Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(5): 1204-1216.e26, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29628141

RESUMO

Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ "writer" PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing translation control in stem cells with important implications for development and disease.


Assuntos
Transferases Intramoleculares/metabolismo , Biossíntese de Proteínas , Pseudouridina/metabolismo , RNA de Transferência/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Fatores de Iniciação em Eucariotos/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Transferases Intramoleculares/antagonistas & inibidores , Transferases Intramoleculares/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Síndromes Mielodisplásicas/patologia , Conformação de Ácido Nucleico , Fosfoproteínas/metabolismo , Proteína I de Ligação a Poli(A)/antagonistas & inibidores , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Nicho de Células-Tronco
2.
Mol Cell ; 84(13): 2472-2489.e8, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996458

RESUMO

Pseudouridine (Ψ), the isomer of uridine, is ubiquitously found in RNA, including tRNA, rRNA, and mRNA. Human pseudouridine synthase 3 (PUS3) catalyzes pseudouridylation of position 38/39 in tRNAs. However, the molecular mechanisms by which it recognizes its RNA targets and achieves site specificity remain elusive. Here, we determine single-particle cryo-EM structures of PUS3 in its apo form and bound to three tRNAs, showing how the symmetric PUS3 homodimer recognizes tRNAs and positions the target uridine next to its active site. Structure-guided and patient-derived mutations validate our structural findings in complementary biochemical assays. Furthermore, we deleted PUS1 and PUS3 in HEK293 cells and mapped transcriptome-wide Ψ sites by Pseudo-seq. Although PUS1-dependent sites were detectable in tRNA and mRNA, we found no evidence that human PUS3 modifies mRNAs. Our work provides the molecular basis for PUS3-mediated tRNA modification in humans and explains how its tRNA modification activity is linked to intellectual disabilities.


Assuntos
Microscopia Crioeletrônica , Hidroliases , Transferases Intramoleculares , Pseudouridina , RNA de Transferência , Humanos , Domínio Catalítico , Células HEK293 , Hidroliases/metabolismo , Hidroliases/genética , Hidroliases/química , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/enzimologia , Modelos Moleculares , Mutação , Ligação Proteica , Pseudouridina/metabolismo , Pseudouridina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , Especificidade por Substrato
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058356

RESUMO

Pseudouridine (Ψ) is a ubiquitous RNA modification incorporated by pseudouridine synthase (Pus) enzymes into hundreds of noncoding and protein-coding RNA substrates. Here, we determined the contributions of substrate structure and protein sequence to binding and catalysis by pseudouridine synthase 7 (Pus7), one of the principal messenger RNA (mRNA) modifying enzymes. Pus7 is distinct among the eukaryotic Pus proteins because it modifies a wider variety of substrates and shares limited homology with other Pus family members. We solved the crystal structure of Saccharomyces cerevisiae Pus7, detailing the architecture of the eukaryotic-specific insertions thought to be responsible for the expanded substrate scope of Pus7. Additionally, we identified an insertion domain in the protein that fine-tunes Pus7 activity both in vitro and in cells. These data demonstrate that Pus7 preferentially binds substrates possessing the previously identified UGUAR (R = purine) consensus sequence and that RNA secondary structure is not a strong requirement for Pus7-binding. In contrast, the rate constants and extent of Ψ incorporation are more influenced by RNA structure, with Pus7 modifying UGUAR sequences in less-structured contexts more efficiently both in vitro and in cells. Although less-structured substrates were preferred, Pus7 fully modified every transfer RNA, mRNA, and nonnatural RNA containing the consensus recognition sequence that we tested. Our findings suggest that Pus7 is a promiscuous enzyme and lead us to propose that factors beyond inherent enzyme properties (e.g., enzyme localization, RNA structure, and competition with other RNA-binding proteins) largely dictate Pus7 substrate selection.


Assuntos
Sequência de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Domínio Catalítico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Fúngico/química , RNA Fúngico/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Estresse Fisiológico , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura , Termodinâmica
4.
Arch Microbiol ; 206(4): 171, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491219

RESUMO

A Gram-negative, facultatively anaerobic, short rod-shaped bacterium, designated as strain HZ0627T, was isolated from the appendiceal pus of a patient with appendicitis in Yongzhou, Hunan, China. This strain was subjected to comprehensive phenotypic, phylogenetic, and genomic analyses using polyphasic taxonomic methods. Phylogenetic analysis of the 16S rRNA gene sequence revealed that this strain belonged to the genus Proteus and the family Morganellaceae, whereas that based on the rpoB gene sequence and phylogenomic analysis demonstrated that this strain was distinctly separated from other type strains of Proteus species. Moreover, whole-genome-based analyses, including in silico DNA-DNA hybridization (isDDH) and average nucleotide identity (ANI), revealed that strain HZ0627T had much lower isDDH rates (24.5-55.6%) and ANI (82.04-93.90%) than those of the thresholds (i.e., 70% and 95%, respectively) for species delineation, when compared to the type strains of other Proteus species. The cellular fatty acid profile of strain HZ0627T was dominated by C16:0 (34.5%), cyclo C17:0 (25.8%), C14:0 (12.6%), C16:1 iso I/14:0 3-OH (7.7%), C18:1ω7c/18:1ω6c (6.5%), and C16:1ω7c/16:1ω6c (4.9%), which clearly differentiated it from the documented type strains of Proteus species. In addition, several specific physiological traits, including optimal growth temperature, tolerance to sodium chloride, and carbon source utilization, differed from those of other Proteus species. Therefore, we propose the name Proteus appendicitidis sp. nov. for strain HZ0627T (= CCTCC AB 2022380T = KCTC 92986T), which represents the type strain of this novel Proteus species.


Assuntos
Apendicite , Humanos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Proteus/genética , Ácidos Graxos/análise , China , DNA , Supuração , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Hibridização de Ácido Nucleico
5.
HNO ; 72(1): 32-40, 2024 Jan.
Artigo em Alemão | MEDLINE | ID: mdl-37932499

RESUMO

BACKGROUND: Peritonsillar abscess (PTA) is often seen as a complication of acute tonsillitis and is defined as pus retention between the tonsillar capsule and the peritonsillar tissue. The etiology and pathogenesis have not yet been fully elucidated. A connection between certain weather conditions and temperature fluctuations and the occurrence of abscesses in the head and neck region has been discussed for years. The question here is whether higher temperature fluctuations are predisposing for the formation of abscesses. MATERIALS AND METHODS: A retrospective evaluation of all patients hospitalized with peritonsillitis or PTA in the Department of Otorhinolaryngology of the Klinikum Rechts der Isar of the Technical University of Munich during a period of 10 years (2012-2021) was performed. Each patient was individually correlated with daily temperature data from the statistical meteorological office of the City of Munich. RESULTS: A total of 1450 patients were included, 270 patients (18.62%) with peritonsillitis and 1180 patients (81.38%) with PTA. A correlation between the occurrence of peritonsillitis or PTA and major temperature fluctuations could be excluded in this large patient population. Moreover, a similar frequency of peritonsillitis and PTA was seen throughout the year. CONCLUSION: The myth of a temperature dependence of the development of peritonsillitis or PTA and a so-called abscess weather could be negated in this study.


Assuntos
Abscesso Peritonsilar , Tonsilite , Humanos , Abscesso Peritonsilar/diagnóstico , Abscesso Peritonsilar/epidemiologia , Estudos Retrospectivos , Tonsila Palatina/patologia , Tempo (Meteorologia) , Tonsilite/diagnóstico , Tonsilite/epidemiologia
6.
Mol Carcinog ; 62(2): 160-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36222184

RESUMO

Pseudouridine synthase 7 (PUS7) may play key roles in cancer development. However, few studies have been conducted in this area. In the present study, we explored the function and potential mechanisms of PUS7 in colorectal cancer (CRC) progression. We found that PUS7 had higher expression in CRC tissues and cell lines. Clinically, high expression of PUS7 was associated with an unfavorable prognosis for CRC patients. Functionally, knockdown of PUS7 suppressed the proliferation of CRC cells in vitro and inhibited tumorigenicity in vivo. Mechanistically, RNA sequencing and coimmunoprecipitation (Co-IP) indicated that PUS7 exhibited oncogenic functions through the interaction of Sirtuin 1 (SIRT1) and activated the Wnt/ß-catenin signaling pathway. Thus, our findings suggest that PUS7 promotes the proliferation of CRC cells by directly stabilizing SIRT1 to activate the Wnt/ß-catenin pathway.


Assuntos
Neoplasias Colorretais , Transferases Intramoleculares , Sirtuína 1 , Via de Sinalização Wnt , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Sirtuína 1/genética , Sirtuína 1/metabolismo , Via de Sinalização Wnt/genética , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo
7.
RNA ; 27(1): 66-79, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33023933

RESUMO

Most mammalian cytoplasmic tRNAs contain ribothymidine (T) and pseudouridine (Ψ) at positions 54 and 55, respectively. However, some tRNAs contain Ψ at both positions. Several Ψ54-containing tRNAs function as primers in retroviral DNA synthesis. The Ψ54 of these tRNAs is produced by PUS10, which can also synthesize Ψ55. Two other enzymes, TRUB1 and TRUB2, can also produce Ψ55. By nearest-neighbor analyses of tRNAs treated with recombinant proteins and subcellular extracts of wild-type and specific Ψ55 synthase knockdown cells, we determined that while TRUB1, PUS10, and TRUB2 all have tRNA Ψ55 synthase activities, they have different tRNA structural requirements. Moreover, these activities are primarily present in the nucleus, cytoplasm, and mitochondria, respectively, suggesting a compartmentalization of Ψ55 synthase activity. TRUB1 produces the Ψ55 of most elongator tRNAs, but cytoplasmic PUS10 produces both Ψs of the tRNAs with Ψ54Ψ55. The nuclear isoform of PUS10 is catalytically inactive and specifically binds the unmodified U54U55 versions of Ψ54Ψ55-containing tRNAs, as well as the A54U55-containing tRNAiMet This binding inhibits TRUB1-mediated U55 to Ψ55 conversion in the nucleus. Consequently, the U54U55 of Ψ54Ψ55-containing tRNAs are modified by the cytoplasmic PUS10. Nuclear PUS10 does not bind the U55 versions of T54Ψ55- and A54Ψ55-containing elongator tRNAs. Therefore, TRUB1 is able to produce Ψ55 in these tRNAs. In summary, the tRNA Ψ55 synthase activities of TRUB1 and PUS10 are not redundant but rather are compartmentalized and act on different sets of tRNAs. The significance of this compartmentalization needs further study.


Assuntos
Núcleo Celular/genética , Citoplasma/genética , Hidroliases/genética , Mitocôndrias/genética , Pseudouridina/metabolismo , RNA de Transferência de Alanina/genética , RNA de Transferência de Metionina/genética , RNA de Transferência de Triptofano/genética , Animais , Sítios de Ligação , Compartimento Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Hidroliases/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/metabolismo , Células PC-3 , Ligação Proteica , RNA de Transferência de Alanina/metabolismo , RNA de Transferência de Metionina/metabolismo , RNA de Transferência de Triptofano/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera
8.
RNA ; 27(11): 1363-1373, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34385348

RESUMO

In eukaryotes, rRNAs and spliceosomal snRNAs are heavily modified post-transcriptionally. Pseudouridylation and 2'-O-methylation are the most abundant types of RNA modifications. They are mediated by modification guide RNAs, also known as small nucleolar (sno)RNAs and small Cajal body-specific (sca)RNAs. We used yeast and vertebrate cells to test guide activities predicted for a number of snoRNAs, based on their regions of complementarity with rRNAs. We showed that human SNORA24 is a genuine guide RNA for 18S-Ψ609, despite some noncanonical base-pairing with its target. At the same time, we found quite a few snoRNAs that have the ability to base-pair with rRNAs and can induce predicted modifications in artificial substrate RNAs, but do not modify the same target sequence within endogenous rRNA molecules. Furthermore, certain fragments of rRNAs can be modified by the endogenous yeast modification machinery when inserted into an artificial backbone RNA, even though the same sequences are not modified in endogenous yeast rRNAs. In Xenopus cells, a guide RNA generated from scaRNA, but not from snoRNA, could induce an additional pseudouridylation of U2 snRNA at position 60; both guide RNAs were equally active on a U2 snRNA-specific substrate in yeast cells. Thus, post-transcriptional modification of functionally important RNAs, such as rRNAs and snRNAs, is highly regulated and more complex than simply strong base-pairing between a guide RNA and substrate RNA. We discuss possible regulatory roles for these unexpected modifications.


Assuntos
Corpos Enovelados/metabolismo , Pseudouridina/metabolismo , Processamento Pós-Transcricional do RNA , RNA Guia de Cinetoplastídeos/metabolismo , RNA Nucleolar Pequeno/metabolismo , Spliceossomos/metabolismo , Sequência de Bases , Corpos Enovelados/genética , Humanos , Metilação , RNA Guia de Cinetoplastídeos/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/genética , Spliceossomos/genética
9.
Am J Med Genet A ; 191(7): 1953-1958, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37067188

RESUMO

PUS7 gene pathogenic variants cause a deficiency in an RNA-independent pseudouridine synthase, which results in a neurodevelopmental phenotype characterized by various degrees of psychomotor delay, acquired microcephaly, aggressive behavior, and intellectual disability. Since 2018, PUS7 deficiency has been described in 15 patients with different pathogenic variants but similar clinical phenotypes. We describe the case of a male infant with a homozygous truncating pathogenic variant in the PUS7 gene (c.329_332delCTGA; p.Thr110Argfs*4) who, in addition to the previously mentioned features, displays self-injurious behavior, sleep disturbances and motor stereotypies.


Assuntos
Deficiência Intelectual , Microcefalia , Comportamento Autodestrutivo , Humanos , Masculino , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Microcefalia/diagnóstico , Microcefalia/genética , Microcefalia/patologia , Fenótipo , Comportamento Autodestrutivo/complicações , Comportamento Autodestrutivo/genética , Sono
10.
BMC Womens Health ; 23(1): 101, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899343

RESUMO

INTRODUCTION: Vulvovaginal candidiasis (VVC) is a public health problem with an estimated 138 million women globally experiencing recurrent VVC annually. The microscopic diagnosis of VVC has low sensitivity, but it remains an essential tool for diagnosis as the microbiological culture methods are limited to advanced clinical microbiology laboratories in developing countries. The study retrospectively analyzed the presence of red blood cells (RBCs), epithelial cells (ECs), pus cells (PCs) and Candida albicans positive in wet mount preparation of urine or high vaginal swabs (HVS) samples to test for their sensitivity and specificity for the diagnosis of candidiasis. METHODS: The study is a retrospective analysis at the Outpatient Department of the University of Cape Coast between 2013 and 2020. All urine and high vagina swabs (HVS) cultures samples using Sabourauds dextrose agar with wet mount data were analyzed. 2 × 2 contingency diagnostic test was used to ascertain the diagnostic accuracy of red blood cells (RBCs), epithelial cells (ECs), pus cells (PCs), and Candida albicans positive in wet mount preparation of urine or high vaginal swabs (HVS) samples for the diagnosis of candidiasis. The association of candidiasis among patients' demographics was analyzed using relative risk (RR) analysis. RESULTS: The high prevalence of candida infection was among female subjects 97.1% (831/856) compared to males 2.9% (25/856). The microscopic profiles which characterized candida infection were pus cells 96.4% (825/856), epithelial cells 98.7% (845/856), red blood cells (RBCs) 7.6% (65/856) and Candida albicans positive 63.2% (541/856). There was a lower risk of Candida infections among male patients compared to female patients RR (95% CI) = 0.061 (0.041-0.088). The sensitivity (95%) for detecting Candida albicans positive and red blood cells (0.62 (0.59-0.65)), Candida albicans positive and pus cells (0.75 (0.72-0.78)) and Candida albicans positive and epithelial cells (0.95 (0.92-0.96)) with corresponding specificity (95% CI) of 0.63 (0.60-0.67), 0.69 (0.66-0.72) and 0.74 (0.71-0.76) were detected among the high vaginal swab samples. CONCLUSION: In conclusion, the study has shown that the presence of PCs, ECs, RBCs or ratio of RBCs/ECs and RBCs/PCs in the wet mount preparation from urine or HVS can enhance microscopic diagnosis of VVC cases.


Assuntos
Candidíase Vulvovaginal , Candidíase , Feminino , Humanos , Masculino , Estudos Retrospectivos , Gana , Pacientes Ambulatoriais , Candidíase Vulvovaginal/epidemiologia , Candida albicans , Supuração , Vagina/microbiologia
11.
Hum Mutat ; 43(12): 2063-2078, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36125428

RESUMO

Pseudouridine (Ψ) is an RNA base modification ubiquitously found in many types of RNAs. In humans, the isomerization of uridine is catalyzed by different stand-alone pseudouridine synthases (PUS). Genomic mutations in the human pseudouridine synthase 3 gene (PUS3) have been identified in patients with neurodevelopmental disorders. However, the underlying molecular mechanisms that cause the disease phenotypes remain elusive. Here, we utilize exome sequencing to identify genomic variants that lead to a homozygous amino acid substitution (p.[(Tyr71Cys)];[(Tyr71Cys)]) in human PUS3 of two affected individuals and a compound heterozygous substitution (p.[(Tyr71Cys)];[(Ile299Thr)]) in a third patient. We obtain wild-type and mutated full-length human recombinant PUS3 proteins and characterize the enzymatic activity in vitro. Unexpectedly, we find that the p.Tyr71Cys substitution neither affect tRNA binding nor pseudouridylation activity in vitro, but strongly impair the thermostability profile of PUS3, while the p.Ile299Thr mutation causes protein aggregation. Concomitantly, we observe that the PUS3 protein levels as well as the level of PUS3-dependent Ψ levels are strongly reduced in fibroblasts derived from all three patients. In summary, our results directly illustrate the link between the identified PUS3 variants and reduced Ψ levels in the patient cells, providing a molecular explanation for the observed clinical phenotypes.


Assuntos
Hidroliases , Deficiência Intelectual , Pseudouridina , Humanos , Hidroliases/genética , Hidroliases/metabolismo , Deficiência Intelectual/genética , Pseudouridina/genética , Pseudouridina/metabolismo , Processamento Pós-Transcricional do RNA
12.
Mol Microbiol ; 116(3): 808-826, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34165831

RESUMO

The parasite Trypanosoma brucei cycles between an insect and a mammalian host and is the causative agent of sleeping sickness. Here, we performed high-throughput mapping of pseudouridines (Ψs) on mRNA from two life stages of the parasite. The analysis revealed ~273 Ψs, including developmentally regulated Ψs that are guided by homologs of pseudouridine synthases (PUS1, 3, 5, and 7). Mutating the U that undergoes pseudouridylation in the 3' UTR of valyl-tRNA synthetase destabilized the mRNA level. To investigate the mechanism by which Ψ affects the stability of this mRNA, proteins that bind to the 3' UTR were identified, including the RNA binding protein RBSR1. The binding of RBSR1 protein to the 3' UTR was stronger when lacking Ψ compared to transcripts carrying the modification, suggesting that Ψ can inhibit the binding of proteins to their target and thus affect the stability of mRNAs. Consequently, Ψ modification on mRNA adds an additional level of regulation to the dominant post-transcriptional control in these parasites.


Assuntos
Transferases Intramoleculares/metabolismo , Pseudouridina/genética , Pseudouridina/metabolismo , RNA Mensageiro/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Regiões 3' não Traduzidas , Animais , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala/métodos , Transferases Intramoleculares/genética , Ligação Proteica , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo
13.
Mol Genet Metab ; 135(3): 221-229, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35144859

RESUMO

Protein translation is a highly regulated process involving the interaction of numerous genes on every component of the protein translation machinery. Upregulated protein translation is a hallmark of cancer and is implicated in autism spectrum disorder, but the risks of developing each disease do not appear to be correlated with one another. In this study we identified two siblings from the NIH Undiagnosed Diseases Program with loss of function variants in PUS7, a gene previously implicated in the regulation of total protein translation. These patients exhibited a neurodevelopmental phenotype including autism spectrum disorder in the proband. Both patients also had features of Lesch-Nyhan syndrome, including hyperuricemia and self-injurious behavior, but without pathogenic variants in HPRT1. Patient fibroblasts demonstrated upregulation of protein synthesis, including elevated MYC protein, but did not exhibit increased rates of cell proliferation. Interestingly, the dysregulation of protein translation also resulted in mildly decreased levels of HPRT1 protein suggesting an association between dysregulated protein translation and the LNS-like phenotypic findings. These findings strengthen the correlation between neurodevelopmental disease, particularly autism spectrum disorders, and the rate of protein translation.


Assuntos
Transtorno do Espectro Autista , Transferases Intramoleculares/metabolismo , Síndrome de Lesch-Nyhan , Transtorno do Espectro Autista/genética , Humanos , Hipoxantina Fosforribosiltransferase/genética , Síndrome de Lesch-Nyhan/diagnóstico , Síndrome de Lesch-Nyhan/genética , Fenótipo , Biossíntese de Proteínas , Proteínas/genética
14.
Am J Med Genet A ; 188(2): 635-641, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713961

RESUMO

PUS3 encodes the pseudouridylate synthase 3, an enzyme catalyzing the formation of tRNA pseudouridine, which plays a critical role in tRNA structure, function, and stability. Biallelic pathogenic variants of PUS3 have been previously associated with severe intellectual disability, microcephaly, epilepsy, and short stature. We identified a novel homozygous PUS3 frameshift variant in a child with facial dysmorphisms, growth failure, microcephaly, retinal dystrophy, cerebellar hypoplasia, congenital heart defect, and right kidney hypoplasia. This patient further expands the phenotypic spectrum of PUS3-related disorders to include a more severe syndromic presentation.


Assuntos
Deficiência Intelectual , Microcefalia , Malformações do Sistema Nervoso , Criança , Deficiências do Desenvolvimento/genética , Homozigoto , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Microcefalia/diagnóstico , Microcefalia/genética , Fenótipo
15.
World J Urol ; 40(8): 2041-2046, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35731266

RESUMO

PURPOSE: The purpose of our study was to evaluate the ability of ureteral stents with different diameters to drain pus that accumulates in an obstructed kidney using an in vitro model. METHODS: We developed an in vitro model of an obstructed kidney filled with pus. The model included a silicon kidney unit based on computed tomography (CT) data, a 3D printed ureteral stone based on a real extracted ureteral stone, a latex ureter model, a bladder vessel, and a fluid with qualities resembling pus. Identical printed stones were inserted into four ureter models containing stents with varying diameters (4.8F, 6F, 7F, 8F), each of which was connected to the kidney unit and the bladder vessel. The kidney unit was filled with artificial pus to pressures of 30 cmH2O to simulate an infected and obstructed kidney. The obstruction was relieved with stents in place, while artificial urine was pumped into the kidney; pressure in the kidney and remaining pus were measured continuously. RESULTS: The rate of pressure drop and the final pressure measured in the kidney were unaffected by the diameter of the stent. For all stent diameters, the pressure reached non-obstructed levels within 30 s, final pressure was reached within 90-120 s, and minimal amounts of pus remained in the kidney after 120 min. CONCLUSIONS: In vitro experiments demonstrate that all stent diameters drain pus-filled, obstructed kidneys with the same efficacy. The common perception that larger diameter tubes are more effective under such circumstances should be re-examined.


Assuntos
Ureter , Obstrução Ureteral , Drenagem , Humanos , Rim , Stents , Supuração , Ureter/cirurgia , Obstrução Ureteral/cirurgia
16.
Dig Dis Sci ; 67(4): 1260-1270, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33811565

RESUMO

BACKGROUND: Colorectal cancer is commonly malignant tumor. Herein, we demonstrate that pseudouridylate synthase 7 (PUS7) is closely related to colon cancer. But the biological role of PUS7 in colon cancer is not known. AIMS: The present study aims to investigate the effects of PUS7 in colon cancer clinical samples and cells and the related molecular mechanism. METHODS: A profile data set was downloaded from the Cancer Genome Atlas database, which included data from colon cancer tissue samples and normal tissue samples. The top 200 differentially expressed genes were subsequently investigated by a protein-protein interaction (PPI) network. RT-PCR and western blot assays were used to determine gene expression levels. CCK8 assay, colony formation experiment, transwell and flow cytometry assay were used to determine cell viability, proliferation, invasion, and apoptosis, respectively. RESULTS: PUS7 is a key gene from the most significant module of the PPI network. PUS7 was upregulated in colon cancer tissues and cell lines. Moreover, PUS7 overexpression is significantly related to the poor survival rate for 60 colon cancer's patients. Cell proliferation and invasion was significantly reduced by PUS7 inhibition and promoted by PUS7 overexpression. The protein levels of cleaved caspase-3/9, c-myc, E-cadherin and vimentin genes were significantly regulated in colon cancer cells transfected with PUS7 interference or overexpression. PUS7 overexpression significantly upregulated the phosphorylation levels of PI3K, AKT and mTOR. CONCLUSION: The results of this study demonstrate that PUS7 overexpression upregulates cell proliferation, invasion and inhibits cell apoptosis of colon cancer cells via activating PI3K/AKT/mTOR signaling pathway.


Assuntos
Neoplasias do Colo , Transferases Intramoleculares/metabolismo , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
17.
Lett Appl Microbiol ; 74(5): 666-670, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35007361

RESUMO

Tissue specimens are valuable materials for microbiological diagnosis. The method of tissue processing can have a significant effect on sensitivity. This study aimed to compare different biopsy processing methods in terms of efficacy and standardization. Pork tissue artificially inoculated with Staphylococcus aureus and Escherichia coli, and samples of infected human tissue were processed by different methods before culture, and the results compared. Bacterial recovery from artificially inoculated pork tissue was significantly higher by homogenization with GentleMacs Dissociator than with sonication. No significant difference was observed between the GentleMacs Dissociator and manual treatment with a scalpel and vortexing. The microbial yield from homogenized human tissues was significantly higher after homogenization with GentleMacs Dissociator than with the conventional method. Homogenization with the GentleMacs Dissociator retrieves bacteria from tissue effectively. Tissue homogenization with the Dissociator is easy and fast to perform and allows for a high degree of standardization.


Assuntos
Infecções Estafilocócicas , Bactérias , Humanos , Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus
18.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269820

RESUMO

Pseudouridine (Ψ), the isomer of uridine (U), is the most abundant type of RNA modification, which is crucial for gene regulation in various cellular processes. Pseudouridine synthases (PUSs) are the key enzymes for the U-to-Ψ conversion. However, little is known about the genome-wide features and biological function of plant PUSs. In this study, we identified 20 AtPUSs and 22 ZmPUSs from Arabidopsis and maize (Zea mays), respectively. Our phylogenetic analysis indicated that both AtPUSs and ZmPUSs could be clustered into six known subfamilies: RluA, RsuA, TruA, TruB, PUS10, and TruD. RluA subfamily is the largest subfamily in both Arabidopsis and maize. It's noteworthy that except the canonical XXHRLD-type RluAs, another three conserved RluA variants, including XXNRLD-, XXHQID-, and XXHRLG-type were also identified in those key nodes of vascular plants. Subcellular localization analysis of representative AtPUSs and ZmPUSs in each subfamily revealed that PUS proteins were localized in different organelles including nucleus, cytoplasm and chloroplasts. Transcriptional expression analysis indicated that AtPUSs and ZmPUSs were differentially expressed in various tissues and diversely responsive to abiotic stresses, especially suggesting their potential roles in response to heat and salt stresses. All these results would facilitate the functional identification of these pseudouridylation in the future.


Assuntos
Arabidopsis , Transferases Intramoleculares , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/genética , Filogenia , Pseudouridina/genética , Pseudouridina/metabolismo , Zea mays/genética , Zea mays/metabolismo
19.
Turk J Med Sci ; 52(5): 1504-1505, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36422499

RESUMO

DISCUSSION: None. The authors declare that there are no potential conflicts of interest.


Assuntos
COVID-19 , Hipóxia Encefálica , Humanos , COVID-19/complicações , Transtornos da Memória
20.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941788

RESUMO

Protein kinases homologous to the US3 gene product (pUS3) of herpes simplex virus (HSV) are conserved throughout the alphaherpesviruses but are absent from betaherpesviruses and gammaherpesviruses. pUS3 homologs are multifunctional and are involved in many processes, including modification of the cytoskeleton, inhibition of apoptosis, and immune evasion. pUS3 also plays a role in efficient nuclear egress of alphaherpesvirus nucleocapsids. In the absence of pUS3, primary enveloped virions accumulate in the perinuclear space (PNS) in large invaginations of the inner nuclear membrane (INM), pointing to a modulatory function for pUS3 during deenvelopment. The HSV and pseudorabies virus (PrV) US3 genes are transcribed into two mRNAs encoding two pUS3 isoforms, which have different aminoterminal sequences and abundances. To test whether the two isoforms in PrV serve different functions, we constructed mutant viruses expressing exclusively either the larger minor or the smaller major isoform, a mutant virus with decreased expression of the smaller isoform, or a mutant with impaired kinase function. Respective virus mutants were investigated in several cell lines. Our results show that absence of the larger pUS3 isoform has no detectable effect on viral replication in cell culture, while full expression of the smaller isoform and intact kinase activity is required for efficient nuclear egress. Absence of pUS3 resulted in only minor titer reduction in most cell lines tested but disclosed a more severe defect in Madin-Darby bovine kidney cells. However, accumulations of primary virions in the PNS do not account for the observed titer reduction in PrV.IMPORTANCE A plethora of substrates and functions have been assigned to the alphaherpesviral pUS3 kinase, including a role in nuclear egress. In PrV, two different pUS3 isoforms are expressed, which differ in size, abundance, and intracellular localization. Their respective role in replication is unknown, however. Here, we show that efficient nuclear egress of PrV requires the smaller isoform and intact kinase activity, whereas absence of the larger isoform has no significant effect on viral replication. Thus, there is a clear distinction in function between the two US3 gene products of PrV.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Herpesvirus Suídeo 1/enzimologia , Proteínas Serina-Treonina Quinases/química , Proteínas Virais/química , Animais , Apoptose , Bovinos , Chlorocebus aethiops , Citoesqueleto/metabolismo , Genoma Viral , Herpesvirus Suídeo 1/fisiologia , Rim/citologia , Mutação , Membrana Nuclear/metabolismo , Fenótipo , Isoformas de Proteínas , Coelhos , Células Vero , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA