Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nano Lett ; 21(23): 10019-10025, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34802241

RESUMO

Halide perovskite nanowire-based lasers have become a powerful tool for modern nanophotonics, being deeply subwavelength in cross-section and demonstrating low-threshold lasing within the whole visible spectral range owing to the huge gain of material even at room temperature. However, their emission directivity remains poorly controlled because of the efficient outcoupling of radiation through their subwavelength facets working as pointlike light sources. Here, we achieve directional lasing from a single perovskite CsPbBr3 nanowire by imprinting a nanograting on its surface, which provides stimulated emission outcoupling to its vertical direction with a divergence angle around 2°. The nanopatterning is carried out by the high-throughput laser ablation method, which preserves the luminescent properties of the material that is typically deteriorated after processing via conventional lithographic approaches. Moreover, nanopatterning of the perovskite nanowire is found to decrease the number of the lasing modes with a 2-fold increase of the quality factor of the remaining modes.

2.
Nano Lett ; 20(9): 6344-6350, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32816490

RESUMO

In this paper, we propose a polarization-selective color filter that can generate two different color informations simultaneously depending on the polarization direction. The proposed color filter is mainly composed of the etalon structure to generate the color by the structural resonance properties while the upper layer of the etalon is made of plasmonic nanogratings to promote polarization-dependent color properties. When the duty ratio of the silver nanogratings is fixed, the proposed color filter can maintain identical optical properties for orthogonal polarization, while the etalon structure of the proposed color filter can manipulate different color information depending on the cavity height for the horizontal polarization. Finally, we experimentally confirm that polarization-dependent security images can be generated using the proposed color filters with a fixed duty ratio of various nanograting arrays.

3.
Nano Lett ; 19(9): 6133-6139, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430170

RESUMO

Severe charge recombination in solar water-splitting devices significantly limits their performance. To address this issue, we design a frustum of a cone nanograting configuration by taking the hematite and Au-based thin-film photoanode as a model system, which greatly improves the photoelectrochemical water oxidation activity, affording an approximately 10-fold increase in the photocurrent density at 1.23 V versus the reversible hydrogen electrode compared to the planar counterpart. The surface plasmon polariton-induced electric field in hematite plays a dominant role in efficiency enhancement by facilitating charge separation, thus dramatically increasing the incident photon-to-current efficiency (IPCE) by more than 2 orders of magnitude in the near band gap of hematite. And the relatively weak electric field caused by light scattering in the nanograting structure is responsible for the approximate maximum 20-fold increase in IPCE within a broadband wavelength range. Our scalable strategy can be generalized to other solar energy conversion systems.

4.
BMC Evol Biol ; 19(1): 91, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30991958

RESUMO

BACKGROUND: Many species of snakes exhibit epidermal surface nanostructures that form complex motifs conferring self-cleaning properties, and sometimes structural iridescence, to their skin. RESULTS: Using confocal microscopy, we show that these specialised cells can be greatly elongated along their left-right axis and that different types of nanostructures are generated by cell borders and cell surface. To characterise the complexity and diversity of these surface gratings, we analysed scanning electron microscopy images of skin sheds from 353 species spanning 19 of the 26 families of snakes and characterised the observed nanostructures with four characters. The full character matrix, as well as one representative SEM image of each of the corresponding species, is available as a MySQL relational database at https://snake-nanogratings.lanevol.org . We then performed continuous-time Markov phylogenetic mapping on the snake phylogeny, providing an evolutionary dynamical estimate for the different types of nanostructures. These analyses suggest that the presence of cell border digitations is the ancestral state for snake skin nanostructures which was subsequently and independently lost in multiple lineages. Our analyses also indicate that cell shape and cell border shape are co-dependent characters whereas we did not find correlation between a simple life habit classification and any specific nanomorphological character. CONCLUSIONS: These results, compatible with the fact that multiple types of nanostructures can generate hydrophobicity, suggest that the diversity and complexity of snake skin surface nano-morphology are dominated by phylogenetic rather than habitat-specific functional constraints. The present descriptive study opens the perspective of investigating the cellular self-organisational cytoskeletal processes controlling the patterning of different skin surface nanostructures in snakes and lizards.


Assuntos
Biodiversidade , Nanoestruturas/química , Filogenia , Serpentes/classificação , Animais , Ecossistema , Nanoestruturas/ultraestrutura , Processos Estocásticos
5.
Discov Nano ; 18(1): 71, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37382772

RESUMO

A tunable metamaterial nanograting coupler (MNC) is presented that is composed of a one-dimensional surface nanograting coupler with a bottom reflector and the metamaterial atop. For a single nanograting coupler, by introducing a reflector and optimizing nanograting parameters, the spatial coupling efficiency exceeds 97% around near-infrared wavelength of 1.43 µm. The metamaterial can be tuned by using micro-electro-mechanical system (MEMS) technique. The relative height or lateral offset between metamaterial and coupling nanograting can be controlled, that the light-emitting efficiency can be separated into two different directions. In addition, the coupling efficiency is as high as 91% at the optical C-band communication window. Therefore, the proposed MEMS-based MNC not only has the possibility of coupling optical fibers with high-density integrated optoelectronic chips, but also has potential application prospects in light path switching, variable optical attenuation, and optical switch.

6.
Nanomaterials (Basel) ; 13(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049302

RESUMO

We report an unexpected pulse repetition rate effect on ultrafast-laser modification of sodium germanate glass with the composition 22Na2O 78GeO2. While at a lower pulse repetition rate (~≤250 kHz), the inscription of nanogratings possessing form birefringence is observed under series of 105-106 pulses, a higher pulse repetition rate launches peripheral microcrystallization with precipitation of the Na2Ge4O9 phase around the laser-exposed area due to the thermal effect of femtosecond pulses via cumulative heating. Depending on the pulse energy, the repetition rate ranges corresponding to nanograting formation and microcrystallization can overlap or be separated from each other. Regardless of crystallization, the unusual growth of optical retardance in the nanogratings with the pulse repetition rate starting from a certain threshold has been revealed instead of a gradual decrease in retardance with the pulse repetition rate earlier reported for some other glasses. The repetition rate threshold of the retardance growth is shown to be inversely related to the pulse energy and to vary from ~70 to 200 kHz in the studied energy range. This effect can be presumably assigned to the chemical composition shift due to the thermal diffusion of sodium cations occurring at higher pulse repetition rates when the thermal effect of the ultrashort laser pulses becomes noticeable.

7.
Micromachines (Basel) ; 14(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38004841

RESUMO

The scientific community has been looking for novel approaches to develop nanostructures inspired by nature. However, due to the complicated processes involved, controlling the height of these nanostructures is challenging. Nanoscale capillary force lithography (CFL) is one way to use a photopolymer and alter its properties by exposing it to ultraviolet radiation. Nonetheless, the working mechanism of CFL is not fully understood due to a lack of enough information and first principles. One of these obscure behaviors is the sudden jump phenomenon-the sudden change in the height of the photopolymer depending on the UV exposure time and height of nano-grating (based on experimental data). This paper uses known physical principles alongside artificial intelligence to uncover the unknown physical principles responsible for the sudden jump phenomenon. The results showed promising results in identifying air diffusivity, dynamic viscosity, surface tension, and electric potential as the previously unknown physical principles that collectively explain the sudden jump phenomenon.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38041641

RESUMO

A complex interplay between the crystal structure and the electron behavior within borophene renders this material an intriguing 2D system, with many of its electronic properties still undiscovered. Experimental insight into those properties is additionally hampered by the limited capabilities of the established synthesis methods, which, in turn, inhibits the realization of potential borophene applications. In this multimethod study, photoemission spectroscopies and scanning probe techniques complemented by theoretical calculations have been used to investigate the electronic characteristics of a high-coverage, single-layer borophene on the Ir(111) substrate. Our results show that the binding of borophene to Ir(111) exhibits pronounced one-dimensional modulation and transforms borophene into a nanograting. The scattering of photoelectrons from this structural grating gives rise to the replication of the electronic bands. In addition, the binding modulation is reflected in the chemical reactivity of borophene and gives rise to its inhomogeneous aging effect. Such aging is easily reset by dissolving boron atoms in iridium at high temperature, followed by their reassembly into a fresh atomically thin borophene mesh. Besides proving electron-grating capabilities of the boron monolayer, our data provide comprehensive insight into the electronic properties of epitaxial borophene which is vital for further examination of other boron systems of reduced dimensionality.

9.
ACS Appl Mater Interfaces ; 14(11): 13638-13644, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35261229

RESUMO

We report on the experimental observation of a Tamm plasmon state in the near-IR region characterized by an anomalously high energy level located in the upper half of the photonic band gap. Such a "blue" Tamm plasmon was demonstrated at the interface between a conventional, completely periodic Bragg reflector and a nanostructured nonresonant thin gold grating. We study the effect of the grating period on the characteristics of the anomalous state and show that the anomaly results from a nontrivial topology of the nanograting's optical near field, which cannot be captured by the effective medium approach and transfer matrix method commonly employed in the analysis of Tamm plasmons.

10.
Micromachines (Basel) ; 13(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35888812

RESUMO

A nano-grating standard with accurate linewidth can not only calibrate the magnification of nano-measurement instruments, but can also enable comparison of linewidths. Unfortunately, it is still a challenging task to control the linewidth of nano-grating standards. Accordingly, in this paper, atomic layer deposition (ALD) was used to regulate the linewidth of the one-dimensional grating standards with a pitch of 1000 nm, fabricated by electron beam lithography (EBL). The standards were measured using an atomic force microscope (AFM) before and after ALD, and the linewidth and pitch of the grating were calculated through the gravity center method. The obtained results prove that the width of a single grating line in the standard can be regulated with great uniformity by precisely utilizing ALD. Meanwhile, the proposed method does not affect the pitch of grating, and the measurement uncertainty of standards is less than 0.16% of the pitch, thereby demonstrating a high surface quality and calibration reliability of the standards, and realizing the integration of linewidth and pitch calibration functions. Moreover, the precise and controllable fabrication method of the micro-nano periodic structure based on ALD technology has many potential applications in the fields of optoelectronic devices and biosensors.

11.
Nanomaterials (Basel) ; 11(10)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34685083

RESUMO

An ultra-compact broadband silicon polarizing beam splitter is proposed based on a tilted nano-grating structure. A light cross coupling can be realized for transverse-magnetic mode, while the transverse-electric light can almost completely output from the through port. The length of the coupling region is only 6.8 µm, while an extinction ratio of 23.76 dB can be realized at a wavelength of 1550 nm. As a proof of concept, the device was fabricated by a commercial silicon photonic foundry. It can realize a 19.84 dB extinction ratio and an 80 nm working bandwidth with an extinction ratio of larger than 10 dB. The presented device also shows a good fabrication tolerance to the structure deviations, which is favorable for its practical applications in silicon photonics.

12.
ACS Appl Mater Interfaces ; 13(48): 58059-58065, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34797056

RESUMO

Metal-oxide thermal boundary conductance (TBC) strongly influences the temperature rise in nanostructured systems, such as dense interconnects, when its value is comparable to the thermal conductance of the amorphous dielectric oxide. However, the thermal characterization of metal-amorphous oxide TBC is often hampered by the measurement insensitivity of techniques such as time-domain thermoreflectance (TDTR). Here, we use metal nanograting structures as opto-thermal transducers in TDTR to measure the TBC of metal-oxide interfaces. Combined with an ultrafast pump-probe laser measurement approach, the nanopatterned structures amplify the contribution of the thermal boundary resistance (TBR), the inverse of TBC, over the thermal resistance of the adjacent material, thereby enhancing measurement sensitivity. For demonstration purposes, we report the TBC between Al and SiO2 films. We then compare the impact of Al grating dimensions on the measured TBC values, sensitivities, and uncertainties. The grating periods L used in this study range from 150 to 300 nm, and the bridge widths w range from 72 to 205 nm. With the narrowest grating transducers (72 nm), the TBC of Al-SiO2 interfaces is measured to be 159-48+61 MW m-2 K-1, with the experimental sensitivity being 5× higher than that of a blanket Al film. This improvement is attributed to the reduced contribution of the SiO2 film thermal resistance to the temperature signal from TDTR response. The nanograting measurement approach described here is promising for the thermal characterization of a variety of nanostructured metal-amorphous passivation systems and interfaces common in semiconductor technology.

13.
Front Bioeng Biotechnol ; 9: 801489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993190

RESUMO

Soft, deformable, molecularly imprinted nanoparticles (nanoMIPs) were combined to nano-plasmonic sensor chips realized on poly (methyl methacrylate) (PMMA) substrates to develop highly sensitive bio/chemical sensors. NanoMIPs (dmean < 50 nm), which are tailor-made nanoreceptors prepared by a template assisted synthesis, were made selective to bind Bovine Serum Albumin (BSA), and were herein used to functionalize gold optical nanostructures placed on a PMMA substrate, this latter acting as a slab waveguide. We compared nanoMIP-functionalized non-optimized gold nanogratings based on periodic nano-stripes to optimized nanogratings with a deposited ultra-thin MIP layer (<100 nm). The sensors performances were tested by the detection of BSA using the same setup, in which both chips were considered as slab waveguides, with the periodic nano-stripes allocated in a longitudinal orientation with respect to the direction of the input light. Result demonstrated the nanoMIP-non optimized nanogratings showed superior performance with respect to the ultra-thin MIP-optimized nanogratings. The peculiar deformable character of the nano-MIPs enabled to significantly enhance the limit of detection (LOD) of the plasmonic bio/sensor, allowing the detection of the low femtomolar concentration of analyte (LOD ∼ 3 fM), thus outpassing of four orders of magnitude the sensitivies achieved so far on optimized nano-patterned plasmonic platforms functionalized with ultra-thin MIP layers. Thus, deformable nanoMIPs onto non-optimized plasmonic probes permit to attain ultralow detections, down to the quasi-single molecule. As a general consideration, the combination of more plasmonic transducers to different kinds of MIP receptors is discussed as a mean to attain the detection range for the selected application field.

14.
Materials (Basel) ; 14(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34639895

RESUMO

Recently, the effect of nanograting formation was demonstrated for binary sodium borate glass with the possibility of data storage with an enhanced level of security. The obvious disadvantage of such glass is poor chemical stability, which limits real applications. In this paper, we show that the introduction of Al2O3 allows preserving the possibility of nanograting formation with a significant increase of chemical resistance and thus to preserve optical memory applications. On the other hand, the possibility of selective etching of laser-written tracks by means of distilled water is revealed, which was not demonstrated for other types of glasses. The dependence of retardance of nanogratings form birefringence on laser writing parameters is established and discussed. Structural features of laser-modified microdomains are studied via Raman spectroscopy which revealed an increase of three-coordinated boron content. A possible mechanism of selective etching is discussed.

15.
Biosensors (Basel) ; 10(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992799

RESUMO

Infections with antimicrobial resistant bacteria are a rising threat for global healthcare as more and more antibiotics lose their effectiveness against bacterial pathogens. To guarantee the long-term effectiveness of broad-spectrum antibiotics, they may only be prescribed when inevitably required. In order to make a reliable assessment of which antibiotics are effective, rapid point-of-care tests are needed. This can be achieved with fast phenotypic microfluidic tests, which can cope with low bacterial concentrations and work label-free. Here, we present a novel optofluidic chip with a cross-flow immobilization principle using a regular array of nanogaps to concentrate bacteria and detect their growth label-free under the influence of antibiotics. The interferometric measuring principle enabled the detection of the growth of Escherichia coli in under 4 h with a sample volume of 187.2 µL and a doubling time of 79 min. In proof-of-concept experiments, we could show that the method can distinguish between bacterial growth and its inhibition by antibiotics. The results indicate that the nanofluidic chip approach provides a very promising concept for future rapid and label-free antimicrobial susceptibility tests.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Dispositivos Lab-On-A-Chip , Microfluídica , Testes Imediatos , Antibacterianos , Bactérias , Humanos , Testes de Sensibilidade Microbiana
16.
ACS Nano ; 14(12): 16813-16822, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33263256

RESUMO

This study proposes a reliable and self-powered hydrogen (H2) gas sensor composed of a chemo-mechanically operating nanostructured film and photovoltaic cell. Specifically, the nanostructured film has a configuration in which an asymmetrically coated palladium (Pd) film is coated on a periodic polyurethane acrylate (PUA) nanograting. The asymmetric Pd nanostructures, optimized by a finite element method simulation, swell upon reacting with H2 and thereby bend the PUA nanograting, changing the amount of transmitted light and the current output of the photovoltaic cell. Since the degree of warping is determined by the concentration of H2 gas, a wide concentration range of H2 (0.1-4.0%) can be detected by measuring the self-generated electrical current of the photovoltaic cell without external power. The normalized output current changes are ∼1.5%, ∼2.8%, ∼3.5%, ∼5.0%, ∼21.5%, and 25.3% when the concentrations of H2 gas are 0.1%, 0.5%, 1.0%, 1.6%, 2%, and 4%, respectively. Moreover, because Pd is highly chemically reactive to H2 and also because there is no electrical current applied through Pd, the proposed sensor can avoid device failure due to the breakage of the Pd sensing material, resulting in high reliability, and can show high selectivity against various gases such as carbon monoxide, hydrogen sulfide, nitrogen dioxide, and water vapor. Finally, using only ambient visible light, the sensor was modularized to produce an alarm in the presence of H2 gas, verifying a potential always-on H2 gas monitoring application.

17.
ACS Appl Mater Interfaces ; 12(39): 44088-44093, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32892618

RESUMO

We fabricated plasmonic hybrid nanostructures consisting of MoS2 monolayer flakes and Au nanogratings with a period of 500 nm. The angle-resolved reflectance and photoluminescence spectra of the hybrid nanostructures clearly indicated a coupling between surface plasmon polaritons (SPPs) and incoming photons. The surface photovoltage (SPV) maps could visualize the spatial distribution of net charges while shining light on the sample. Considerable polarization and wavelength dependence of the SPV signals suggested that the SPP mode enhanced the light-matter interaction and resulting exciton generation in the MoS2 monolayer. From the photoluminescence spectra and the morphology of the suspended MoS2 region, it could be noted that light irradiation did not much raise the temperature of the MoS2 monolayers on the nanogratings. Nanoscopic SPV and surface topography measurements could reveal the local optoelectronic and mechanical properties of MoS2 monolayers. This work provided us insights into the proposal of a high-performance MoS2/metal optoelectronic devices, based on the understanding of the SPP-photon and SPP-exciton coupling.

18.
ACS Appl Mater Interfaces ; 12(1): 1292-1298, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31820628

RESUMO

Greatly enhanced upconversion luminescence was demonstrated by integrating the core-shell upconversion nanorods with the Ag nanogratings. Both the Ag nanogratings and upconversion nanorods were fabricated/synthesized in a facile, cost-effective, high-throughput way. Experimental results showed that the upconversion luminescence intensity of Er3+ in the core-shell upconversion nanorods can be well tuned and enhanced by changing the shell thickness and the period of the Ag nanograting. The underlying physical mechanism for the upconversion luminescence enhancement was attributed to the plasmonically enhanced near infrared broadband absorption of the periodic Ag nanograting and the localized surface plasmon resonance of Ag nanocrystals. The maximum enhanced factors of 523 nm, 544 nm (green emission), and 658 nm (red emission) of Er3+ ions excited at 980 nm are 3.8-, 5.5-, and 4.6-folds, respectively. Our fabrication approach and results suggest that such a simple integration is potentially useful for biosensing/imaging and anti-counterfeiting applications.

19.
Nanomaterials (Basel) ; 10(8)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722572

RESUMO

A computer simulation of the dynamics of an optical discharge produced in the volume of a transparent dielectric (fused silica) by a focused femtosecond laser pulse was carried out taking into account the possibility of developing small-scale ionization-field instability. The presence of small foreign inclusions in the fused silica was taken into account with the model of a nanodispersed heterogeneous medium by using Maxwell Garnett formulas. The results of the calculations made it possible to reveal the previously unknown physical mechanism that determines the periodicity of the ordered plasma-field structure that is formed in each single breakdown pulse and is the root cause of the ordered volume nanograting formation in dielectric material exposed to a series of repeated pulses. Two main points are decisive in this mechanism: (i) the formation of a thin overcritical plasma layer at the breakdown wave front counter-propagated to the incident laser pulse and (ii) the excitation of the "internal surface plasmon" at this front, resulting in a rapid amplification of the corresponding spatial harmonic of random seed perturbations in the plasma and formation of a contrast structure with a period equal to the wavelength of the surface plasmon (0.7 of the wavelength in dielectric).

20.
Materials (Basel) ; 14(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375131

RESUMO

Surfaces functionalized with metal nanoparticles (NPs) are of great interest due to their wide potential applications in sensing, biomedicine, nanophotonics, etc. However, the precisely controllable decoration with plasmonic nanoparticles requires sophisticated techniques that are often multistep and complex. Here, we present a laser-induced deposition (LID) approach allowing for single-step surface decoration with NPs of controllable composition, morphology, and spatial distribution. The formation of Ag, Pt, and mixed Ag-Pt nanoparticles on a substrate surface was successfully demonstrated as a result of the LID process from commercially available precursors. The deposited nanoparticles were characterized with SEM, TEM, EDX, X-ray diffraction, and UV-VIS absorption spectroscopy, which confirmed the formation of crystalline nanoparticles of Pt (3-5 nm) and Ag (ca. 100 nm) with plasmonic properties. The advantageous features of the LID process allow us to demonstrate the spatially selective deposition of plasmonic NPs in a laser interference pattern, and thereby, the formation of periodic arrays of Ag NPs forming diffraction grating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA