Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 104(4): 102026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307209

RESUMO

The epithelial-mesenchymal transition (EMT) is a fundamental process in developing fibrotic diseases, including forming epiretinal membranes (ERMs). ERMs can result in irreversible vision loss. Previous research has demonstrated that vitreous (VIT) derived from patients with proliferative diabetic retinopathy can stimulate angiogenesis through the Axl/PI3K/Akt pathway. Building upon this knowledge, we aimed to explore the influence of VIT from patients with macular membranes in ARPE-19 cells. Our findings reveal that patient-derived VIT from individuals with macular membranes promotes EMT and phosphoinositide 3-kinase-delta (PI3Kδ) expression in ARPE-19 cells. To elucidate the function of PI3Kδ in the ERM, we conducted experiments involving the knockout of p110δ, a key subunit of PI3Kδ, and observed that its absence hinders EMT induced by patient-derived VIT. Moreover, p110δ depletion reduces cell proliferation and migration in ARPE-19 cells. Remarkably, these effects were further corroborated by applying the p110δ inhibitor idelalisib, which blocks fibrosis in the laser-induced fibrosis model. Collectively, our results propose that p110δ plays a critical role in the progression of ERMs. Consequently, targeting p110δ emerges as a promising therapeutic approach for mitigating fibrosis. These findings contribute to a better understanding of the underlying mechanisms involved in ERM formation and highlight the potential for p110δ-directed antifibrotic therapy in retinal diseases.


Assuntos
Doenças Retinianas , Vitreorretinopatia Proliferativa , Humanos , Transição Epitelial-Mesenquimal , Fibrose , Fosfatidilinositol 3-Quinases , Vitreorretinopatia Proliferativa/metabolismo
2.
Respir Res ; 25(1): 175, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654248

RESUMO

BACKGROUND: Two isoforms of Phosphoinositide 3-kinase (PI3K), p110γ and p110δ, are predominantly expressed in leukocytes and represent attractive therapeutic targets for the treatment of allergic asthma. The study aim was to assess the impact of administration of an inhaled PI3Kγδ inhibitor (AZD8154) in a rat model of asthma. METHODS: Firstly, we checked that the tool compound, AZD8154, inhibited rat PI3K γ & δ kinases using rat cell-based assays. Subsequently, a time-course study was conducted in a rat model of asthma to assess PI3K activity in the lung and how it is temporally associated with other key transcription pathways and asthma like features of the model. Finally, the impact on lung dosed AZD8154 on target engagement, pathway specificity, airway inflammation and lung function changes was assessed. RESULTS: Data showed that AZD8154 could inhibit rat PI3K γ & δ isoforms and, in a rat model of allergic asthma the PI3K pathway was activated in the lung. Intratracheal administration of AZD8154 caused a dose related suppression PI3K pathway activation (reduction in pAkt) and unlike after budesonide treatment, STAT and NF-κB pathways were not affected by AZD8154. The suppression of the PI3K pathway led to a marked inhibition of airway inflammation and reduction in changes in lung function. CONCLUSION: These data show that a dual PI3Kγδ inhibitor suppress key features of disease in a rat model of asthma to a similar degree as budesonide and indicate that dual PI3Kγδ inhibition may be an effective treatment for people suffering from allergic asthma.


Assuntos
Asma , Modelos Animais de Doenças , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Ratos , Masculino , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Ratos Sprague-Dawley , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/enzimologia , Relação Dose-Resposta a Droga , Inibidores de Proteínas Quinases/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Antiasmáticos/farmacologia , Ovalbumina/toxicidade
3.
Immunology ; 170(4): 483-494, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37530226

RESUMO

Phosphoinositide 3-kinase (PI3K) p110δ signalling negatively regulates the production of mouse IgE. However, there are disparities between the mouse and human IgE biology, and the role of PI3K p110δ in the production of human IgE is yet to be determined. To investigate the effect of PI3K p110δ inhibition in the production of human IgE we isolated human B cells from tonsil tissue and stimulated them with IL-4 and anti-CD40 antibody to induce class switching to IgE and IgG1 in the presence or absence of IC87114, a small molecule inhibitor of PI3K p110δ. Using FACS, RT-PCR and ELISA we examined the effect of PI3K p110δ inhibition on IgE production and determined the mechanisms involved. Unlike in mice, we observed that PI3K p110δ inhibition significantly reduces the number of IgE+ switched cells and the amounts of secreted IgE in IL4 and anti-CD40 cultures. However, the number of IgG1+ cells and secreted IgG1 were largely unaffected by PI3K p110δ inhibition. The expression levels of AID, ε and γ1 germinal transcripts or other factors involved in the regulation of CSR to IgE and IgG1 were also unaffected by IC87114. However, we found that IC87114 significantly decreases the proliferation of tonsil B cells stimulated with IL-4 and anti-CD40, specifically reducing the frequency of cells that had undergone 4 divisions or more. In addition, PI3K p110δ inhibition reduced the levels of IRF4 expression in IgE+ germinal centre-like B cells leading to a block in plasma cell differentiation. In conclusion, PI3K p110δ signalling is required for the production of human IgE, which makes it a pharmacological target for the treatment of allergic disease.


Assuntos
Interleucina-4 , Fosfatidilinositol 3-Quinases , Humanos , Camundongos , Animais , Interleucina-4/metabolismo , Imunoglobulina E , Antígenos CD40/genética , Antígenos CD40/metabolismo , Imunoglobulina G , Técnicas de Cultura de Células
4.
Curr Top Microbiol Immunol ; 436: 3-49, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36243838

RESUMO

This chapter is an introduction to phosphoinositide 3-kinases (PI3K), with class I PI3Ks as the central focus. First, the various PI3K isoforms in class I are presented with emphasis on their overall structure, subunits, subunit constitutive domains, domain-domain interactions, and functional relevance. This structural analysis is followed by a comprehensive history of seminal investigations into PI3K activity. Next, we highlight the divergent roles of the isoforms: PI3Kα, PI3Kß, PI3Kδ, and PI3Kγ. This section details signaling pathways in which these PI3K isoforms are involved, including the key upstream regulators of PI3K activity and some downstream cellular effects. Nodes of the PI3K pathway are also presented. Inhibitors of some isoforms are discussed to give an overview of the basis of some immunotherapies that are being used to target cell signaling. Finally, the chapter ends with a discussion of the dysregulation of PI3Ks in diseases including APDS, asthma, arthritis, and oncogenic mutations.


Assuntos
Fosfatidilinositol 3-Quinases , Transdução de Sinais , Biologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Transdução de Sinais/fisiologia
5.
Mol Ther ; 30(7): 2505-2521, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35443935

RESUMO

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasia that lacks effective targeted chemotherapies. Clinically, JMML manifests as monocytic leukocytosis, splenomegaly with consequential thrombocytopenia. Most commonly, patients have gain-of-function (GOF) oncogenic mutations in PTPN11 (SHP2), leading to Erk and Akt hyperactivation. Mechanism(s) involved in co-regulation of Erk and Akt in the context of GOF SHP2 are poorly understood. Here, we show that Bruton's tyrosine kinase (BTK) is hyperphosphorylated in GOF Shp2-bearing cells and utilizes B cell adaptor for PI3K to cooperate with p110δ, the catalytic subunit of PI3K. Dual inhibition of BTK and p110δ reduces the activation of both Erk and Akt. In vivo, individual targeting of BTK or p110δ in a mouse model of human JMML equally reduces monocytosis and splenomegaly; however, the combined treatment results in a more robust inhibition and uniquely rescues anemia and thrombocytopenia. RNA-seq analysis of drug-treated mice showed a profound reduction in the expression of genes associated with leukemic cell migration and inflammation, leading to correction in the infiltration of leukemic cells in the lung, liver, and spleen. Remarkably, in a patient derived xenograft model of JMML, leukemia-initiating stem and progenitor cells were potently inhibited in response to the dual drug treatment.


Assuntos
Leucemia Mielomonocítica Juvenil , Trombocitopenia , Tirosina Quinase da Agamaglobulinemia/genética , Animais , Humanos , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/metabolismo , Leucemia Mielomonocítica Juvenil/terapia , Camundongos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esplenomegalia/genética , Células-Tronco/metabolismo
6.
Pediatr Allergy Immunol ; 33 Suppl 27: 69-72, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35080319

RESUMO

Activated phosphoinositide 3-kinase delta syndrome (APDS) is a recently described form of inborn error of immunity (IEI) caused by heterozygous mutations in PIK3CD or PIK3R1 genes, respectively, encoding leukocyte-restricted catalytic p110δ subunit and the ubiquitously expressed regulatory p85 α subunit of the phosphoinositide 3-kinase δ (PI3Kδ). The first described patients with respiratory infections, hypogammaglobulinemia with normal to elevated IgM serum levels, lymphopenia, and lymphoproliferation. Since the original description, it is becoming evident that the onset of disease may be somewhat variable over time, both in terms of age at presentation and in terms of clinical and immunological complications. In many cases, patients are referred to various specialists such as hematologists, rheumatologists, gastroenterologists, and others, before an immunological evaluation is performed, leading to delay in diagnosis, which negatively affects their prognosis. The significant heterogeneity in the clinical and immunological features affecting APDS patients requires awareness among clinicians since good results with p110δ inhibitors have been reported, certainly ameliorating these patients' quality of life and prognosis.


Assuntos
Fosfatidilinositol 3-Quinases , Doenças da Imunodeficiência Primária , Classe I de Fosfatidilinositol 3-Quinases/genética , Humanos , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositóis , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/genética , Qualidade de Vida
7.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35742807

RESUMO

Neutrophils are specialized immune cells that are essential constituents of the innate immune response. They defend the organism against pathogens through various mechanisms. It was reported that phosphatidylinositols are key players in neutrophil functions, especially in the activity of class-I phosphoinositide 3-kinases (PI3Ks). P110δ, one of the PI3K subunits, is mostly expressed in immune cells, and its activity plays an important role in inflammatory responses. The aim of this study was to investigate the role of p110δ in neutrophil antimicrobial functions, activation status and cytokine production. To this end, we used bone marrow and splenic neutrophils isolated from a murine model expressing catalytically inactive p110δD910A/D910A. The level of phagocytosis and degranulation, the expressions of activation markers and cytokine production were determined by flow cytometry. ROS generation and NET release were assessed by fluorometry and fluorescent microscopy. We observed a significantly higher percentage of CD80-positive cells among the splenic granulocytes and found granulocytes subpopulations of differing phenotypes between WT and p110δD910A/D910A mice by multiparametric tSNE analysis. Moreover, we detected some differences in the expressions of activation markers, intracellular production of cytokines and bacterial killing. However, we did not observe any alterations in the selected neutrophil functions in p110δ mutant mice. Altogether, our data suggest that the catalytic p110 subunit(s), other than p110δ, is a key player in most neutrophil functions in mice. A follow-up study to correlate these in vitro results with in vivo observations is highly recommended.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/farmacocinética , Neutrófilos , Fosfatidilinositol 3-Quinases , Animais , Antígeno B7-1 , Citocinas , Seguimentos , Camundongos , Neutrófilos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Baço/metabolismo
8.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012280

RESUMO

Breast cancer is a heterogeneous disease that represents the most common cancer around the world; it comprises 12% of new cases according to the World Health Organization. Despite new approaches in early diagnosis and current treatment, breast cancer is still the leading cause of death for cancer mortality. New targeted therapies against key signalling transduction molecules are required. Phosphoinositide 3-kinase (PI3K) regulates multiple biological functions such as proliferation, survival, migration, and growth. It is well established that PI3K isoform-selective inhibitors show fewer toxic side effects compared to broad spectrum inhibition of PI3K (pan-PI3K inhibitors). Therefore, we tested the PI3K p110δ-selective inhibitor, IC87114, and Vps34-selective inhibitor, Vps34-IN1, on the breast cancer cell lines MCF-7 and MDA-MB-231, representing hormone-responsive and triple-negative breast cancer cells, respectively. Our data show that both inhibitors decreased migration of MCF-7 and MDA-MB-231 cells, and Vps34 also significantly impacted MCF-7 cell proliferation. Three-dimensional (3D) in vitro culture models show that IC87114 and Vps34-IN1 treatment reduced the growth of MCF-7 and MDA-MB-231 cells in 3D tumour spheroid cultures. This study identifies IC87114 and Vps34-IN1 as potential therapeutic approaches in breast cancer.


Assuntos
Neoplasias da Mama , Classe III de Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe Ia de Fosfatidilinositol 3-Quinase , Feminino , Humanos , Células MCF-7 , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
9.
Am J Physiol Cell Physiol ; 320(6): C943-C955, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689479

RESUMO

Endothelial cell (EC) migration is critical for healing arterial injuries, such as those that occur with angioplasty. Impaired re-endothelialization following arterial injury contributes to vessel thrombogenicity, intimal hyperplasia, and restenosis. Oxidized lipid products, including lysophosphatidylcholine (lysoPC), induce canonical transient receptor potential 6 (TRPC6) externalization leading to increased [Ca2+]i, activation of calpains, and alterations of the EC cytoskeletal structure that inhibit migration. The p110α and p110δ catalytic subunit isoforms of phosphatidylinositol 3-kinase (PI3K) regulate lysoPC-induced TRPC6 externalization in vitro. The goal of this study was to assess the in vivo relevance of those in vitro findings to arterial healing following a denuding injury in hypercholesterolemic mice treated with pharmacologic inhibitors of the p110α and p110δ isoforms of PI3K and a general PI3K inhibitor. Pharmacologic inhibition of the p110α or the p110δ isoform of PI3K partially preserves healing in hypercholesterolemic male mice, similar to a general PI3K inhibitor. Interestingly, the p110α, p110δ, and the general PI3K inhibitor do not improve arterial healing after injury in hypercholesterolemic female mice. These results indicate a potential new role for isoform-specific PI3K inhibitors in male patients following arterial injury/intervention. The results also identify significant sex differences in the response to PI3K inhibition in the cardiovascular system, where female sex generally has a cardioprotective effect. This study provides a foundation to investigate the mechanism for the sex differences in response to PI3K inhibition to develop a more generally applicable treatment option.


Assuntos
Domínio Catalítico/fisiologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Hipercolesterolemia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cicatrização/fisiologia , Animais , Bovinos , Linhagem Celular , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia
10.
Am J Physiol Cell Physiol ; 320(5): C731-C741, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33625929

RESUMO

Lipid oxidation products, including lysophosphatidylcholine (lysoPC) inhibit endothelial cell (EC) migration in vitro and impair EC healing of arterial injuries in vivo, in part by activating phosphatidylinositol 3-kinase (PI3K), which increases the externalization of canonical transient receptor potential 6 (TRPC6) channels and the subsequent increase in intracellular calcium. Inhibition of PI3K is a potential method to decrease TRPC6 activation and restore migration, but PI3K is involved in multiple intracellular signaling pathways and has multiple downstream effectors. The goal of this study is to identify the specific p110 catalytic subunit isoforms responsible for lysoPC-induced TRPC6 externalization to identify a target for intervention while minimizing impact on alternative signaling pathways. Down-regulation of the p110α and p110δ isoforms, but not the p110ß or p110γ isoforms, with small interfering RNA significantly decreased phosphatidylinositol (3,4,5)-trisphosphate production and TRPC6 externalization, and significantly improved EC migration in the presence of lysoPC. These results identify an additional role of p110α in EC and reveal for the first time a specific role of p110δ in EC, providing a foundation for subsequent in vivo studies to investigate the impact of p110 isoform inhibition on arterial healing after injury.


Assuntos
Movimento Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/efeitos dos fármacos , Lisofosfatidilcolinas/farmacologia , Canal de Cátion TRPC6/metabolismo , Animais , Sinalização do Cálcio , Domínio Catalítico , Bovinos , Linhagem Celular , Classe I de Fosfatidilinositol 3-Quinases/genética , Células Endoteliais/enzimologia , Humanos , Isoenzimas , Cinética , Fosfatos de Fosfatidilinositol/metabolismo
12.
J Allergy Clin Immunol ; 143(5): 1676-1687, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31060715

RESUMO

The phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a broad range of cellular processes, including growth, metabolism, differentiation, proliferation, motility, and survival. The PI3Kδ enzyme complex is primarily present in the immune system and comprises a catalytic (p110δ) and regulatory (p85α) subunit. Dynamic regulation of PI3Kδ activity is required to ensure normal function and differentiation of immune cells. In the last decade, discovery of germline mutations in genes involved in the PI3Kδ pathway (PIK3CD, PIK3R1, or phosphatase and tensin homolog [PTEN]) proved that both overactivation and underactivation (gain of function and loss of function, respectively) of PI3Kδ lead to impaired and dysregulated immunity. Although a small group of patients reported to underactivate PI3Kδ show predominantly humoral defects and autoimmune features, more than 200 patients have been described with overactivation of PI3Kδ, presenting with a much more complex phenotype of combined immunodeficiency and immune dysregulation. The clinical and immunologic characterization, as well as current pathophysiologic understanding and specific therapies for PI3K pathway defects leading to immunodeficiency and immune dysregulation, are reviewed here.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Sistema Imunitário/fisiologia , Síndromes de Imunodeficiência/metabolismo , Mutação/genética , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Autoimunidade , Diferenciação Celular , Classe I de Fosfatidilinositol 3-Quinases/genética , Humanos , Imunidade Humoral , Síndromes de Imunodeficiência/genética , Fenótipo , Transdução de Sinais
13.
Clin Immunol ; 200: 31-34, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30639166

RESUMO

This study reports on a novel activating p110δ mutation causing adult-onset hypogammaglobulinemia with lymphopenia without the classical presentation of atypical Activated phosphoinositide 3-kinase δ syndrome (ADPS-1), underlining thus the heterogeneous clinical and immunological presentation of p110δ mutated individuals and offers additional data on the role of p110δ in early and late B cell development in humans.


Assuntos
Agamaglobulinemia/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Linfopenia/genética , Doenças da Imunodeficiência Primária/genética , Adulto , Agamaglobulinemia/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Feminino , Mutação com Ganho de Função , Humanos , Linfopenia/imunologia , Linfopoese , Doenças da Imunodeficiência Primária/imunologia
14.
Ann Hematol ; 98(3): 723-733, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30430191

RESUMO

Multiple myeloma (MM) is a uniformly fatal disorder of B cells characterized by the accumulation of abnormal plasma cells. Phosphoinositide 3-kinase (PI3K) signaling pathways play a critical regulatory role in MM pathology. Copanlisib, also known as BAY80-6946, is a potent PI3Kα and δ inhibitor. In this study, we investigated the efficacy of copanlisib and a proteasome inhibitor using MM cell lines and primary samples. The p110α and δ catalytic subunits of the class PI3K increased, and carfilzomib activity reduced in the presence of a supernatant from the feeder cell line, HS-5. Phosphorylation of Akt and activation of caspase 3 and poly (ADP-ribose) polymerase (PARP) partially reduced upon carfilzomib treatment in the presence of HS-5. Apoptosis also decreased. Copanlisib treatment for 72 h inhibited growth in MM cell lines and induced apoptosis. Combination treatment of MM cells with carfilzomib and copanlisib caused greater cytotoxicity than that caused by either drug alone and increased apoptosis. Caspase 3 activity increased while that of Akt decreased after combination treatment with copanlisib and carfilzomib. Further, copanlisib inhibited vascular endothelial growth factor (VEGF)-mediated angiogenesis in vitro and in vivo. It also inhibited C-X-C motif chemokine 12 (CXCL12)-mediated chemotaxis. The data suggest that administration of the PI3K inhibitor, copanlisib, may be a powerful strategy against stroma-associated drug resistance of MM cells and can enhance the cytotoxic effects of proteasome inhibitors in such residual MM cells.


Assuntos
Antineoplásicos/farmacologia , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Oligopeptídeos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Células 3T3 , Inibidores da Angiogênese/farmacologia , Animais , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quimiocina CXCL12/antagonistas & inibidores , Quimiotaxia/efeitos dos fármacos , Sinergismo Farmacológico , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/enzimologia , Invasividade Neoplásica , Inibidores de Proteassoma/farmacologia , Células Estromais/efeitos dos fármacos
15.
Mar Drugs ; 17(9)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505769

RESUMO

Intracellular reactive oxygen species (ROS) play an important role in the proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs). HSPCs are difficult to be expanded ex vivo while maintaining their stemness when they are exposed to oxidative damage after being released from the bone marrow. There have been efforts to overcome this limitation by using various cytokine cocktails and antioxidants. In this study, we investigated the effects of echinochrome A (Ech A)-a well-established and non-toxic antioxidant-on the ex vivo expansion of HSPCs by analyzing a CD34+ cell population and their biological functions. We observed that Ech A-induced suppression of ROS generation and p38-MAPK/JNK phosphorylation causes increased expansion of CD34+ cells. Moreover, p38-MAPK/JNK inhibitors SB203580 and SP600125 promoted ex vivo expansion of CD34+ cells. We also demonstrated that the activation of Lyn kinase and p110δ is a novel mechanism for Ech A to enhance ex vivo expansion of CD34+ cells. Ech A upregulated phospho-Src, phospho-Lyn, and p110δ expression. Furthermore, the Ech A-induced ex vivo expansion of CD34+ cells was inhibited by pretreatment with the Src family inhibitor PP1 and p110δ inhibitor CAL-101; PP1 blocked p110δ upregulation and PI3K/Akt activation, whereas CAL-101 and PI3K/Akt pathway inhibitor LY294002 did not block Src/Lyn activation. These results suggest that Ech A initially induces Src/Lyn activation, upregulates p110δ expression, and finally activates the PI3K/Akt pathway. CD34+ cells expanded in the presence of Ech A produced equal or more hematopoietic colony-forming cells than unexpanded CD34+ cells. In conclusion, Ech A promotes the ex vivo expansion of CD34+ cells through Src/Lyn-mediated p110δ expression, suppression of ROS generation, and p38-MAPK/JNK activation. Hence, Ech A is a potential candidate modality for the ex vivo, and possibly in vivo, expansion of CD34+ cells.


Assuntos
Antígenos CD34/metabolismo , Células Sanguíneas/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Naftoquinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo , Antracenos/farmacologia , Antioxidantes/metabolismo , Células Sanguíneas/metabolismo , Células Cultivadas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imidazóis/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Piridinas/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
16.
J Allergy Clin Immunol ; 139(2): 597-606.e4, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27555459

RESUMO

BACKGROUND: Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently described combined immunodeficiency resulting from gain-of-function mutations in PIK3CD, the gene encoding the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). OBJECTIVE: We sought to review the clinical, immunologic, histopathologic, and radiologic features of APDS in a large genetically defined international cohort. METHODS: We applied a clinical questionnaire and performed review of medical notes, radiology, histopathology, and laboratory investigations of 53 patients with APDS. RESULTS: Recurrent sinopulmonary infections (98%) and nonneoplastic lymphoproliferation (75%) were common, often from childhood. Other significant complications included herpesvirus infections (49%), autoinflammatory disease (34%), and lymphoma (13%). Unexpectedly, neurodevelopmental delay occurred in 19% of the cohort, suggesting a role for PI3Kδ in the central nervous system; consistent with this, PI3Kδ is broadly expressed in the developing murine central nervous system. Thoracic imaging revealed high rates of mosaic attenuation (90%) and bronchiectasis (60%). Increased IgM levels (78%), IgG deficiency (43%), and CD4 lymphopenia (84%) were significant immunologic features. No immunologic marker reliably predicted clinical severity, which ranged from asymptomatic to death in early childhood. The majority of patients received immunoglobulin replacement and antibiotic prophylaxis, and 5 patients underwent hematopoietic stem cell transplantation. Five patients died from complications of APDS. CONCLUSION: APDS is a combined immunodeficiency with multiple clinical manifestations, many with incomplete penetrance and others with variable expressivity. The severity of complications in some patients supports consideration of hematopoietic stem cell transplantation for severe childhood disease. Clinical trials of selective PI3Kδ inhibitors offer new prospects for APDS treatment.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Síndromes de Imunodeficiência/genética , Transtornos Linfoproliferativos/genética , Mutação/genética , Infecções Respiratórias/genética , Adolescente , Adulto , Animais , Antibioticoprofilaxia , Criança , Pré-Escolar , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Estudos de Coortes , Inibidores Enzimáticos/uso terapêutico , Feminino , Transplante de Células-Tronco Hematopoéticas , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/mortalidade , Infecções por Herpesviridae/terapia , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Síndromes de Imunodeficiência/mortalidade , Síndromes de Imunodeficiência/terapia , Lactente , Cooperação Internacional , Transtornos Linfoproliferativos/mortalidade , Transtornos Linfoproliferativos/terapia , Masculino , Camundongos , Pessoa de Meia-Idade , Recidiva , Infecções Respiratórias/mortalidade , Infecções Respiratórias/terapia , Inquéritos e Questionários , Análise de Sobrevida , Adulto Jovem
17.
Cell Commun Signal ; 15(1): 28, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724384

RESUMO

BACKGROUND: Phosphoinositide 3-kinase γ (PI3Kγ) and PI3Kδ are second messenger-generating enzymes with key roles in proliferation, differentiation, survival, and function of leukocytes. Deficiency of the catalytic subunits p110γ and p110δ of PI3Kγ and PI3Kδ in p110γ/δ-/- mice leads to defective B- and T-cell homeostasis. Here we examined the role of p110γ and p110δ in the homeostasis of neutrophils by analyzing p110γ-/-, p110δ-/- and p110γ/δ-/- mice. METHODS: Neutrophils and T cells in leukocyte suspensions from the bone marrow (BM), blood, spleen and lung were analyzed by flow cytometry. Serum concentrations of IL-17, of the neutrophilic growth factor G-CSF, and of the neutrophil mobilizing CXC chemokines CXCL1/KC and CXCL2/MIP-2 were measured by Bio-Plex assay. Production of G-CSF and CXCL1/KC by IL-17-stimulated primary lung tissue cells were determined by ELISA, whereas IL-17-dependent signaling in lung tissue cells was analyzed by measuring Akt phosphorylation using immunoblot. RESULTS: We found that in contrast to single knock-out mice, p110γ/δ-/- mice exhibited significantly elevated neutrophil counts in blood, spleen, and lung. Increased granulocytic differentiation stages in the bone marrow of p110γ/δ-/- mice were paralleled by increased serum concentrations of G-CSF, CXCL1/KC, and CXCL2/MIP-2. As IL-17 induces neutrophilia via the induction of G-CSF and CXC chemokines, we measured IL-17 and IL-17-producing T cells. IL-17 serum concentrations and frequencies of IL-17+ splenic T cells were significantly increased in p110γ/δ-/- mice. Moreover, IFN-γ+, IL-4+, and IL-5+ T cell subsets were drastically increased in p110γ/δ-/- mice, suggesting that IL-17+ T cells were up-regulated in the context of a general percentage increase of other cytokine producing T cell subsets. CONCLUSIONS: We found that p110γ/δ deficiency in mice induces complex immunological changes, which might in concert contribute to neutrophilia. These findings emphasize a crucial but indirect role of both p110γ and p110δ in the regulation of neutrophil homeostasis.


Assuntos
Transtornos Leucocíticos/genética , Neutrófilos/metabolismo , Fosfatidilinositol 3-Quinases/deficiência , Animais , Células Cultivadas , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Homeostase , Interleucina-17/metabolismo , Isoenzimas/deficiência , Isoenzimas/genética , Isoenzimas/metabolismo , Transtornos Leucocíticos/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Baço/metabolismo , Linfócitos T/metabolismo
18.
J Allergy Clin Immunol ; 138(6): 1672-1680.e10, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27426521

RESUMO

BACKGROUND: Activated phosphatidylinositol 3-kinase δ syndrome (APDS) is a recently discovered primary immunodeficiency disease (PID). Excess phosphatidylinositol 3-kinase (PI3K) activity linked to mutations in 2 PI3K genes, PIK3CD and PIK3R1, causes APDS through hyperphosphorylation of AKT, mammalian target of rapamycin (mTOR), and S6. OBJECTIVE: This study aimed to identify novel genes responsible for APDS. METHODS: Whole-exome sequencing was performed in Japanese patients with PIDs. Immunophenotype was assessed through flow cytometry. Hyperphosphorylation of AKT, mTOR, and S6 in lymphocytes was examined through immunoblotting, flow cytometry, and multiplex assays. RESULTS: We identified heterozygous mutations of phosphatase and tensin homolog (PTEN) in patients with PIDs. Immunoblotting and quantitative PCR analyses indicated that PTEN expression was decreased in these patients. Patients with PTEN mutations and those with PIK3CD mutations, including a novel E525A mutation, were further analyzed. The clinical symptoms and immunologic defects of patients with PTEN mutations, including lymphocytic AKT, mTOR, and S6 hyperphosphorylation, resemble those of patients with APDS. Because PTEN is known to suppress the PI3K pathway, it is likely that defective PTEN results in activation of the PI3K pathway. CONCLUSION: PTEN loss-of-function mutations can cause APDS-like immunodeficiency because of aberrant PI3K pathway activation in lymphocytes.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Síndromes de Imunodeficiência/genética , Linfócitos/imunologia , Mutação/genética , PTEN Fosfo-Hidrolase/genética , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Linhagem , Fosforilação , Doenças da Imunodeficiência Primária , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Tensinas/metabolismo
19.
J Allergy Clin Immunol ; 137(6): 1733-1741, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26915677

RESUMO

BACKGROUND: Phosphatidylinositol 3-kinase p110δ isoform (PI3K p110δ) activity is essential for mast cell activation, suggesting that inhibition of PI3K p110δ might be useful in treating allergic diseases. OBJECTIVE: We sought to determine the effect of the PI3K p110δ-selective inhibitor idelalisib on allergic responses. METHODS: This phase 1 randomized, double-blind, placebo-controlled, 2-period crossover study was conducted with the Vienna Challenge Chamber. Grass pollen-induced allergic symptoms were documented during screening. Eligible subjects received idelalisib (100 mg twice daily) or placebo for 7 days, with allergen challenge on day 7. After a 2-week washout period, subjects received the alternate treatment and repeated allergen challenge. Study measures included safety, nasal and nonnasal symptoms, nasal airflow, nasal secretions, basophil activation, and plasma cytokine levels. RESULTS: Forty-one patients with allergic rhinitis received idelalisib/placebo (n = 21) or placebo/idelalisib (n = 20). Idelalisib treatment was well tolerated. Mean total nasal symptom scores were lower during the combined idelalisib treatment periods compared with placebo (treatment difference [idelalisib - placebo], -1.78; 95% CI, -2.53 to -1.03; P < .001). Statistically significant differences were also observed for the combined treatment periods for total symptom scores, nasal airflow, nasal secretion weight, and nasal congestion scores. The percentage of ex vivo-activated basophils (CD63(+)/CCR3(+) cells; after stimulation with grass pollen) was substantially lower for idelalisib-treated compared with placebo-treated subjects. Plasma CCL17 and CCL22 levels were reduced after idelalisib treatment. CONCLUSION: Idelalisib treatment was well tolerated in patients with allergic rhinitis and appears to reduce allergic responses clinically and immunologically after an environmental allergen challenge.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase , Purinas/uso terapêutico , Quinazolinonas/uso terapêutico , Rinite Alérgica/tratamento farmacológico , Adulto , Alérgenos/imunologia , Basófilos/imunologia , Basófilos/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Volume Expiratório Forçado , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Pólen/imunologia , Purinas/farmacologia , Quinazolinonas/farmacologia , Rinite Alérgica/diagnóstico , Rinite Alérgica/metabolismo , Resultado do Tratamento , Adulto Jovem
20.
J Allergy Clin Immunol ; 138(1): 210-218.e9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27221134

RESUMO

BACKGROUND: Activated phosphoinositide 3-kinase δ syndrome (APDS) 2 (p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency [PASLI]-R1), a recently described primary immunodeficiency, results from autosomal dominant mutations in PIK3R1, the gene encoding the regulatory subunit (p85α, p55α, and p50α) of class IA phosphoinositide 3-kinases. OBJECTIVES: We sought to review the clinical, immunologic, and histopathologic phenotypes of APDS2 in a genetically defined international patient cohort. METHODS: The medical and biological records of 36 patients with genetically diagnosed APDS2 were collected and reviewed. RESULTS: Mutations within splice acceptor and donor sites of exon 11 of the PIK3R1 gene lead to APDS2. Recurrent upper respiratory tract infections (100%), pneumonitis (71%), and chronic lymphoproliferation (89%, including adenopathy [75%], splenomegaly [43%], and upper respiratory tract lymphoid hyperplasia [48%]) were the most common features. Growth retardation was frequently noticed (45%). Other complications were mild neurodevelopmental delay (31%); malignant diseases (28%), most of them being B-cell lymphomas; autoimmunity (17%); bronchiectasis (18%); and chronic diarrhea (24%). Decreased serum IgA and IgG levels (87%), increased IgM levels (58%), B-cell lymphopenia (88%) associated with an increased frequency of transitional B cells (93%), and decreased numbers of naive CD4 and naive CD8 cells but increased numbers of CD8 effector/memory T cells were predominant immunologic features. The majority of patients (89%) received immunoglobulin replacement; 3 patients were treated with rituximab, and 6 were treated with rapamycin initiated after diagnosis of APDS2. Five patients died from APDS2-related complications. CONCLUSION: APDS2 is a combined immunodeficiency with a variable clinical phenotype. Complications are frequent, such as severe bacterial and viral infections, lymphoproliferation, and lymphoma similar to APDS1/PASLI-CD. Immunoglobulin replacement therapy, rapamycin, and, likely in the near future, selective phosphoinositide 3-kinase δ inhibitors are possible treatment options.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/etiologia , Fenótipo , Adolescente , Adulto , Alelos , Biópsia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Frequência do Gene , Genótipo , Humanos , Síndromes de Imunodeficiência/mortalidade , Masculino , Pessoa de Meia-Idade , Mutação , Sítios de Splice de RNA , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA