Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042819

RESUMO

Inspired by the intriguing adaptivity of natural life, such as squids and flowers, we propose a series of dynamic and responsive multifunctional devices based on multiscale structural design, which contain metal nanocoating layers overlaid with other micro-/nanoscale soft or rigid layers. Since the optical/photothermal properties of a metal nanocoating are thickness dependent, metal nanocoatings with different thicknesses were chosen to integrate with other structural design elements to achieve dynamic multistimuli responses. The resultant devices demonstrate 1) strain-regulated cracked and/or wrinkled topography with tunable light-scattering properties, 2) moisture/photothermal-responsive structural color coupled with wrinkled surface, and 3) mechanically controllable light-shielding properties attributed to the strain-dependent crack width of the nanocoating. These devices can adapt external stimuli, such as mechanical strain, moisture, light, and/or heat, into corresponding changes of optical signals, such as transparency, reflectance, and/or coloration. Therefore, these devices can be applied as multistimuli-responsive encryption devices, smart windows, moisture/photothermal-responsive dynamic optics, and smartphone app-assisted pressure-mapping sensors. All the devices exhibit high reversibility and rapid responsiveness. Thus, this hybrid system containing ultrathin metal nanocoatings holds a unique design flexibility and adaptivity and is promising for developing next-generation multifunctional devices with widespread application.

2.
Microb Pathog ; 189: 106602, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408546

RESUMO

The current research was designed to investigate the antibacterial activity of probiotic bacteria mediated cadmium oxide nanoparticles (CdO NPs) on common fish pathogenic bacteria like Serratia marcescens, Aeromonas hydrophila, Vibrio harveyi, and V. parahaemolyticus. CdO NPs were synthesized using probiotic bacteria as follows: Lactobacillus species with different precursor of cadmium sulfate concentrations (5, 10, and 20 mM). The average crystalline sizes of the CdO NPs were determined based on the XRD patterns using the Debye-Scherrer equation for different precursor concentrations. Specifically, sizes of 40, 48, and 67 nm were found at concentrations of 5, 10, and 20 mM, respectively. The antibacterial efficacy of CdO NPs was estimated using a well diffusion assay, which demonstrated the best efficacy of 20 mM CdO NPs against all pathogens. AFM analysis of nanoparticle-treated and untreated biofilms was performed to further validate the antibacterial effect. Antibacterial activity of CdO nanoparticles synthesized at varying concentrations (5, 10, and 20 mM) against fish pathogens (S. marcescens, A. hydrophila, V. harveyi, and V. parahaemolyticus). The results indicated the highest inhibitory effect of 20 mM CdO NPs across all concentrations (30, 60, and 90 µg/mL), demonstrating significant inhibition against S. marcescens. These findings will contribute to the development of novel strategies for combating aquatic diseases and advancing aquaculture health management practices.


Assuntos
Compostos de Cádmio , Nanopartículas Metálicas , Nanopartículas , Animais , Óxidos/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Peixes , Nanopartículas Metálicas/química
3.
Sensors (Basel) ; 24(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38475198

RESUMO

An optical fiber pH sensor based on a long-period fiber grating (LPFG) is reported. Two oppositely charged polymers, polyethylenimine (PEI) and polyacrylic acid (PAA), were alternately deposited on the sensing structure through a layer-by-layer (LbL) electrostatic self-assembly technique. Since the polymers are pH sensitive, their refractive index (RI) varies when the pH of the solution changes due to swelling/deswelling phenomena. The fabricated multilayer coating retained a similar property, enabling its use in pH-sensing applications. The pH of the PAA dipping solution was tuned so that a coated LPFG achieved a pH sensitivity of (6.3 ± 0.2) nm/pH in the 5.92-9.23 pH range. Only two bilayers of PEI/PAA were used as an overlay, which reduces the fabrication time and increases the reproducibility of the sensor, and its reversibility and repeatability were demonstrated by tracking the resonance band position throughout multiple cycles between different pH solutions. With simulation work and experimental results from a low-finesse Fabry-Perot (FP) cavity on a fiber tip, the coating properties were estimated. When saturated at low pH, it has a thickness of 200 nm and 1.53 ± 0.01 RI, expanding up to 310 nm with a 1.35 ± 0.01 RI at higher pH values, mostly due to the structural changes in the PAA.

4.
Angew Chem Int Ed Engl ; 63(12): e202314501, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38302821

RESUMO

Due to the presence of natural neoantigens, autologous tumor cells hold great promise as personalized therapeutic vaccines. Yet autologous tumor cell vaccines require multi-step production that frequently leads to the loss of immunoreactive antigens, causing insufficient immune activation and significantly hampering their clinical applications. Herein, we introduce a novel whole-cell cancer vaccine by cloaking cancer cells with lipopolysaccharide-decorated manganese(II)-phenolic networks (MnTA nanocloaks) to evoke tumor-specific immune response for highly efficacious synergistic cancer immunotherapy. The natural polyphenols coordinate with Mn2+ and immediately adhere to the surface of individual cancer cells, thereby forming a nanocloak and encapsulating tumor neoantigens. Subsequent decoration with lipopolysaccharide induces internalization by dendritic cells, where Mn2+ ions are released in the cytosol, further facilitating the activation of the stimulator of the interferon genes (STING) pathway. Highly effective tumor suppression was observed by combining the nanocloaked cancer cell treatment with anti-programmed cell death ligand 1 (anti-PD-L1) antibodies-mediated immune checkpoint blockade therapy. Our work demonstrates a universal yet simple strategy to engineer a cell-based nanobiohybrid system for enhanced cancer immunotherapy.


Assuntos
Neoplasias , Vacinas , Humanos , Imunoterapia , Lipopolissacarídeos , Neoplasias/terapia , Microambiente Tumoral , Vacinas Anticâncer
5.
Crit Rev Food Sci Nutr ; : 1-16, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318213

RESUMO

Lactic acid bacteria (LAB) is a type of probiotic that may benefit intestinal health. Recent advances in nanoencapsulation provide an effective strategy to protect them from harsh conditions via surface functionalization coating techniques. Herein, the categories and features of applicable encapsulation methods are compared to highlight the significant role of nanoencapsulation. Commonly used food-grade biopolymers (polysaccharides and protein) and nanomaterials (nanocellulose and starch nanoparticles) are summarized along with their characteristics and advances to demonstrate enhanced combination effects in LAB co-encapsulation. Nanocoating for LAB provides an integrity dense or smooth layer attributed to the cross-linking and assembly of the protectant. The synergism of multiple chemical forces allows for the formation of subtle coatings, including electrostatic attractions, hydrophobic interactions, π-π, and metallic bonds. Multilayer shells have stable physical transition properties that could increase the space between the probiotic cells and the outer environment, thus delaying the microcapsules burst time in the gut. Probiotic delivery stability can be promoted by enhancing the thickness of the encapsulated layer and nanoparticle binding. Maintenance of benefits and minimization of nanotoxicity are desirable, and green synthesized nanoparticles are emerging. Future trends include optimized formulation, especially using biocompatible materials, protein or plant-based materials, and material modification.

6.
Clin Oral Investig ; 27(12): 7799-7807, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919552

RESUMO

OBJECTIVE: The aim of this in vitro study was to evaluate the effect of an oxide nanocoating to prevent colour degradation of maxillofacial silicone elastomers following accelerated ageing. MATERIAL AND METHODS: Specimens (N = 40) of specified dimensions were fabricated in Factor II room temperature vulcanizing (RTV) silicone and processed according to the manufacturer's instructions. Two groups were classified with 20 specimens each. Specimens in the first group were coated with titanium dioxide (TiO2) by atomic layer deposition technology. The colour stability test was conducted with a UV-VIS spectrometer (Schimadzu) for both titanium dioxide nanocoated and uncoated specimen groups after subjecting them to accelerated ageing. It was analysed using the CIE L*a*b method. RESULTS: The average colour change was highest for uncoated specimens (2.868), and the average colour change for titanium dioxide-coated specimens was significantly low (1.774). The average colour change of uncoated specimens (2.868) was close to the acceptable threshold value (3), and that of coated specimens (1.774) was far below the acceptable threshold (3). CONCLUSIONS: The colour change that occurred in titanium dioxide nanocoated specimens following accelerated ageing was significantly lower than that in the uncoated group, showing that the TiO2 nanocoating was effective in reducing the colour degradation of silicone elastomers. CLINICAL RELEVANCE: Maxillofacial prostheses fabricated from silicone elastomers go through undesirable colour degradation over time. The development of a scientific technique that retards the colour deterioration of silicone prostheses would be of great clinical significance.


Assuntos
Elastômeros de Silicone , Cor , Temperatura , Teste de Materiais
7.
J Sci Food Agric ; 103(11): 5600-5608, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37078853

RESUMO

BACKGROUND: High internal-phase Pickering emulsions have attracted interest due to their unique properties and they have the potential for broad application in the food field, for example as fat replacers, for packaging, for delivery of nutrients or probiotics, and in the 3D printing of food. However, efficient and edible high internal-phase Pickering stabilizers are still a persistent challenge for food scientists. RESULTS: Nobiletin (NOB) was selected as a model substance. The particles' physicochemical properties (droplet size, rheological behavior, and transmission profile) showed that supramolecular metal-polyphenolic coordination networks could suppress the ripening and growth of crystals on the oil-water interface. When the ratio of tannic acid (TA) to Fe3+ was 3:1, the growth of NOB crystals could be inhibited effectively. Due to the reduction of energy steric hindrance in the adsorption process, the resulting NOB-TA3 -Fe3+ 1 (NT3 Fe1 ) nanoparticles had the greatest potential to extend emulsion storage time. CONCLUSION: The NOB-TA3 -Fe3+ 1 (NT3 Fe1 ) nanoparticles were able to stabilize a high internal-phase emulsion, of which the oil phase was 80%, for at least 30 days, eventually leading to high system viscosity. The findings in this work provide a novel selection of healthy emulsifiers and an effective emulsion delivery system for hydrophobic and crystalline nutrients. © 2023 Society of Chemical Industry.


Assuntos
Complexos de Coordenação , Flavonas , Emulsões/química , Emulsificantes , Tamanho da Partícula
8.
Mater Chem Phys ; 282: 125803, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35153357

RESUMO

The excellent strategy to mitigate the spread of the COVID-19 pandemic is to inhibit the transmission of the SARS-CoV-2. Since fomites are one of the vital routes of coronaviral transmission, disinfecting of fomites play a pivotal role in curbing its survival on the contaminated surfaces. Available commercial disinfectants cannot keep the contaminated surfaces sanitized all the time. Self-disinfecting ability of Ag-enriched TiO2 nanocoating due to its superb photocatalytic efficiency can effectively reduce infections caused by spread of pathogens at public places. Anatase Ag-TiO2 nanocoatings synthesized by sol-gel process at 0.5, 1.5, and 2.5% enriching concentrations were casted on glass substrates by spin-coating technique and subsequently annealed at 650 °C. The morphological shape, crystallographic structure, light absorbance, photo-luminosity, vibrational modes, and functional groups of Ag-TiO2 nanocoating on glass surface were studied by FE-SEM, GIXRD, UV-Visible, Photoluminescence, Raman, and FTIR spectroscopy. The developed anatase Ag-TiO2 nanocoatings manifested to improve photocatalytic disinfecting performance due to the achieved small crystallite size of 10.5-19.2 nm, diminished band gap energy of 2.56-2.60 eV, elevated surface area of 0.802-1.470 ×105 cm2/g, and enhanced light absorbance. Among the enriched specimens, 0.5% Ag-TiO2 nanocoatings predicted an overall exalted functionality compared to pristine one.

9.
Nano Lett ; 21(16): 7044-7049, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34428904

RESUMO

Molecularly thin two-dimensional (2D) nanomaterials are attractive building blocks for constructing anticorrosion nanocoatings as an ultimate pursuit in the metal-related industry. However, the nanocoating of prefocused graphene is far from industrial demands due to its high cost, low scalability, and insufficient quality. We propose all requirements to realize rational anticorrosion nanocoating of metal oxide nanosheets. The proof-of-concept study with Ti0.87O2 and Ca2Nb3O10 nanosheets demonstrates that the 10 and 20 nm thick coatings fabricated by a facile layer-by-layer (LbL) self-assembly on stainless steel (SUS) give perfect inhibition efficiency (IE) values of 99.92% and 99.89%, respectively. A driving test with a nanosheet-coated car-baffle demonstrated suitable corrosion resistance and mechanical and thermal robustness for industrial applications. The revealed and controlled thermal oxidation mechanisms are critical toward high-temperature application of the 2D oxide anticorrosion nanocoating. The advantages of nanosheet coating and extensible materials design will open a solid but exciting route to anticorrosion nanotechnology.

10.
Small ; 17(37): e2101810, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34365713

RESUMO

Disorders in the gut microbiota have been implicated in various diseases, such as inflammatory bowel diseases, diabetes, and cancers. Oral microecologics are of great importance due to their ability to directly intervene the gut microbiome as well as their noninvasiveness and low side effects, while have suffered from low bioavailability and a single therapeutic effect. Here, probiotics are coated with a therapeutic nanocoating for synergistically enhanced biotherapy, a method inspired by the robust protective and therapeutic effectiveness of silkworm cocoon. With its transition from a random coil to ß-sheet conformation, silk fibroin can self-assemble onto the surface of bacteria. By a simple layer-by-layer procedure, an entire nanocoating can be formed along with a near quantitative coating ratio and almost uninfluenced bacterial viability. Thanks to its protective barrier role and innate pharmaceutical activity, silk fibroin nanocoating endows the coated bacteria with a markedly improved survival against gastric insults and a synergistically enhanced therapeutic effect in a murine model of intestinal mucositis. This work demonstrates how therapeutic elements can be combined with probiotics via a simple coating strategy and proposes an alternative to enhance bioavailability and treatment efficacy of oral microecologics.


Assuntos
Bombyx , Fibroínas , Animais , Bactérias , Terapia Biológica , Camundongos , Viabilidade Microbiana
11.
Nano Lett ; 20(3): 1483-1490, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31545613

RESUMO

All-solid-state lithium batteries (ASLBs) are promising for the next generation energy storage system with critical safety. Among various candidates, thiophosphate-based electrolytes have shown great promise because of their high ionic conductivity. However, the narrow operation voltage and poor compatibility with high voltage cathode materials impede their application in the development of high energy ASLBs. In this work, we studied the failure mechanism of Li6PS5Cl at high voltage through in situ Raman spectra and investigated the stability with high-voltage LiNi1/3Mn1/3Co1/3O2 (NMC) cathode. With a facile wet chemical approach, we coated a thin layer of amorphous Li0.35La0.5Sr0.05TiO3 (LLSTO) with 15-20 nm at the interface between NMC and Li6PS5Cl. We studied different coating parameters and optimized the coating thickness of the interface layers. Meanwhile, we studied the effect of NMC dimension to the ASLBs performance. We further conducted the first-principles thermodynamic calculations to understand the electrochemical stability between Li6PS5Cl and carbon, NMC, LLSTO, NMC/LLSTO. Attributed to the high stability of Li6PS5Cl with NMC/LLSTO and outstanding ionic conductivity of the LLSTO and Li6PS5Cl, at room temperature, the ASLBs exhibit outstanding capacity of 107 mAh g-1 and keep stable for 850 cycles with a high capacity retention of 91.5% at C/3 and voltage window 2.5-4.0 V (vs Li-In).

12.
J Cell Sci ; 131(1)2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29122983

RESUMO

The topographical and chemical surface features of biomaterials are sensed by the cells, affecting their physiology at the interface. When placed on titanium, we recently discovered osteoblasts attempted caveolae-mediated phagocytosis of the sharp-edged microstructures. This active, energy-consuming process resulted in decreased osteoblastic cell functions (e.g. secretion of extracellular matrix proteins). However, chemical modification with plasma polymerized allylamine (PPAAm) was able to amplify osteoblast adhesion and spreading, resulting in better implant osseointegration in vivo In the present in vitro study, we analyzed whether this plasma polymer nanocoating is able to attenuate the microtopography-induced changes of osteoblast physiology. On PPAAm, we found cells showed a higher cell interaction with the geometrical micropillars by 30 min, and a less distinct reduction in the mRNA expression of collagen type I, osteocalcin and fibronectin after 24 h of cell growth. Interestingly, the cells were more active and sensitive on PPAAm-coated micropillars, and react with a substantial Ca2+ ion mobilization after stimulation with ATP. These results highlight that it is important for osteoblasts to establish cell surface contact for them to perform their functions.


Assuntos
Adesão Celular , Materiais Revestidos Biocompatíveis/química , Proteínas da Matriz Extracelular/metabolismo , Expressão Gênica , Osteoblastos/citologia , Alilamina/química , Linhagem Celular , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Humanos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Polimerização , RNA Mensageiro/análise , Propriedades de Superfície , Titânio/química
13.
Sensors (Basel) ; 20(7)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260585

RESUMO

Recently, carbon allotropes have received tremendous research interest and paved a new avenue for optical fiber sensing technology. Carbon allotropes exhibit unique sensing properties such as large surface to volume ratios, biocompatibility, and they can serve as molecule enrichers. Meanwhile, optical fibers possess a high degree of surface modification versatility that enables the incorporation of carbon allotropes as the functional coating for a wide range of detection tasks. Moreover, the combination of carbon allotropes and optical fibers also yields high sensitivity and specificity to monitor target molecules in the vicinity of the nanocoating surface. In this review, the development of carbon allotropes-based optical fiber sensors is studied. The first section provides an overview of four different types of carbon allotropes, including carbon nanotubes, carbon dots, graphene, and nanodiamonds. The second section discusses the synthesis approaches used to prepare these carbon allotropes, followed by some deposition techniques to functionalize the surface of the optical fiber, and the associated sensing mechanisms. Numerous applications that have benefitted from carbon allotrope-based optical fiber sensors such as temperature, strain, volatile organic compounds and biosensing applications are reviewed and summarized. Finally, a concluding section highlighting the technological deficiencies, challenges, and suggestions to overcome them is presented.


Assuntos
Técnicas Biossensoriais , Nanodiamantes/química , Nanotubos de Carbono/química , Fibras Ópticas , Grafite/química , Humanos , Nanoestruturas/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
14.
Nano Lett ; 19(1): 182-188, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30517790

RESUMO

Undesired reactions between layered sodium transition-metal oxide cathodes and air impede their utilization in practical sodium-ion batteries. Consequently, a fundamental understanding of how layered oxide cathodes degrade in air is of paramount importance, but it has not been fully understood yet. Here a comprehensive study on a model material NaNi0.7Mn0.15Co0.15O2 reveals its reaction chemistry with air and the dynamic evolution of the degradation species upon air exposure. We find that besides the extraction of Na+ ions from the crystal lattice to form NaOH, Na2CO3, and Na2CO3·H2O in contact with air, nickel ions gradually dissolve from the bulk to form NiO and accumulate on the particle surface as revealed by subnanometer surface-sensitive time-of-flight secondary ion mass spectroscopy. The degradation species on the surface are insulating, leading to an increase in interfacial resistance and declined electrochemical performance. We also demonstrate a feasible surface coating strategy for suppressing the unfavorable degradation process. Understanding the degradation mechanism at a nanoscale can facilitate the future development of high-energy cathodes for sodium-ion batteries.

15.
Molecules ; 25(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731428

RESUMO

In 2020, the world is being ravaged by the coronavirus, SARS-CoV-2, which causes a severe respiratory disease, Covid-19. Hundreds of thousands of people have succumbed to the disease. Efforts at curing the disease are aimed at finding a vaccine and/or developing antiviral drugs. Despite these efforts, the WHO warned that the virus might never be eradicated. Countries around the world have instated non-pharmaceutical interventions such as social distancing and wearing of masks in public to curb the spreading of the disease. Antiviral polysaccharides provide the ideal opportunity to combat the pathogen via pharmacotherapeutic applications. However, a layer-by-layer nanocoating approach is also envisioned to coat surfaces to which humans are exposed that could harbor pathogenic coronaviruses. By coating masks, clothing, and work surfaces in wet markets among others, these antiviral polysaccharides can ensure passive prevention of the spreading of the virus. It poses a so-called "eradicate-in-place" measure against the virus. Antiviral polysaccharides also provide a green chemistry pathway to virus eradication since these molecules are primarily of biological origin and can be modified by minimal synthetic approaches. They are biocompatible as well as biodegradable. This surface passivation approach could provide a powerful measure against the spreading of coronaviruses.


Assuntos
Antivirais/uso terapêutico , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Polissacarídeos/uso terapêutico , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/metabolismo , COVID-19 , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/uso terapêutico , Química Verde , Humanos , Nanopartículas , Nanotecnologia , Polissacarídeos/farmacologia , SARS-CoV-2
16.
Wiad Lek ; 73(6): 1097-1102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32723933

RESUMO

OBJECTIVE: The aim of the research is to study the physical and mechanical parameters of the bases in removable laminar dentures after modification of their surface. PATIENTS AND METHODS: Materials and methods: the studied samples were divided into two groups (group I - acrylic plastics, and group II - acrylic plastics with fullerene С60 nanocoating), 50 samples in each group. The coefficients of water absorption, water solubility, microhardness and deformation characteristics of materials were studied. RESULTS: Results and conclusions: The material covered with fullerene С60 has a lower coefficient of water absorption and water solubility, which amounted to 0.55% and 0.23% respectively, from the initial weight of samples, as compared with acrylic plastics without coating (0.71% and 034%, respectively). The strength parameters of samples of group ІІ were higher by 13.5% as compared to group І. The given results of water absorption and water-solubility show that acrylic plastics with fullerene С60 molecules coating has a lower coefficient of water absorption and water solubility, in comparison with acrylic plastics without coating. This indicates a higher degree of resistance to biodegradation of the modified surface material, in turn reducing the washing-out of residual monomer from the denture, which directly improves the strength parameters of the acrylic plastics and can prevent the development of denture stomatitis.


Assuntos
Bases de Dentadura , Fulerenos , Resinas Acrílicas , Teste de Materiais , Plásticos , Água
17.
Nano Lett ; 18(1): 130-136, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29240429

RESUMO

Nanocrystalline materials often exhibit extraordinary mechanical and physical properties but their applications at elevated temperatures are impaired by the rapid grain growth. Moreover, the grain growth in nanocrystalline oxide nanofibers at high temperatures can occur at hundreds of degrees lower than that would occur in corresponding bulk nanocrystalline materials, which would eventually break the fibers. Herein, by characterizing a model system of scandia-stabilized zirconia using hot-stage in situ scanning transmission electron microscopy, we discover that the enhanced grain growth in nanofibers is initiated at the surface. Subsequently, we demonstrate that coating the fibers with nanometer-thick amorphous alumina layer can enhance their temperature stability by nearly 400 °C via suppressing the surface-initiated grain growth. Such a strategy can be effectively applied to other oxide nanofibers, such as samarium-doped ceria, yttrium-stabilized zirconia, and lanthanum molybdate. The nanocoatings also increase the flexibility of the oxide nanofibers and stabilize the high-temperature phases that have 10 times higher ionic conductivity. This study provides new insights into the surface-initiated grain growth in nanocrystalline oxide nanofibers and develops a facile yet innovative strategy to improve the high-temperature stability of nanofibers for a broad range of applications.

18.
J Environ Sci (China) ; 82: 213-224, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31133266

RESUMO

Intensification of pollution loading worldwide has promoted an escalation of different types of disease-causing microorganisms, such as harmful algal blooms (HABs), instigating detrimental impacts on the quality of receiving surface waters. Formation of unwanted disinfection by-products (DBPs) resulting from conventional disinfection technologies reveals the need for the development of new sustainable alternatives. Quaternary Ammonium Compounds (QACs) are cationic surfactants widely known for their effective biocidal properties at the ppm level. In this study, a novel silica-based antimicrobial nanofilm was developed using a composite of silica-modified QAC (Fixed-Quat) and applied to a fiberglass mesh as an active surface via sol-gel technique. The synthesized Fixed-Quat nanocoating was found to be effective against E. coli with an inactivation rate of 1.3 × 10-3 log reduction/cm min. The Fixed-Quat coated fiberglass mesh also demonstrated successful control of Microcystis aeruginosa with more than 99% inactivation after 10 hr of exposure. The developed antimicrobial mesh was also evaluated with wild-type microalgal species collected in a water body experiencing HABs, obtaining a 97% removal efficiency. Overall, the silica-functionalized Fixed-Quat nanocoating showed promising antimicrobial properties for water disinfection and HABs control, while decreasing concerns related to DBPs formation and the possible release of toxic nanomaterials into the environment.


Assuntos
Desinfecção/métodos , Proliferação Nociva de Algas , Nanoestruturas/química , Compostos de Amônio Quaternário/química , Purificação da Água/métodos , Vidro/química , Dióxido de Silício/química , Poluição da Água/estatística & dados numéricos
19.
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi ; 37(12): 921-925, 2019 Dec 20.
Artigo em Zh | MEDLINE | ID: mdl-31937034

RESUMO

Objective: To analysis pathogenic conditions and pathogenic characteristics of organic fluorosis caused by applying of anti-fingerprint coating material on touch screen glass of the mobile phone. Methods: To collect clinical data and analyze the causes and pathogenic characteristics of poisoning through surveying occupational health, detecting occupational hazards in the workplace, collecting clinical data and diagnosing of occupational diseases. 6 employees in workshop 1 of packaging were as the organic fluorine exdposed group, and 16 employees in other workshops were as the non-exposed group. Results: Organic fluorine chemicals (perfluoro-1, 3-dimethylcyclohexane, hexadecafluoroheptane, perfluoro-hexane, perfluoromethy lopentane, perfluoro-2-methyl-2-pentene, etc.) can be volatilized by spraying and baking of anti-fingerprint nano-coating material on touch screen. The relative percentage of volatile components in air is 85.65%. Four cases of acute poisoning were caused by organic fluorosis deposited in a dustless air conditioning workshop with poor ventilation.The clinical manifestations of the patients were acute bronchitis, pulmonary edema and/or myocarditis. The average concentration of urine fluorine in the organic fluorine exposed group was 13.7± 4.4 mmol/mol creatinine, which was 4-5 times higher than that of other non-organic fluorine exposed groups. The difference of urine fluorine level between the organic fluorine exposed group and non exposed group was statistically significant (P<0.01) . The main indicators were abnormal for the blood oxygen saturation of finger pulse under suction air, leukocytes, neutrophils, monocytes, hypersensitivec-reactive protein, procalcitonin, l-lactate dehydrogenase, forebrain diuretic natriuretic peptide, hypersensitive troponin T in the four cases. One case was myocardial ischemia, four cases had bilateral lung symmetrically exudative lesions, one case was accompanied by a small amount of pleural pericardial effusion. Conclusion: Acute organofluorine poisoning can caused by the applying of the fingerprint nano-coating material on touch screen of the mobile phone. Attention should be paid to occupational poisoning caused by the applying of the small molecular perfluoroalkanes (olefins) in new industries, new processes and new materials.


Assuntos
Flúor/efeitos adversos , Doenças Profissionais/induzido quimicamente , Compostos Orgânicos/efeitos adversos , Flúor/urina , Humanos
20.
Pharm Res ; 35(1): 23, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29305725

RESUMO

PURPOSE: Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. METHODS: The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. RESULTS: For indomethacin (weak acid, pKa = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pKa = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. CONCLUSIONS: Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.


Assuntos
Excipientes/química , Gelatina/química , Indometacina/química , Nanoestruturas/química , Nifedipino/química , Química Farmacêutica/métodos , Cristalização , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Microscopia/métodos , Tamanho da Partícula , Transição de Fase , Solubilidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA