delivery system targeting mitochondria (MITO-Porter) by using a microfluidic device to encapsulate Coenzyme Q10 (CoQ10) on a large scale. The current study aimed to confirm if treatment with CoQ10 encapsulated by MITO-Porter enhanced mitochondrial functions in MSCs, with the potential to improve MSC transplantation therapy. We used highly purified human bone marrow-derived MSCs, described as rapidly expanding clones (RECs), and attempted to control and increase the amount of CoQ10 encapsulated in the MITO-Porter using microfluidic device system. We treated these RECs with CoQ10 encapsulated MITO-Porter, and evaluated its cellular uptake, co-localization with mitochondria, changes in mitochondrial respiratory capacity, and cellular toxicity. There was no significant change in mitochondrial respiratory capacity following treatment with the previous CoQ10 encapsulated MITO-Porter; however, mitochondrial respiratory capacity in RECs was significantly increased by treatment with CoQ10-rich MITO-Porter. Utilization of a microfluidic device enabled the amount of CoQ10 encapsulated in MITO-Porter to be controlled, and treatment with CoQ10-rich MITO-Porter successfully activated mitochondrial functions in MSCs. The MITO-Porter system thus provides a promising tool to improve MSC cell transplantation therapy.


Assuntos
Células-Tronco Mesenquimais , Mitocôndrias , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/administração & dosagem , Ubiquinona/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Células Cultivadas , Dispositivos Lab-On-A-Chip
2.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673875

RESUMO

Photodynamic therapy is expected to be a less invasive treatment, and strategies for targeting mitochondria, the main sources of singlet oxygen, are attracting attention to increase the efficacy of photodynamic therapy and reduce its side effects. To date, we have succeeded in encapsulating the photosensitizer rTPA into MITO-Porter (MP), a mitochondria-targeted Drug Delivery System (DDS), aimed at mitochondrial delivery of the photosensitizer while maintaining its activity. In this study, we report the results of our studies to alleviate rTPA aggregation in an effort to improve drug efficacy and assess the usefulness of modifying the rTPA side chain to improve the mitochondrial retention of MITO-Porter, which exhibits high therapeutic efficacy. Conventional rTPA with anionic side chains and two rTPA analogs with side chains that were converted to neutral or cationic side chains were encapsulated into MITO-Porter. Low-MP (MITO-Porter with Low Drug/Lipid) exhibited high drug efficacy for all three types of rTPA, and in Low-MP, charged rTPA-encapsulated MP exhibited high drug efficacy. The cellular uptake and mitochondrial translocation capacities were similar for all particles, suggesting that differences in aggregation rates during the incorporation of rTPA into MITO-Porter resulted in differences in drug efficacy.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Mitocôndrias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Humanos , Fotoquimioterapia/métodos , Porfirinas/química , Porfirinas/farmacologia , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674418

RESUMO

Delivering drugs to mitochondria, the main source of energy in neurons, can be a useful therapeutic strategy for the treatment of neurodegenerative diseases. Berberine (BBR), an isoquinoline alkaloid, acts on mitochondria and is involved in mechanisms associated with the normalization and regulation of intracellular metabolism. Therefore, BBR has attracted considerable interest as a possible therapeutic drug for neurodegenerative diseases. While BBR has been reported to act on mitochondria, there are few reports on the efficient delivery of BBR into mitochondria. This paper reports on the mitochondrial delivery of BBR using a lipid nanoparticle (LNP), a "MITO-Porter" that targets mitochondria, and its pharmacological action in Neuro2a cells, a model neuroblastoma. A MITO-Porter containing encapsulated BBR (MITO-Porter (BBR)) was prepared. Treatment with MITO-Porter (BBR) increased the amount of BBR that accumulated in mitochondria compared with a treatment with naked BBR. Treatment with MITO-Porter (BBR) resulted in increased ATP production in Neuro2a cells, which are important for maintaining life phenomena, compared with treatment with naked BBR. Treatment with MITO-Porter (BBR) also increased the level of expression of mitochondrial ubiquitin ligase (MITOL), which is involved in mitochondrial quality control. Our findings indicate that increasing the accumulation of BBR into mitochondria is important for inducing enhanced pharmacological actions. The use of this system has the potential for being important in terms of the regulation of the metabolic mechanism of mitochondria in nerve cells.


Assuntos
Berberina , Sistemas de Liberação de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Berberina/farmacologia , Berberina/metabolismo , Lipossomos/metabolismo , Mitocôndrias/metabolismo
4.
Bioorg Chem ; 107: 104572, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33418316

RESUMO

Mitochondria play a key role for deciding fate of cells and thus are considered an attractive target for pharmacological interventions focused on containment of myocardial ischemia/reperfusion (I/R) injury. Notably, the activation of mitochondrial potassium (mitoK) channels produces a mild depolarization of mitochondrial membrane, that contributes to reduce the driving force to calcium uptake and prevents the formation of mitochondrial transition membrane pore (MPTP); these events underlie anti-ischemic cardioprotection. However, an ideal mitoK channel opener should possess the fundamental requirement to be delivered at mitochondrial level; therefore, to improve the mitochondrial delivery of a previously characterized spirocyclic benzopyrane F81, new compounds have been developed. The three original triphenylphosphonium (TPP+)-derivatives of F81 (1-3), were evaluated for their cardioprotective activity on both isolated cardiac mitochondria and cardiac H9c2 cell line. Compound 1 was further investigated in an in vivo infarct model. This work confirms that the TPP+ strategy applied to mitoKATP openers could foster mitochondrial delivery and enhance the cardioprotective effects of mitochondrial activators of potassium channels.


Assuntos
Cardiotônicos/síntese química , Canais de Potássio/metabolismo , Animais , Benzopiranos/química , Benzopiranos/metabolismo , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Compostos Organofosforados/química , Canais de Potássio/agonistas , Ratos , Ratos Wistar , Compostos de Espiro/química
5.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008537

RESUMO

The development of drug delivery systems for use in the treatment of cardiovascular diseases is an area of great interest. We report herein on an evaluation of the therapeutic potential of a myocardial mitochondria-targeting liposome, a multifunctional envelope-type nano device for targeting pancreatic ß cells (ß-MEND) that was previously developed in our laboratory. Resveratrol (RES), a natural polyphenol compound that has a cardioprotective effect, was encapsulated in the ß-MEND (ß-MEND (RES)), and its efficacy was evaluated using rat myocardioblasts (H9c2 cells). The ß-MEND (RES) was readily taken up by H9c2 cells, as verified by fluorescence-activated cell sorter data, and was observed to be colocalized with intracellular mitochondria by confocal laser scanning microscopy. Myocardial mitochondrial function was evaluated by a Seahorse XF Analyzer and the results showed that the ß-MEND (RES) significantly activated cellular maximal respiratory capacity. In addition, the ß-MEND (RES) showed no cellular toxicity for H9c2 cells as evidenced by Premix WST-1 assays. This is the first report of the use of a myocardial mitochondria-targeting liposome encapsulating RES for activating mitochondrial function, which was clearly confirmed based on analyses using a Seahorse XF Analyzer.


Assuntos
Respiração Celular/efeitos dos fármacos , Lipossomos/química , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Resveratrol/farmacologia , Animais , Linhagem Celular , Células Secretoras de Insulina/efeitos dos fármacos , Nanopartículas/química , Polifenóis/química , Ratos , Resveratrol/química
6.
Mol Pharm ; 15(3): 882-891, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29357260

RESUMO

Multidrug resistance (MDR) is the major obstacle for chemotherapy. In a previous study, we have successfully synthesized a novel doxorubicin (DOX) derivative modified by triphenylphosphonium (TPP) to realize mitochondrial delivery of DOX and showed the potential of this compound to overcome DOX resistance in MDA-MB-435/DOX cells. (1) To introduce specificity for DOX-TPP to cancer cells, here we report on the conjugation of DOX-TPP to hyaluronic acid (HA) by hydrazone bond with adipic acid dihydrazide (ADH) as the acid-responsive linker, producing HA- hydra-DOX-TPP nanoparticles. Hyaluronic acid (HA) is a natural water-soluble linear glycosaminoglycan, which was hypothesized to increase the accumulation of nanoparticles containing DOX-TPP in the mitochondria of tumor cells upon systemic administration, overcoming DOX resistance, in vivo. Our results showed HA- hydra-DOX-TPP to self-assemble to core/shell nanoparticles of good dispersibility and effective release of DOX-TPP from the HA- hydra-DOX-TPP conjugate in cancer cells, which was followed by enhanced DOX mitochondria accumulation. The HA- hydra-DOX-TPP nanoparticles also showed improved anticancer effects, better tumor cell apoptosis, and better safety profile compared to free DOX in MCF-7/ADR bearing mice.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/administração & dosagem , Mitocôndrias/metabolismo , Nanoconjugados/química , Animais , Antibióticos Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Doxorrubicina/química , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Concentração de Íons de Hidrogênio , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Control Release ; 367: 486-499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295995

RESUMO

Cell transplantation is a promising therapeutic strategy for myocardial regeneration therapy. To improve therapeutic effects, we developed a culture medium additive that enhances the mitochondrial function of cardiomyocytes for transplantation. A mitochondrial targeting drug delivery system (MITO-Porter system) was used to deliver mitochondrial activation molecules to mouse-derived cardiac progenitor cells. In this study, we investigated whether the mitochondrial function of human-derived myocardial precursor cells could be enhanced using MITO-Porter. Human cardiosphere-derived cells (CDCs) were isolated from myocardium which was excised during surgery for congenital heart disease. MITO-Porter was added to the cell culture medium to generate mitochondrial activated CDCs (human MITO cells). The human MITO cells were transplanted into myocardial ischemia-reperfusion model rat, and the effect was investigated. The transplanted human MITO cells improved the cardiac function and suppressed myocardial fibrosis compared to conventional cell transplantation methods. These effects were observed not only with myocardial administration but also by intravenous administration of human MITO cells. This study is the first study that assessed whether the mitochondrial delivery of functional compounds improved the outcome of human-derived myocardial cell transplantation therapy.


Assuntos
Cardiomiopatias , Miocárdio , Camundongos , Humanos , Ratos , Animais , Miocárdio/metabolismo , Miócitos Cardíacos , Sistemas de Liberação de Medicamentos , Mitocôndrias , Cardiomiopatias/metabolismo
8.
Curr Res Food Sci ; 8: 100702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487178

RESUMO

Phytosterol organic acid esters are important food resources and the components of biomembrane structure. Due to the lack of extraction and synthesis techniques, more research has been focused on phytosterols, and the research on phytosterol acid esters have encountered a bottleneck, but phytosterol acid esters confer substantial benefits to human health. In this study, stigmasteryl vanillate (VAN), stigmasteryl protocatechuate (PRO) and stigmasteryl sinapate (SIN) were prepared through the Steglich reaction. The processes are promotable and the products reach up to 95% purity. In addition, their stability was evaluated by differential scanning calorimetry and thermogravimetric analysis. HPLC analysis revealed an enhancement in water solubility after esterification with phenolic acid. In an in vitro digestion model, the bioaccessibility of stigmasteryl phenolates was significantly higher than that of stigmasterols (STIs). Regarding the anti-inflammatory properties, VAN, PRO, and SIN exhibit superior effects against TNF-α induced pro-inflammatory responses compared to STI. All stigmasteryl phenolates supplementation increased the ATP production, the basal, and maximal oxygen consumption rate in mitochondrial stress test. Overall, we present a synthesis method for stigmasteryl phenolates. It will contribute to the development and research of phytosterol acid ester analysis, functions and utilization in food. Moreover, the nutrient-stigmasterol hybrids tactic we have constructed is practical and can become a targeted mitochondrial delivery strategy with enhanced anti-inflammatory effects.

9.
Cytotherapy ; 15(12): 1580-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24199594

RESUMO

BACKGROUND AIMS: The feasibility of delivering mitochondria using the cell-penetrating peptide Pep-1 for the treatment of MERRF (myoclonic epilepsy with ragged red fibers) syndrome, which is caused by point mutations in the transfer RNA genes of mitochondrial DNA, is examined further using cellular models derived from patients with MERRF syndrome. METHODS: Homogenesis of mitochondria (wild-type mitochondria) isolated from normal donor cells with about 83.5% preserved activity were delivered into MERRF fibroblasts by Pep-1 conjugation (Pep-1-Mito). RESULTS: Delivered doses of 52.5 µg and 105 µg Pep-1-Mito had better delivered efficiency and mitochondrial biogenesis after 15 days of treatment. The recovery of mitochondrial function in deficient cells receiving 3 days of treatment with peptide-mediated mitochondrial delivery was comprehensively demonstrated by restoration of oxidative phosphorylation subunits (complex I, III and IV), mitochondrial membrane potential, adenosine triphosphate synthesis and reduction of reactive oxygen species production. The benefits of enhanced mitochondrial regulation depended on the function of foreign mitochondria and not the existence of mitochondrial DNA and can be maintained for at least 21 days with dramatically elongated mitochondrial morphology. In contrast to delivery of wild-type mitochondria, the specific regulation of Pep-1-Mito during MERRF syndrome progression in cells treated with mutant mitochondria was reflected by the opposite performance, with increase in reactive oxygen species production and matrix metalloproteinase activity. CONCLUSIONS: The present study further illustrates the feasibility of mitochondrial intervention therapy using the novel approach of peptide-mediated mitochondrial delivery and the benefit resulting from mitochondria-organelle manipulation.


Assuntos
Cisteamina/análogos & derivados , Síndrome MERRF/terapia , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Peptídeos/administração & dosagem , Células Cultivadas , Cisteamina/administração & dosagem , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/ultraestrutura , Humanos , Síndrome MERRF/genética , Síndrome MERRF/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/patologia , Espécies Reativas de Oxigênio
10.
Eur J Pharm Sci ; 189: 106561, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562549

RESUMO

Delivering traditional DNA-damaging anticancer drugs into mitochondria to damage mitochondria is a promising chemotherapy strategy. The impermeability of this mitochondrial inner membrane, however, impedes the delivery of drug molecules that could impact other important biological roles of mitochondria. Herein, the prodrug camptothecin (CPT)-triphenylphosphine (TPP) modified with hyaluronic acid (HA) via electrostatic adsorption (HA/CPT-TPP, HCT) was used to mediate the mitochondrial accumulation of CPT. These nanoparticles (NPs) showed enhanced drug accumulation in cancer cells through tumor targeting. HCT entered acidic lysosomes through endosomal transport, HA was degraded by hyaluronidase (HAase) in acidic lysosomes, and the positively charged CPT-TPP was exposed and accumulated fully in the mitochondria. Subsequently, CPT-TPP significantly disrupted the mitochondrial structure and damaged mitochondrial function, leading to increased reactive oxygen species (ROS) levels and energy depletion. Finally, HCT enhanced lung cancer cell apoptosis via the activation of caspase-3 and caspase-9. Furthermore, greatly increased tumor growth inhibition was observed in nude mice bearing A549 xenograft tumors after the administration of HCT via tail injection. This study demonstrated that the mitochondria-targeted delivery of CPT may be a promising antitumor therapeutic strategy.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Animais , Camundongos , Humanos , Camundongos Nus , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Mitocôndrias/metabolismo , Nanopartículas/química , Camptotecina/metabolismo , Sistemas de Liberação de Medicamentos , Linhagem Celular Tumoral
11.
Acta Pharm Sin B ; 13(3): 1028-1035, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970208

RESUMO

Mitochondrial diseases are a group of inherited or acquired metabolic disorders caused by mitochondrial dysfunction which may affect almost all the organs in the body and present at any age. However, no satisfactory therapeutic strategies have been available for mitochondrial diseases so far. Mitochondrial transplantation is a burgeoning approach for treatment of mitochondrial diseases by recovery of dysfunctional mitochondria in defective cells using isolated functional mitochondria. Many models of mitochondrial transplantation in cells, animals, and patients have proved effective via various routes of mitochondrial delivery. This review presents different techniques used in mitochondrial isolation and delivery, mechanisms of mitochondrial internalization and consequences of mitochondrial transplantation, along with challenges for clinical application. Despite some unknowns and challenges, mitochondrial transplantation would provide an innovative approach for mitochondrial medicine.

12.
J Pharm Sci ; 111(2): 432-439, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478755

RESUMO

Large amounts of ATP are produced in mitochondria especially in the brain and heart, where energy consumption is high compared with other organs. Thus, a decrease in ATP production in such organs could be a cause of many diseases such as neurodegenerative diseases and heart disease. Based on thus assumption, increasing intracellular ATP production in such organs could be a therapeutic strategy. In this study, we report on the delivery of vitamin B1, a coenzyme that activates the tricarboxylic acid (TCA) cycle, to the inside of mitochondria. Since the TCA cycle is responsible for ATP production, we hypothesized delivering vitamin B1 to mitochondria would enhance ATP production. To accomplish this, we used a mitochondrial targeted liposome a "MITO-Porter" as the carrier. Using SH-SY5Y cells, a model neuroblast, cellular uptake and intracellular localization were analyzed using flow cytometry and confocal laser scanning microscopy. The optimized MITO-Porter containing encapsulated vitamin B1 (MITO-Porter (VB1)) was efficiently accumulated in mitochondria of SH-SY5Y cells. Further studies confirmed that the level of ATP production after the MITO-Porter (VB1) treatment was significantly increased as compared to a control group that was treated with naked vitamin B1. This study provides the potential for an innovative therapeutic strategy in which the TCA cycle is activated, thus enhancing ATP production.


Assuntos
Sistemas de Liberação de Medicamentos , Tiamina , Trifosfato de Adenosina , Humanos , Mitocôndrias , Vitaminas
13.
ACS Nano ; 16(7): 10242-10259, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35820199

RESUMO

The clinical success of anticancer therapy is usually limited by drug resistance and the metastatic dissemination of cancer cells. Mitochondria are essential generators of cellular energy and play a crucial role in sustaining cell survival and metastatic escape. Selective drug strategies targeting mitochondria are able to rewire mitochondrial metabolism and may provide an alternative paradigm to treat many aggressive cancers with high efficiency and low toxicity. Here, we present a pseudo-stealthy mitochondria-targeted pro-nanotaxane and test it against recurrent and metastatic tumor xenografts. The nanoparticle encapsulates a mitochondria-targetable pro-taxane agent, which can be converted into the chemically unmodified cabazitaxel drug, with further surface cloaking with a low-density lipophilic triphenylphosphonium cation. The resultant nanotaxane could be effectively taken up by cells and consequently specifically localized to the mitochondria. The in situ activated cabazitaxel causes mitochondrial dysfunction and ultimately results in potent cell apoptosis. After intravenous administration to animals, pro-nanotaxane mimics the stealthy behavior of polyethylene glycol-cloaked nanoparticles to provide a long circulation time. The antitumor efficacy of this mitochondria-targeted system was validated in multiple preclinical drug-resistant tumor models. Notably, in a patient-derived metastatic melanoma model that was initially pretreated with cabazitaxel, nanotaxane administration not only produced durable tumor reduction but also substantially suppressed metastatic recurrence. Taken together, these results demonstrate that this combination of a pseudo-stealthy platform with a rationally designed pro-drug is an attractive approach to target mitochondria and enhance drug efficacy.


Assuntos
Nanopartículas , Neoplasias , Animais , Humanos , Biogênese de Organelas , Mitocôndrias , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral
14.
J Control Release ; 348: 357-369, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35623492

RESUMO

The recent rapid progress in the area of drug delivery systems (DDS) has opened a new era in medicine with a strong linkage to understanding the molecular mechanisms associated with cancer survival. In this review, we summarize new cancer strategies that have recently been developed based on our DDS technology. Cancer immunotherapy will be improved based on the concept of the cancer immunity cycle, which focuses on dynamic interactions between various types of cancer and immune cells in our body. The new technology of genome editing will also be discussed with reference to how these new DDS technologies can be used to introduce therapeutic cargoes into our body. Lastly, a new organelle, mitochondria will be the focus of creating a new cancer treatment strategy by a MITO-Porter which can deliver macromolecules directly to mitochondria of cancer cells via a membrane fusion approach and the impact of controlled intracellular trafficking will be discussed.


Assuntos
Nanomedicina , Neoplasias , Sistemas de Liberação de Medicamentos , Edição de Genes , Humanos , Lipossomos , Neoplasias/terapia
15.
J Pharm Sci ; 109(8): 2493-2500, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32376272

RESUMO

Mitochondrial delivery of an anticancer drug targeting cancer cells would eventually result in cell death. To achieve this, a drug delivery system targeting mitochondria is needed. We recently developed a MITO-Porter, a liposome that delivers its cargo to mitochondria. We reported that such a MITO-Porter could deliver doxorubicin (DOX), an anticancer drug, to mitochondria in OS-RC-2 cells, a drug resistant cancer cell, resulting in inhibiting the cell growth, based in in vitro experiments. Herein, we report on validating the benefit of such a therapeutic strategy for treating drug resistant cancers by the in vivo targeting of mitochondria. We prepared a DOX-MITO-Porter, in which DOX was encapsulated in the MITO-Porter and optimized its retention in blood circulation. When the DOX-MITO-Porter was administered to mice bearing OS-RC-2 cells via tail vein injection, tumor size was significantly decreased, compared to DOX itself and to the DOX-encapsulated polyethylene glycol-modified liposome (DOX-PEG-LP). Intracellular observation confirmed that the DOX-MITO-Porter had accumulated in tumor mitochondria. It was also found a relationship between anti-tumor effect and the mitochondrial function, as indicated by the depolarization of mitochondrial membrane potential. This study provides support for the utility of an in vivo mitochondrial delivery system in drug resistant cancer therapies.


Assuntos
Antineoplásicos , Neoplasias , Administração Cutânea , Animais , Doxorrubicina , Sistemas de Liberação de Medicamentos , Lipossomos , Camundongos , Mitocôndrias , Neoplasias/tratamento farmacológico
16.
Mol Ther Nucleic Acids ; 20: 687-698, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32388194

RESUMO

Here, we report on validating a mitochondrial gene therapy by delivering nucleic acids to mitochondria of diseased cells by a MITO-Porter, a liposome-based carrier for mitochondrial delivery. We used cells derived from a patient with a mitochondrial disease with a G625A heteroplasmic mutation in the tRNAPhe of the mitochondrial DNA (mtDNA). It has been reported that some mitochondrial gene diseases are caused by heteroplasmic mutations, in which both mutated and wild-type (WT) genes are present, and the accumulation of pathological mutations leads to serious, intractable, multi-organ diseases. Therefore, the decrease of the mutated gene rate is considered to be a useful gene therapy strategy. To accomplish this, wild-type mitochondrial pre-tRNAPhe (pre-WT-tRNAPhe), prepared by in vitro transcription, was encapsulated in the MITO-Porter. The pre-WT-tRNAPhe encapsulated in the MITO-Porter was transfected into diseased mitochondrial cells, and the resulting mutant levels were examined by an amplification refractory mutation system (ARMS)-quantitative PCR. The mutation rate of tRNAPhe was decreased, and this therapeutic effect was sustained even on the 8th day after transfection. Furthermore, mitochondrial respiratory activity of the disease cells was increased after the transfection of therapeutic pre-WT-tRNAPhe. These results support the conclusion that the mitochondrial delivery of therapeutic nucleic acids represents a viable strategy for mitochondrial gene therapy.

17.
Mitochondrion ; 55: 134-144, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33035688

RESUMO

We report on validating a mitochondrial gene therapeutic strategy using fibroblasts derived from patients with an A1555G point mutation in mitochondrial DNA coding 12S ribosomal RNA (rRNA (12S)). Wild-type rRNA (12S) as a therapeutic RNA was encapsulated in a mitochondrial targeting liposome, a MITO-Porter (rRNA-MITO-Porter), and an attempt was made to deliver the MITO-Porter to mitochondria of the diseased cells. It was confirmed that the rRNA-MITO-Porter treatment significantly decreased the ratio of the mutant rRNA content. Moreover, it was shown that the mitochondrial respiratory activities of the diseased cells were improved as the result of the mitochondrial transfection of the rRNA-MITO-Porter.


Assuntos
Mitocôndrias/fisiologia , Doenças Mitocondriais/genética , Mutação , RNA Ribossômico/farmacologia , Linhagem Celular , Respiração Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Lipossomos , Doenças Mitocondriais/terapia , RNA Ribossômico/genética , Transfecção
18.
Nucleosides Nucleotides Nucleic Acids ; 39(1-3): 141-155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31595823

RESUMO

Cardiomyopathy caused by mitochondrial dysfunction associated with the mutation/deletion of mitochondrial DNA has been reported, and nucleic acid therapy targeting cardiac mitochondria represents a possible therapy for treating these diseases. Such a treatment, however, has not yet been achieved because delivering nucleic acids to mitochondria of cardiac muscle is difficult. In this study, H9c2 cells a type of rat cardiac myoblasts, were used as model cardiac muscle cells. The use of a lipid composition used to prepare the ß-MEND (where MEND denotes multifunctional envelope-type nano device) permitted the particles to be efficiently internalized by H9c2 cells, as evidenced by flow cytometry analyses. Intracellular observations by confocal laser scanning microscopy showed that the ß-MEND efficiently accumulated in mitochondria of H9c2 cells. We also constructed an RP/ß-MEND that contained a mitochondrial RNA aptamer to achieve mitochondrial delivery in H9c2 cells. The successful direct mitochondrial transfection of exogenous RNA was confirmed using these carrier systems, based on PCR experiments after reverse transcription. Thus, the ß-MEND holds promise as a direct mitochondrial transfection system for delivering nucleic acids targeted to H9c2 cells.


Assuntos
Técnicas de Transferência de Genes , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Nanopartículas , Ácidos Nucleicos/administração & dosagem , Animais , Sobrevivência Celular/genética , Citometria de Fluxo , Lipossomos , Camundongos , Ácidos Nucleicos/genética , Plasmídeos/administração & dosagem , Plasmídeos/genética , Transfecção
19.
Yakugaku Zasshi ; 139(1): 41-45, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-30606927

RESUMO

The destruction of ß cells of pancreatic islets results in a reduced level of insulin secretion, thus resulting in the onset of diabetes. Diabetes caused by such a decrease in insulin secretion has been reported to be associated with mitochondrial dysfunction. Because of this, mitochondrial therapy would be expected to be a useful and productive strategy for the treatment of this disease. We previously reported the development of a MITO-Porter, a liposome-based nanocarrier that permits macromolecular cargos to be delivered into mitochondria via membrane fusion. In this presentation, we present our current findings on the development of a mitochondrial nanocarrier system aimed at the development of a novel method for treating and preventing diabetes. The system includes "a nanocarrier system for nucleic acids targeted to pancreatic ß cells", and "an in vivo system for the delivery of nucleic acids targeting the pancreas". In this presentation, we propose the use of a "mitochondrial nanocarrier system" as a novel method for the treatment and prevention of diabetes, and discuss the contribution of mitochondrial nanocarrier systems to innovative drug development.


Assuntos
Sistemas de Liberação de Medicamentos , Células Secretoras de Insulina , Mitocôndrias , Nanocápsulas , Ácidos Nucleicos/administração & dosagem , Animais , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/prevenção & controle , Humanos , Secreção de Insulina , Células Secretoras de Insulina/ultraestrutura , Camundongos
20.
J Control Release ; 269: 177-188, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29146241

RESUMO

It has been reported that transplanting native cells would lack efficiency without producing artificial cell-tissue, due to the exaggerated oxidative stress in doxorubicin-induced cardiomyopathy. We attempted to activate cardiac progenitor cells (CPCs) by delivering resveratrol to mitochondria using a mitochondrial drug delivery system (MITO-Porter system). We first evaluated the viability of H9c2 cells (a cardio myoblast cell line) after doxorubicin treatment, where H9c2 cells were co-cultured with or without the mitochondria activated CPCs (referred to herein as MITO cell). We next evaluated the survival rate of doxorubicin treated mice, with or without the injection of MITO cells into the myocardium. Finally, we examined the molecular mechanism of the cell therapy by detecting oxidative stress and the induction of apoptosis in addition to quantification of the mRNA and protein levels about oxidative phosphorylation (OXPHOS). The MITO cell transplanted mice lived significantly longer than the conventional CPC transplanted ones. Oxidative stress and massive cell death were both significantly reduced in the MITO cell transplanted hearts, in which the expression levels of OXPHOS protein and gene were also higher than the control group. In doxorubicin-induced cardiomyopathy, the transplantation of MITO cells, which possess activated mitochondria, is more efficient compared to conventional CPC transplantation.


Assuntos
Antibióticos Antineoplásicos , Cardiomiopatias/terapia , Doxorrubicina , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Resveratrol/administração & dosagem , Transplante de Células-Tronco , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Linhagem Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/citologia , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA