Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.329
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(7): 1701-1718.e28, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38503283

RESUMO

Biomolecules incur damage during stress conditions, and damage partitioning represents a vital survival strategy for cells. Here, we identified a distinct stress granule (SG), marked by dsRNA helicase DHX9, which compartmentalizes ultraviolet (UV)-induced RNA, but not DNA, damage. Our FANCI technology revealed that DHX9 SGs are enriched in damaged intron RNA, in contrast to classical SGs that are composed of mature mRNA. UV exposure causes RNA crosslinking damage, impedes intron splicing and decay, and triggers DHX9 SGs within daughter cells. DHX9 SGs promote cell survival and induce dsRNA-related immune response and translation shutdown, differentiating them from classical SGs that assemble downstream of translation arrest. DHX9 modulates dsRNA abundance in the DHX9 SGs and promotes cell viability. Autophagy receptor p62 is activated and important for DHX9 SG disassembly. Our findings establish non-canonical DHX9 SGs as a dedicated non-membrane-bound cytoplasmic compartment that safeguards daughter cells from parental RNA damage.


Assuntos
RNA , Grânulos de Estresse , Citoplasma , RNA Mensageiro/genética , Estresse Fisiológico , Humanos , Células HeLa
2.
Cell ; 185(8): 1325-1345.e22, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35366418

RESUMO

Protein aggregation is a hallmark of multiple human pathologies. Autophagy selectively degrades protein aggregates via aggrephagy. How selectivity is achieved has been elusive. Here, we identify the chaperonin subunit CCT2 as an autophagy receptor regulating the clearance of aggregation-prone proteins in the cell and the mouse brain. CCT2 associates with aggregation-prone proteins independent of cargo ubiquitination and interacts with autophagosome marker ATG8s through a non-classical VLIR motif. In addition, CCT2 regulates aggrephagy independently of the ubiquitin-binding receptors (P62, NBR1, and TAX1BP1) or chaperone-mediated autophagy. Unlike P62, NBR1, and TAX1BP1, which facilitate the clearance of protein condensates with liquidity, CCT2 specifically promotes the autophagic degradation of protein aggregates with little liquidity (solid aggregates). Furthermore, aggregation-prone protein accumulation induces the functional switch of CCT2 from a chaperone subunit to an autophagy receptor by promoting CCT2 monomer formation, which exposes the VLIR to ATG8s interaction and, therefore, enables the autophagic function.


Assuntos
Chaperonina com TCP-1 , Macroautofagia , Agregados Proteicos , Animais , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Chaperonina com TCP-1/metabolismo , Proteína Sequestossoma-1/metabolismo
3.
Cell ; 176(5): 1054-1067.e12, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30773316

RESUMO

Vault RNAs (vtRNA) are small non-coding RNAs transcribed by RNA polymerase III found in many eukaryotes. Although they have been linked to drug resistance, apoptosis, and viral replication, their molecular functions remain unclear. Here, we show that vault RNAs directly bind the autophagy receptor sequestosome-1/p62 in human and murine cells. Overexpression of human vtRNA1-1 inhibits, while its antisense LNA-mediated knockdown enhances p62-dependent autophagy. Starvation of cells reduces the steady-state and p62-bound levels of vault RNA1-1 and induces autophagy. Mechanistically, p62 mutants that fail to bind vtRNAs display increased p62 homo-oligomerization and augmented interaction with autophagic effectors. Thus, vtRNA1-1 directly regulates selective autophagy by binding p62 and interference with oligomerization, a critical step of p62 function. Our data uncover a striking example of the potential of RNA to control protein functions directly, as previously recognized for protein-protein interactions and post-translational modifications.


Assuntos
Autofagia/genética , Partículas de Ribonucleoproteínas em Forma de Abóbada/genética , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Células HeLa , Humanos , Camundongos , Células RAW 264.7 , RNA/metabolismo , RNA não Traduzido/metabolismo , RNA não Traduzido/fisiologia , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo
4.
Cell ; 175(4): 947-961.e17, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401435

RESUMO

Interactions between the gut microbiota, diet, and the host potentially contribute to the development of metabolic diseases. Here, we identify imidazole propionate as a microbially produced histidine-derived metabolite that is present at higher concentrations in subjects with versus without type 2 diabetes. We show that imidazole propionate is produced from histidine in a gut simulator at higher concentrations when using fecal microbiota from subjects with versus without type 2 diabetes and that it impairs glucose tolerance when administered to mice. We further show that imidazole propionate impairs insulin signaling at the level of insulin receptor substrate through the activation of p38γ MAPK, which promotes p62 phosphorylation and, subsequently, activation of mechanistic target of rapamycin complex 1 (mTORC1). We also demonstrate increased activation of p62 and mTORC1 in liver from subjects with type 2 diabetes. Our findings indicate that the microbial metabolite imidazole propionate may contribute to the pathogenesis of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal , Imidazóis/metabolismo , Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/microbiologia , Células HEK293 , Histidina/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Sequestossoma-1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Annu Rev Biochem ; 86: 193-224, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28460188

RESUMO

Autophagy and the ubiquitin-proteasome system are the two major quality control pathways responsible for cellular homeostasis. As such, they provide protection against age-associated changes and a plethora of human diseases. Ubiquitination is utilized as a degradation signal by both systems, albeit in different ways, to mark cargoes for proteasomal and lysosomal degradation. Both systems intersect and communicate at multiple points to coordinate their actions in proteostasis and organelle homeostasis. This review summarizes molecular details of how proteasome and autophagy pathways are functionally interconnected in cells and indicates common principles and nodes of communication that can be therapeutically exploited.


Assuntos
Autofagia/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Sequestossoma-1/metabolismo , Ubiquitina/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica , Homeostase , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Mitofagia/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/genética , Conformação Proteica , Proteólise , Proteína Sequestossoma-1/química , Proteína Sequestossoma-1/genética , Transdução de Sinais , Ubiquitina/genética , Ubiquitinação
6.
Mol Cell ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39423823

RESUMO

Hepatocellular carcinoma (HCC) emerges from chronic inflammation, to which activation of hepatic stellate cells (HSCs) contributes by shaping a pro-tumorigenic microenvironment. Key to this process is p62, whose inactivation leads to enhanced hepatocarcinogenesis. Here, we show that p62 activates the interferon (IFN) cascade by promoting STING ubiquitination by tripartite motif protein 32 (TRIM32) in HSCs. p62, binding neighbor of BRCA1 gene 1 (NBR1) and STING, triggers the IFN cascade by displacing NBR1, which normally prevents the interaction of TRIM32 with STING and its subsequent activation. Furthermore, NBR1 also antagonizes STING by promoting its trafficking to the endosome-lysosomal compartment for degradation independent of autophagy. Of functional relevance, NBR1 deletion completely reverts the tumor-promoting function of p62-deficient HSCs by rescuing the inhibited STING-IFN pathway, thus enhancing anti-tumor responses mediated by CD8+ T cells. Therefore, NBR1 emerges as a synthetic vulnerability of p62 deficiency in HSCs by promoting the STING/IFN pathway, which boosts anti-tumor CD8+ T cell responses to restrain HCC progression.

7.
Mol Cell ; 84(17): 3271-3287.e8, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39178863

RESUMO

Cellular senescence, a stress-induced stable proliferation arrest associated with an inflammatory senescence-associated secretory phenotype (SASP), is a cause of aging. In senescent cells, cytoplasmic chromatin fragments (CCFs) activate SASP via the anti-viral cGAS/STING pathway. Promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are also involved in senescence and anti-viral immunity. The HIRA histone H3.3 chaperone localizes to PML NBs in senescent cells. Here, we show that HIRA and PML are essential for SASP expression, tightly linked to HIRA's localization to PML NBs. Inactivation of HIRA does not directly block expression of nuclear factor κB (NF-κB) target genes. Instead, an H3.3-independent HIRA function activates SASP through a CCF-cGAS-STING-TBK1-NF-κB pathway. HIRA physically interacts with p62/SQSTM1, an autophagy regulator and negative SASP regulator. HIRA and p62 co-localize in PML NBs, linked to their antagonistic regulation of SASP, with PML NBs controlling their spatial configuration. These results outline a role for HIRA and PML in the regulation of SASP.


Assuntos
Proteínas de Ciclo Celular , Senescência Celular , Chaperonas de Histonas , Inflamação , NF-kappa B , Proteínas Nucleares , Proteína da Leucemia Promielocítica , Proteínas Serina-Treonina Quinases , Proteína Sequestossoma-1 , Transdução de Sinais , Fatores de Transcrição , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Cromatina/genética , Células HEK293 , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Histonas/metabolismo , Histonas/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Nucleotidiltransferases , Proteína da Leucemia Promielocítica/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética
8.
Mol Cell ; 84(3): 552-569.e11, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103557

RESUMO

Autophagy, an important quality control and recycling process vital for cellular homeostasis, is tightly regulated. The mTORC1 signaling pathway regulates autophagy under conditions of nutrient availability and scarcity. However, how mTORC1 activity is fine-tuned during nutrient availability to allow basal autophagy is unclear. Here, we report that the WD-domain repeat protein MORG1 facilitates basal constitutive autophagy by inhibiting mTORC1 signaling through Rag GTPases. Mechanistically, MORG1 interacts with active Rag GTPase complex inhibiting the Rag GTPase-mediated recruitment of mTORC1 to the lysosome. MORG1 depletion in HeLa cells increases mTORC1 activity and decreases autophagy. The autophagy receptor p62/SQSTM1 binds to MORG1, but MORG1 is not an autophagy substrate. However, p62/SQSTM1 binding to MORG1 upon re-addition of amino acids following amino acid's depletion precludes MORG1 from inhibiting the Rag GTPases, allowing mTORC1 activation. MORG1 depletion increases cell proliferation and migration. Low expression of MORG1 correlates with poor survival in several important cancers.


Assuntos
GTP Fosfo-Hidrolases , Proteínas Monoméricas de Ligação ao GTP , Humanos , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lisossomos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo
9.
Mol Cell ; 84(10): 1980-1994.e8, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759629

RESUMO

Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.


Assuntos
Amiloide , Autofagossomos , Autofagia , Proteína Huntingtina , Doença de Huntington , Peptídeos , Agregados Proteicos , Proteína Sequestossoma-1 , Peptídeos/metabolismo , Peptídeos/química , Peptídeos/genética , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/química , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Amiloide/metabolismo , Amiloide/química , Amiloide/genética , Doença de Huntington/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Microscopia Crioeletrônica , Animais , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/genética
10.
Mol Cell ; 83(19): 3485-3501.e11, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802024

RESUMO

p62 is a well-characterized autophagy receptor that recognizes and sequesters specific cargoes into autophagosomes for degradation. p62 promotes the assembly and removal of ubiquitinated proteins by forming p62-liquid droplets. However, it remains unclear how autophagosomes efficiently sequester p62 droplets. Herein, we report that p62 undergoes reversible S-acylation in multiple human-, rat-, and mouse-derived cell lines, catalyzed by zinc-finger Asp-His-His-Cys S-acyltransferase 19 (ZDHHC19) and deacylated by acyl protein thioesterase 1 (APT1). S-acylation of p62 enhances the affinity of p62 for microtubule-associated protein 1 light chain 3 (LC3)-positive membranes and promotes autophagic membrane localization of p62 droplets, thereby leading to the production of small LC3-positive p62 droplets and efficient autophagic degradation of p62-cargo complexes. Specifically, increasing p62 acylation by upregulating ZDHHC19 or by genetic knockout of APT1 accelerates p62 degradation and p62-mediated autophagic clearance of ubiquitinated proteins. Thus, the protein S-acylation-deacylation cycle regulates p62 droplet recruitment to the autophagic membrane and selective autophagic flux, thereby contributing to the control of selective autophagic clearance of ubiquitinated proteins.


Assuntos
Autofagossomos , Proteínas Ubiquitinadas , Camundongos , Ratos , Humanos , Animais , Autofagossomos/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Autofagia/genética , Acilação , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mamíferos/metabolismo
11.
Mol Cell ; 83(17): 3188-3204.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37683611

RESUMO

Failure to clear damaged mitochondria via mitophagy disrupts physiological function and may initiate damage signaling via inflammatory cascades, although how these pathways intersect remains unclear. We discovered that nuclear factor kappa B (NF-κB) essential regulator NF-κB effector molecule (NEMO) is recruited to damaged mitochondria in a Parkin-dependent manner in a time course similar to recruitment of the structurally related mitophagy adaptor, optineurin (OPTN). Upon recruitment, NEMO partitions into phase-separated condensates distinct from OPTN but colocalizing with p62/SQSTM1. NEMO recruitment, in turn, recruits the active catalytic inhibitor of kappa B kinase (IKK) component phospho-IKKß, initiating NF-κB signaling and the upregulation of inflammatory cytokines. Consistent with a potential neuroinflammatory role, NEMO is recruited to mitochondria in primary astrocytes upon oxidative stress. These findings suggest that damaged, ubiquitinated mitochondria serve as an intracellular platform to initiate innate immune signaling, promoting the formation of activated IKK complexes sufficient to activate NF-κB signaling. We propose that mitophagy and NF-κB signaling are initiated as parallel pathways in response to mitochondrial stress.


Assuntos
NF-kappa B , Transdução de Sinais , NF-kappa B/genética , Quinase I-kappa B/genética , Proteínas Serina-Treonina Quinases/genética , Mitocôndrias/genética
12.
Mol Cell ; 81(6): 1337-1354.e8, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33545068

RESUMO

Autophagy deficiency in fed conditions leads to the formation of protein inclusions highlighting the contribution of this lysosomal delivery route to cellular proteostasis. Selective autophagy pathways exist that clear accumulated and aggregated ubiquitinated proteins. Receptors for this type of autophagy (aggrephagy) include p62, NBR1, TOLLIP, and OPTN, which possess LC3-interacting regions and ubiquitin-binding domains (UBDs), thus working as a bridge between LC3/GABARAP proteins and ubiquitinated substrates. However, the identity of aggrephagy substrates and the redundancy of aggrephagy and related UBD-containing receptors remains elusive. Here, we combined proximity labeling and organelle enrichment with quantitative proteomics to systematically map the autophagic degradome targeted by UBD-containing receptors under basal and proteostasis-challenging conditions in human cell lines. We identified various autophagy substrates, some of which were differentially engulfed by autophagosomal and endosomal membranes via p62 and TOLLIP, respectively. Overall, this resource will allow dissection of the proteostasis contribution of autophagy to numerous individual proteins.


Assuntos
Autofagossomos , Autofagia , Mapas de Interação de Proteínas , Proteólise , Proteostase , Ubiquitinação , Autofagossomos/genética , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteômica
13.
EMBO J ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39448883

RESUMO

Autophagy mediates the degradation of harmful material within lysosomes. In aggrephagy, the pathway mediating the degradation of aggregated, ubiquitinated proteins, this cargo material is collected in larger condensates prior to its sequestration by autophagosomes. In this process, the autophagic cargo receptors SQSTM1/p62 and NBR1 drive cargo condensation, while TAX1BP1, which binds to NBR1, recruits the autophagy machinery to facilitate autophagosome biogenesis at the condensates. The mechanistic basis for the TAX1BP1-mediated switch from cargo collection to its sequestration is unclear. Here we show that TAX1BP1 is not a constitutive component of the condensates. Its recruitment correlates with the induction of autophagosome biogenesis. TAX1BP1 is sufficient to recruit the TBK1 kinase via the SINTBAD adapter. We define the NBR1-TAX1BP1-binding site, which is adjacent to the GABARAP/LC3 interaction site, and demonstrate that the recruitment of TAX1BP1 to cargo mimetics can be enhanced by an increased ubiquitin load. Our study suggests that autophagosome biogenesis is initiated once sufficient cargo is collected in the condensates.

14.
Mol Cell ; 80(5): 779-795.e10, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33207181

RESUMO

Protein aggregates disrupt cellular homeostasis, causing toxicity linked to neurodegeneration. Selective autophagic elimination of aggregates is critical to protein quality control, but how aggregates are selectively targeted for degradation is unclear. We compared the requirements for autophagy receptor proteins: OPTN, NBR1, p62, NDP52, and TAX1BP1 in clearance of proteotoxic aggregates. Endogenous TAX1BP1 is recruited to and required for the clearance of stress-induced aggregates, whereas ectopic expression of TAX1BP1 increases clearance through autophagy, promoting viability of human induced pluripotent stem cell-derived neurons. In contrast, TAX1BP1 depletion sensitizes cells to several forms of aggregate-induced proteotoxicity. Furthermore, TAX1BP1 is more specifically expressed in the brain compared to other autophagy receptor proteins. In vivo, loss of TAX1BP1 results in accumulation of high molecular weight ubiquitin conjugates and premature lipofuscin accumulation in brains of young TAX1BP1 knockout mice. TAX1BP1 mediates clearance of a broad range of cytotoxic proteins indicating therapeutic potential in neurodegenerative diseases.


Assuntos
Proteínas Reguladoras de Apoptose/deficiência , Autofagia , Encéfalo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Proteínas de Neoplasias/deficiência , Doenças Neurodegenerativas/metabolismo , Agregação Patológica de Proteínas/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Encéfalo/patologia , Feminino , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipofuscina/genética , Lipofuscina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Ratos , Ratos Sprague-Dawley , Ubiquitina/genética , Ubiquitina/metabolismo
15.
Trends Biochem Sci ; 48(3): 216-228, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36280494

RESUMO

Aggrephagy describes the selective lysosomal transport and turnover of cytoplasmic protein aggregates by macro-autophagy. In this process, protein aggregates and conglomerates are polyubiquitinated and then sequestered by autophagosomes. Soluble selective autophagy receptors (SARs) are central to aggrephagy and physically bind to both ubiquitin and the autophagy machinery, thus linking the cargo to the forming autophagosomal membrane. Because the accumulation of protein aggregates is associated with cytotoxicity in several diseases, a better molecular understanding of aggrephagy might provide a conceptual framework to develop therapeutic strategies aimed at delaying the onset of these pathologies by preventing the buildup of potentially toxic aggregates. We review recent advances in our knowledge about the mechanism of aggrephagy.


Assuntos
Autofagia , Agregados Proteicos , Proteína Sequestossoma-1/metabolismo , Autofagossomos , Lisossomos/metabolismo
16.
EMBO J ; 42(5): e111372, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36514953

RESUMO

Mitophagy, the elimination of mitochondria via the autophagy-lysosome pathway, is essential for the maintenance of cellular homeostasis. The best characterised mitophagy pathway is mediated by stabilisation of the protein kinase PINK1 and recruitment of the ubiquitin ligase Parkin to damaged mitochondria. Ubiquitinated mitochondrial surface proteins are recognised by autophagy receptors including NDP52 which initiate the formation of an autophagic vesicle around the mitochondria. Damaged mitochondria also generate reactive oxygen species (ROS) which have been proposed to act as a signal for mitophagy, however the mechanism of ROS sensing is unknown. Here we found that oxidation of NDP52 is essential for the efficient PINK1/Parkin-dependent mitophagy. We identified redox-sensitive cysteine residues involved in disulphide bond formation and oligomerisation of NDP52 on damaged mitochondria. Oligomerisation of NDP52 facilitates the recruitment of autophagy machinery for rapid mitochondrial degradation. We propose that redox sensing by NDP52 allows mitophagy to function as a mechanism of oxidative stress response.


Assuntos
Mitofagia , Proteínas Nucleares , Proteínas Quinases , Humanos , Autofagia , Células HeLa , Mitofagia/fisiologia , Oxirredução , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Nucleares/metabolismo
17.
EMBO J ; 42(22): e113491, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37621214

RESUMO

Nix is a membrane-anchored outer mitochondrial protein that induces mitophagy. While Nix has an LC3-interacting (LIR) motif that binds to ATG8 proteins, it also contains a minimal essential region (MER) that induces mitophagy through an unknown mechanism. We used chemically induced dimerization (CID) to probe the mechanism of Nix-mediated mitophagy and found that both the LIR and MER are required for robust mitophagy. We find that the Nix MER interacts with the autophagy effector WIPI2 and recruits WIPI2 to mitochondria. The Nix LIR motif is also required for robust mitophagy and converts a homogeneous WIPI2 distribution on the surface of the mitochondria into puncta, even in the absence of ATG8s. Together, this work reveals unanticipated mechanisms in Nix-induced mitophagy and the elusive role of the MER, while also describing an interesting example of autophagy induction that acts downstream of the canonical initiation complexes.


Assuntos
Autofagia , Mitofagia , Mitocôndrias/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
18.
EMBO J ; 42(14): e113349, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37306101

RESUMO

NRF2 is a transcription factor responsible for antioxidant stress responses that is usually regulated in a redox-dependent manner. p62 bodies formed by liquid-liquid phase separation contain Ser349-phosphorylated p62, which participates in the redox-independent activation of NRF2. However, the regulatory mechanism and physiological significance of p62 phosphorylation remain unclear. Here, we identify ULK1 as a kinase responsible for the phosphorylation of p62. ULK1 colocalizes with p62 bodies, directly interacting with p62. ULK1-dependent phosphorylation of p62 allows KEAP1 to be retained within p62 bodies, thus activating NRF2. p62S351E/+ mice are phosphomimetic knock-in mice in which Ser351, corresponding to human Ser349, is replaced by Glu. These mice, but not their phosphodefective p62S351A/S351A counterparts, exhibit NRF2 hyperactivation and growth retardation. This retardation is caused by malnutrition and dehydration due to obstruction of the esophagus and forestomach secondary to hyperkeratosis, a phenotype also observed in systemic Keap1-knockout mice. Our results expand our understanding of the physiological importance of the redox-independent NRF2 activation pathway and provide new insights into the role of phase separation in this process.


Assuntos
Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Humanos , Animais , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fosforilação , Proteína Sequestossoma-1/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
19.
Am J Hum Genet ; 111(1): 82-95, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38035881

RESUMO

Autosomal-dominant ataxia with sensory and autonomic neuropathy is a highly specific combined phenotype that we described in two Swedish kindreds in 2014; its genetic cause had remained unknown. Here, we report the discovery of exonic GGC trinucleotide repeat expansions, encoding poly-glycine, in zinc finger homeobox 3 (ZFHX3) in these families. The expansions were identified in whole-genome datasets within genomic segments that all affected family members shared. Non-expanded alleles carried one or more interruptions within the repeat. We also found ZFHX3 repeat expansions in three additional families, all from the region of Skåne in southern Sweden. Individuals with expanded repeats developed balance and gait disturbances at 15 to 60 years of age and had sensory neuropathy and slow saccades. Anticipation was observed in all families and correlated with different repeat lengths determined through long-read sequencing in two family members. The most severely affected individuals had marked autonomic dysfunction, with severe orthostatism as the most disabling clinical feature. Neuropathology revealed p62-positive intracytoplasmic and intranuclear inclusions in neurons of the central and enteric nervous system, as well as alpha-synuclein positivity. ZFHX3 is located within the 16q22 locus, to which spinocerebellar ataxia type 4 (SCA4) repeatedly had been mapped; the clinical phenotype in our families corresponded well with the unique phenotype described in SCA4, and the original SCA4 kindred originated from Sweden. ZFHX3 has known functions in neuronal development and differentiation n both the central and peripheral nervous system. Our findings demonstrate that SCA4 is caused by repeat expansions in ZFHX3.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Expansão das Repetições de Trinucleotídeos/genética , Ataxias Espinocerebelares/genética , Ataxia/genética , Ataxia Cerebelar/genética , Fenótipo , Degenerações Espinocerebelares/genética , Proteínas de Homeodomínio/genética
20.
Mol Cell ; 74(2): 347-362.e6, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30853401

RESUMO

Selective autophagy recycles damaged organelles and clears intracellular pathogens to prevent their aberrant accumulation. How ULK1 kinase is targeted and activated during selective autophagic events remains to be elucidated. In this study, we used chemically inducible dimerization (CID) assays in tandem with CRISPR KO lines to systematically analyze the molecular basis of selective autophagosome biogenesis. We demonstrate that ectopic placement of NDP52 on mitochondria or peroxisomes is sufficient to initiate selective autophagy by focally localizing and activating the ULK1 complex. The capability of NDP52 to induce mitophagy is dependent on its interaction with the FIP200/ULK1 complex, which is facilitated by TBK1. Ectopically tethering ULK1 to cargo bypasses the requirement for autophagy receptors and TBK1. Focal activation of ULK1 occurs independently of AMPK and mTOR. Our findings provide a parsimonious model of selective autophagy, which highlights the coordination of ULK1 complex localization by autophagy receptors and TBK1 as principal drivers of targeted autophagosome biogenesis.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Autofagia/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Relacionadas à Autofagia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Células HeLa , Humanos , Mitocôndrias/química , Mitocôndrias/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Peroxissomos/química , Peroxissomos/genética , Fosforilação , Proteínas Quinases/genética , Multimerização Proteica , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA