Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 718: 150058, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38729076

RESUMO

The therapeutic efficacy of radiotherapy (RT) is primarily driven by two factors: biophysical DNA damage in cancer cells and radiation-induced anti-tumor immunity. However, Anti-tumor immune responses between X-ray RT (XRT) and carbon-ion RT (CIRT) remain unclear. In this study, we, employed mouse models to assess the immunological contribution, especially cytotoxic T-lymphocyte (CTL)-mediated immunity, to the therapeutic effectiveness of XRT and CIRT in shrinking tumors. We irradiated mouse intradermal tumors of B16F10-ovalbumin (OVA) mouse melanoma cells and 3LL-OVA mouse lung cancer cells with carbon-ion beams or X-rays in the presence or absence of CTLs. CTL removal was performed by administration of anti-CD8 monoclonal antibody (mAb) in mice. Based on tumor growth delay, we determined the tumor growth and regression curves. The enhancement ratio (ER) of the slope of regression lines in the presence of CTLs, relative to the absence of CTLs, indicates the dependency of RT on CTLs for shrinking mouse tumors, and the biological effectiveness (RBE) of CIRT relative to XRT were calculated. Tumor growth curves revealed that the elimination of CD8+ CTLs by administrating anti-CD8 mAb accelerated tumor growth compared to the presence of CTLs in both RTs. The ERs were larger in CIRT compared to XRT in the B16F10-OVA tumor models, but not in the 3LL-OVA models, suggesting a greater contribution of CTL-mediated anti-tumor immunity to tumor reduction in CIRT compared to XRT in the B16F10-OVA tumor model. In addition, the RBE values for both models were larger in the presence of CTLs compared to models without CTLs, suggesting that CIRT may utilize CTL-mediated anti-tumor immunity more than X-ray. The findings from this study suggest that although immunological contribution to therapeutic efficacy may vary depending on the type of tumor cell, CIRT utilizes CTL-mediated immunity to a greater extent compared to XRT.


Assuntos
Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos , Animais , Linfócitos T Citotóxicos/imunologia , Camundongos , Linhagem Celular Tumoral , Melanoma Experimental/imunologia , Melanoma Experimental/radioterapia , Melanoma Experimental/terapia , Melanoma Experimental/patologia , Radioterapia com Íons Pesados/métodos , Terapia por Raios X , Feminino , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia
2.
J Biol Chem ; 298(3): 101594, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35041825

RESUMO

Locally advanced rectal cancer is typically treated with chemoradiotherapy followed by surgery. Most patients do not display a complete response to chemoradiotherapy, but resistance mechanisms are poorly understood. ST6GAL-1 is a sialyltransferase that adds the negatively charged sugar, sialic acid (Sia), to cell surface proteins in the Golgi, altering their function. We therefore hypothesized that ST6GAL-1 could mediate resistance to chemoradiation in rectal cancer by inhibiting apoptosis. Patient-derived xenograft and organoid models of rectal cancer and rectal cancer cell lines were assessed for ST6GAL-1 protein with and without chemoradiation treatment. ST6GAL-1 mRNA was assessed in untreated human rectal adenocarcinoma by PCR assays. Samples were further assessed by Western blotting, Caspase-Glo apoptosis assays, and colony formation assays. The presence of functional ST6GAL-1 was assessed via flow cytometry using the Sambucus nigra lectin, which specifically binds cell surface α2,6-linked Sia, and via lectin precipitation. In patient-derived xenograft models of rectal cancer, we found that ST6GAL-1 protein was increased after chemoradiation in a subset of samples. Rectal cancer cell lines demonstrated increased ST6GAL-1 protein and cell surface Sia after chemoradiation. ST6GAL-1 was also increased in rectal cancer organoids after treatment. ST6GAL-1 knockdown in rectal cancer cell lines resulted in increased apoptosis and decreased survival after treatment. We concluded that ST6GAL-1 promotes resistance to chemoradiotherapy by inhibiting apoptosis in rectal cancer cell lines. More research will be needed to further elucidate the importance and mechanism of ST6GAL-1-mediated resistance.


Assuntos
Antígenos CD , Neoplasias Retais , Sialiltransferases , Antígenos CD/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Quimiorradioterapia , Resistencia a Medicamentos Antineoplásicos , Humanos , Ácido N-Acetilneuramínico/metabolismo , Tolerância a Radiação , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/metabolismo , Neoplasias Retais/patologia , Neoplasias Retais/radioterapia , Sialiltransferases/genética , Sialiltransferases/metabolismo , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
3.
J Biol Chem ; 296: 100451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33626388

RESUMO

Deinococcus radiodurans harbors a multipartite ploid genome system consisting of two chromosomes and two plasmids present in multiple copies. How these discrete genome elements are maintained and inherited is not well understood. PprA, a pleiotropic protein involved in radioresistance, has been characterized for its roles in DNA repair, genome segregation, and cell division in this bacterium. Here, we show that PprA regulates ploidy of chromosome I and II and inhibits the activity of drDnaA, the initiator protein in D. radiodurans. We found that pprA deletion resulted in an increased genomic content and ploidy of both the chromosomal elements. Expression of PprA in trans rescued the phenotypes of the pprA mutant. To understand the molecular mechanism underlying these phenotypes, we characterized drDnaA and drDnaB. As expected for an initiator protein, recombinant drDnaA showed sequence-specific interactions with the putative oriC sequence in chromosome I (oriCI). Both drDnaA and drDnaB showed ATPase activity, also typical of initiator proteins, but only drDnaB exhibited 5'→3' dsDNA helicase activity in vitro. drDnaA and drDnaB showed homotypic and heterotypic interactions with each other, which were perturbed by PprA. Interestingly, PprA has inhibited the ATPase activity of drDnaA but showed no effect on the activity of drDnaB. Regulation of chromosome copy number and inhibition of the initiator protein functions by PprA strongly suggest that it plays a role as a checkpoint regulator of the DNA replication initiation in D. radiodurans perhaps through its interaction with the replication initiation machinery.


Assuntos
Deinococcus/genética , Deinococcus/metabolismo , Proteínas de Bactérias/metabolismo , Divisão Celular/genética , Segregação de Cromossomos , DNA Girase/metabolismo , Reparo do DNA/genética , Replicação do DNA/genética , Genoma Bacteriano/genética , Plasmídeos/genética , Ploidias , Domínios e Motivos de Interação entre Proteínas , Tolerância a Radiação
4.
J Cell Sci ; 133(12)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32434870

RESUMO

RIF1 controls both DNA replication timing and the DNA double-strand break (DSB) repair pathway to maintain genome integrity. However, it remains unclear how RIF1 links these two processes following exposure to ionizing radiation (IR). Here, we show that inhibition of homologous recombination repair (HRR) by RIF1 occurs in a dose-dependent manner and is controlled via DNA replication. RIF1 inhibits both DNA end resection and RAD51 accumulation after exposure to high doses of IR. Contrastingly, HRR inhibition by RIF1 is antagonized by BRCA1 after a low-dose IR exposure. At high IR doses, RIF1 suppresses replication initiation by dephosphorylating MCM helicase. Notably, the dephosphorylation of MCM helicase inhibits both DNA end resection and HRR, even without RIF1. Thus, our data show the importance of active DNA replication for HRR and suggest a common suppression mechanism for DNA replication and HRR at high IR doses, both of which are controlled by RIF1.This article has an associated First Person interview with the first author of the paper.


Assuntos
Reparo de DNA por Recombinação , Proteínas de Ligação a Telômeros , Reparo do DNA/genética , Replicação do DNA , Recombinação Homóloga/genética , Humanos , Doses de Radiação , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
5.
BMC Cancer ; 22(1): 1259, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471274

RESUMO

BACKGROUND: Radiobiological daily changes within tumors are considered to be quite different between stereotactic radiotherapy (SRT) (e.g., 50 Gy in 4 fractions) and conventional radiotherapy (e.g., 60 Gy in 30 fractions). We aim to assess the optimal interval of irradiation in SRT and compare outcomes of daily irradiation with irradiation at two- to three-day intervals in SRT for patients with one to five brain metastases (BM). METHODS: This study is conducted as a multicenter open-label randomized phase II trial. Patients aged 20 or older with one to five BM, less than 3.0 cm diameter, and Karnofsky Performance Status ≥70 are eligible. A total of 70 eligible patients will be enrolled. After stratifying by the number of BMs (1, 2 vs. 3-5) and diameter of the largest tumor (< 2 cm vs. ≥ 2 cm), we randomly assigned patients (1:1) to receive daily irradiation (Arm 1), or irradiation at two- to three-day intervals (Arm 2). Both arms are performed with total dose of 27-30 Gy in 3 fractions. The primary endpoint is an intracranial local control rate, defined as intracranial local control at initially treated sites. We use a randomized phase II screening design with a two-sided α of 0∙20. The phase II trial is positive with p < 0.20. All analyses are intention to treat. This study is registered with the UMIN-clinical trials registry, number UMIN000048728. DISCUSSION: This study will provide an assessment of the impact of SRT interval on local control, survival, and toxicity for patients with 1-5 BM. The trial is ongoing and is recruiting now. TRIAL REGISTRATION: UMIN000048728. Date of registration: August 23, 2022. https://center6.umin.ac.jp/cgi-bin/ctr/ctr_view_reg.cgi?recptno=R000055515 .


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Neoplasias Encefálicas/secundário , Avaliação de Estado de Karnofsky , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase II como Assunto
6.
J Appl Clin Med Phys ; 23 Suppl 1: e13743, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36705246

RESUMO

In recent decades, the principal goals of participants in the field of radiation biologists have included defining dose thresholds for cancer and non-cancer endpoints to be used by regulators, clinicians and industry, as well as informing on best practice radiation utilization and protection applications. Importantly, much of this work has required an intimate relationship between "bench" radiation biology scientists and their target audiences (such as physicists, medical practitioners and epidemiologists) in order to ensure that the requisite gaps in knowledge are adequately addressed. However, despite the growing risk for public exposure to higher-than-background levels of radiation, e.g. from long-distance travel, the increasing use of ionizing radiation during medical procedures, the threat from geopolitical instability, and so forth, there has been a dramatic decline in the number of qualified radiation biologists in the U.S. Contributing factors are thought to include the loss of applicable training programs, loss of jobs, and declining opportunities for advancement. This report was undertaken in order to begin addressing this situation since inaction may threaten the viability of radiation biology as a scientific discipline.


Assuntos
Médicos , Radiobiologia , Humanos , Estados Unidos , Recursos Humanos
7.
Strahlenther Onkol ; 197(7): 581-591, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32588102

RESUMO

PURPOSE: For step-and-shoot robotic stereotactic radiosurgery (SRS) the dose delivered over time, called local tumor-dose-rate (TDR), may strongly vary during treatment of multiple lesions. The authors sought to evaluate technical parameters influencing TDR and correlate TDR to clinical outcome. MATERIAL AND METHODS: A total of 23 patients with 162 oligo (1-3) and multiple (>3) brain metastases (OBM/MBM) treated in 33 SRS sessions were retrospectively analyzed. Median PTV were 0.11 cc (0.01-6.36 cc) and 0.50 cc (0.12-3.68 cc) for OBM and MBM, respectively. Prescription dose ranged from 16 to 20 Gy prescribed to the median 70% isodose line. The maximum dose-rate for planning target volume (PTV) percentage p in time span s during treatment (TDRs,p) was calculated for various p and s based on treatment log files and in-house software. RESULTS: TDR60min,98% was 0.30 Gy/min (0.23-0.87 Gy/min) for OBM and 0.22 Gy/min (0.12-0.63 Gy/min) for MBM, respectively, and increased by 0.03 Gy/min per prescribed Gy. TDR60min,98% strongly correlated with treatment time (ρ = -0.717, p < 0.001), monitor units (MU) (ρ = -0.767, p < 0.001), number of beams (ρ = -0.755, p < 0.001) and beam directions (ρ = -0.685, p < 0.001) as well as lesions treated per collimator (ρ = -0.708, P < 0.001). Median overall survival (OS) was 20 months and 1­ and 2­year local control (LC) was 98.8% and 90.3%, respectively. LC did not correlate with any TDR, but tumor response (partial response [PR] or complete response [CR]) correlated with all TDR in univariate analysis (e.g., TDR60min,98%: hazard ration [HR] = 0.974, confidence interval [CI] = 0.952-0.996, p = 0.019). In multivariate analysis only concomitant targeted therapy or immunotherapy and breast cancer tumor histology remained a significant factor for tumor response. Local grade ≥2 radiation-induced tissue reactions were noted in 26.3% (OBM) and 5.2% (MBM), respectively, mainly influenced by tumor volume (p < 0.001). CONCLUSIONS: Large TDR variations are noted during MBM-SRS which mainly arise from prolonged treatment times. Clinically, low TDR corresponded with decreased local tumor responses, although the main influencing factor was concomitant medication.


Assuntos
Neoplasias Encefálicas/radioterapia , Radiocirurgia/métodos , Neoplasias Encefálicas/cirurgia , Humanos , Doses de Radiação , Estudos Retrospectivos , Procedimentos Cirúrgicos Robóticos/métodos , Resultado do Tratamento , Carga Tumoral/efeitos da radiação
8.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681925

RESUMO

Molecular alterations drive cancer initiation and evolution during development and in response to therapy. Radiotherapy is one of the most commonly employed cancer treatment modalities, but radiobiologic approaches for personalizing therapy based on tumor biology and individual risks remain to be defined. In recent years, analysis of circulating nucleic acids has emerged as a non-invasive approach to leverage tumor molecular abnormalities as biomarkers of prognosis and treatment response. Here, we evaluate the roles of circulating tumor DNA and related analyses as powerful tools for precision radiotherapy. We highlight emerging work advancing liquid biopsies beyond biomarker studies into translational research investigating tumor clonal evolution and acquired resistance.


Assuntos
Ácidos Nucleicos Livres/genética , Neoplasias/radioterapia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/efeitos da radiação , Ácidos Nucleicos Livres/efeitos da radiação , Ensaios Clínicos como Assunto , Humanos , Biópsia Líquida , Neoplasias/genética , Neoplasias/patologia , Medicina de Precisão , Prognóstico , Resultado do Tratamento
9.
BMC Bioinformatics ; 21(1): 27, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992200

RESUMO

BACKGROUND: Phosphorylated histone H2AX, also known as γH2AX, forms µm-sized nuclear foci at the sites of DNA double-strand breaks (DSBs) induced by ionizing radiation and other agents. Due to their specificity and sensitivity, γH2AX immunoassays have become the gold standard for studying DSB induction and repair. One of these assays relies on the immunofluorescent staining of γH2AX followed by microscopic imaging and foci counting. During the last years, semi- and fully automated image analysis, capable of fast detection and quantification of γH2AX foci in large datasets of fluorescence images, are gradually replacing the traditional method of manual foci counting. A major drawback of the non-commercial software for foci counting (available so far) is that they are restricted to 2D-image data. In practice, these algorithms are useful for counting the foci located close to the midsection plane of the nucleus, while the out-of-plane foci are neglected. RESULTS: To overcome the limitations of 2D foci counting, we present a freely available ImageJ-based plugin (FocAn) for automated 3D analysis of γH2AX foci in z-image stacks acquired by confocal fluorescence microscopy. The image-stack processing algorithm implemented in FocAn is capable of automatic 3D recognition of individual cell nuclei and γH2AX foci, as well as evaluation of the total foci number per cell nucleus. The FocAn algorithm consists of two parts: nucleus identification and foci detection, each employing specific sequences of auto local thresholding in combination with watershed segmentation techniques. We validated the FocAn algorithm using fluorescence-labeled γH2AX in two glioblastoma cell lines, irradiated with 2 Gy and given up to 24 h post-irradiation for repair. We found that the data obtained with FocAn agreed well with those obtained with an already available software (FoCo) and manual counting. Moreover, FocAn was capable of identifying overlapping foci in 3D space, which ensured accurate foci counting even at high DSB density of up to ~ 200 DSB/nucleus. CONCLUSIONS: FocAn is freely available an open-source 3D foci analyzer. The user-friendly algorithm FocAn requires little supervision and can automatically count the amount of DNA-DSBs, i.e. fluorescence-labeled γH2AX foci, in 3D image stacks acquired by laser-scanning microscopes without additional nuclei staining.


Assuntos
Algoritmos , Reparo do DNA , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Histonas/análise , Histonas/metabolismo , Humanos
10.
Glycobiology ; 30(7): 446-453, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31897489

RESUMO

High-dose irradiation poses extreme risk of mortality from acute damage to the hematopoietic compartment and gastrointestinal tract. While bone marrow transplantation can reestablish the hematopoietic compartment, a more imminent risk of death is posed by gastrointestinal acute radiation syndrome (GI-ARS), for which there are no FDA-approved medical countermeasures. Although the mechanisms dictating the severity of GI-ARS remain incompletely understood, sialylation by ST6GAL1 has been shown to protect against radiation-induced apoptosis in vitro. Here, we used a C57BL/6 St6gal1-KO mouse model to investigate the contribution of ST6GAL1 to susceptibility to total body irradiation in vivo. Twelve gray total body ionizing γ-irradiation (TBI) followed by bone marrow transplant is not lethal to wild-type mice, but St6gal1-KO counterparts succumbed within 7 d. Both St6gal1-KO and wild-type animals exhibited damage to the GI epithelium, diarrhea and weight loss, but these symptoms became progressively more severe in the St6gal1-KO animals while wild-type counterparts showed signs of recovery by 120 h after TBI. Increased apoptosis in the GI tracts of St6gal1-KO mice and the absence of regenerative crypts were also observed. Together, these observations highlight an important role for ST6GAL1 in protection and recovery from GI-ARS in vivo.


Assuntos
Trato Gastrointestinal/metabolismo , Protetores contra Radiação/metabolismo , Sialiltransferases/metabolismo , Animais , Radioisótopos de Césio , Trato Gastrointestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
11.
Expert Rev Mol Med ; 22: e3, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32611474

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with reported incidences of ~800 000 cases each year. One of the critical determinants in patient response to radiotherapy, particularly for oropharyngeal cancers, is human papillomavirus (HPV) status where HPV-positive patients display improved survival rates and outcomes particularly because of increased responsiveness to radiotherapy. The increased radiosensitivity of HPV-positive HNSCC has been largely linked with defects in the signalling and repair of DNA double-strand breaks. Therefore, strategies to further radiosensitise HPV-positive HNSCC, but also radioresistant HPV-negative HNSCC, have focussed on targeting key DNA repair proteins including PARP, DNA-Pk, ATM and ATR. However, inhibitors against CHK1 and WEE1 involved in cell-cycle checkpoint activation have also been investigated as targets for radiosensitisation in HNSCC. These studies, largely conducted using established HNSCC cell lines in vitro, have demonstrated variability in the response dependent on the specific inhibitors and cell models utilised. However, promising results are evident targeting specifically PARP, DNA-Pk, ATR and CHK1 in synergising with radiation in HNSCC cell killing. Nevertheless, these preclinical studies require further expansion and investigation for translational opportunities for the effective treatment of HNSCC in combination with radiotherapy.


Assuntos
Reparo do DNA , Neoplasias de Cabeça e Pescoço/genética , Infecções por Papillomavirus/complicações , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , DNA/metabolismo , Dano ao DNA , Neoplasias de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Tolerância a Radiação , Radiossensibilizantes , Radiobiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicações , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia
12.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825382

RESUMO

The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.


Assuntos
Epigênese Genética/efeitos da radiação , Lesões por Radiação/genética , Radiação Ionizante , Animais , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica/efeitos da radiação , Histonas/genética , Histonas/metabolismo , Histonas/efeitos da radiação , Humanos , Neoplasias/etiologia , RNA não Traduzido , Lesões por Radiação/complicações , Lesões por Radiação/etiologia , Proteção Radiológica
13.
Cancer Sci ; 110(2): 686-696, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30561156

RESUMO

It has been reported that DNA double-strand breaks (DSB) can be induced by cytoplasm irradiation, and that both reactive free radicals and mitochondria are involved in DSB formation. However, the cellular antioxidative responses that are stimulated and the biological consequences of cytoplasmic irradiation remain unknown. Using the Single Particle Irradiation system to Cell (SPICE) proton microbeam facility at the National Institute of Radiological Sciences ([NIRS] Japan), the response of nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidative signaling to cytoplasmic irradiation was studied in normal human lung fibroblast WI-38 cells. Cytoplasmic irradiation stimulated the localization of NRF2 to the nucleus and the expression of its target protein, heme oxygenase 1. Activation of NRF2 by tert-butylhydroquinone mitigated the levels of DSB induced by cytoplasmic irradiation. Mitochondrial fragmentation was also promoted by cytoplasmic irradiation, and treatment with mitochondrial division inhibitor 1 (Mdivi-1) suppressed cytoplasmic irradiation-induced NRF2 activation and aggravated DSB formation. Furthermore, p53 contributed to the induction of mitochondrial fragmentation and activation of NRF2, although the expression of p53 was significantly downregulated by cytoplasmic irradiation. Finally, mitochondrial superoxide (MitoSOX) production was enhanced under cytoplasmic irradiation, and use of the MitoSOX scavenger mitoTEMPOL indicated that MitoSOX caused alterations in p53 expression, mitochondrial dynamics, and NRF2 activation. Overall, NRF2 antioxidative response is suggested to play a key role against genomic DNA damage under cytoplasmic irradiation. Additionally, the upstream regulators of NRF2 provide new clues on cytoplasmic irradiation-induced biological processes and prevention of radiation risks.


Assuntos
Antioxidantes/metabolismo , Citoplasma/metabolismo , Citoplasma/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Dano ao DNA/efeitos da radiação , Heme Oxigenase-1/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo
14.
Cancer ; 125(16): 2732-2746, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31017664

RESUMO

Colorectal cancer (CRC) represents a major public health problem as the second leading cause of cancer-related mortality in the United States. Of an estimated 140,000 newly diagnosed CRC cases in 2018, roughly one-third of these patients will have a primary tumor located in the distal large bowel or rectum. The current standard-of-care approach includes curative-intent surgery, often after preoperative (neoadjuvant) radiotherapy (RT), to increase rates of tumor down-staging, clinical and pathologic response, as well as improving surgical resection quality. However, despite advancements in surgical techniques, as well as sharpened precision of dosimetry offered by contemporary RT delivery platforms, the oncology community continues to face challenges related to disease relapse. Ongoing investigations are aimed at testing novel radiosensitizing agents and treatments that might exploit the systemic antitumor effects of RT using immunotherapies. If successful, these treatments may usher in a new curative paradigm for rectal cancers, such that surgical interventions may be avoided. Importantly, this disease offers an opportunity to correlate matched paired biopsies, radiographic response, and molecular mechanisms of treatment sensitivity and resistance with clinical outcomes. Herein, the authors highlight the available evidence from preclinical models and early-phase studies, with an emphasis on promising developmental therapeutics undergoing prospective validation in larger scale clinical trials. This review by the National Cancer Institute's Radiation Research Program Colorectal Cancer Working Group provides an updated, comprehensive examination of the continuously evolving state of the science regarding radiosensitizer drug development in the curative treatment of CRC.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/radioterapia , Radiossensibilizantes/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Produtos Biológicos , Proteínas de Choque Térmico HSP90/metabolismo , Herpesvirus Humano 1 , Humanos , Imunoterapia/métodos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Terapia de Alvo Molecular , National Cancer Institute (U.S.) , Proteína Quinase C/antagonistas & inibidores , Nucleosídeos de Pirimidina/farmacologia , Radiossensibilizantes/farmacologia , Estados Unidos
15.
J Biol Chem ; 292(8): 3531-3540, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28096467

RESUMO

miR-21, as an oncogene that overexpresses in most human tumors, is involved in radioresistance; however, the mechanism remains unclear. Here, we demonstrate that miR-21-mediated radioresistance occurs through promoting repair of DNA double strand breaks, which includes facilitating both non-homologous end-joining (NHEJ) and homologous recombination repair (HRR). The miR-21-promoted NHEJ occurs through targeting GSK3B (a novel target of miR-21), which affects the CRY2/PP5 pathway and in turn increases DNA-PKcs activity. The miR-21-promoted HRR occurs through targeting both GSK3B and CDC25A (a known target of miR-21), which neutralizes the effects of targeting GSK3B-induced CDC25A increase because GSK3B promotes degradation of both CDC25A and cyclin D1, but CDC25A and cyclin D1 have an opposite effect on HRR. A negative correlation of expression levels between miR-21 and GSK3ß exists in a subset of human tumors. Our results not only elucidate miR-21-mediated radioresistance, but also provide potential new targets for improving radiotherapy.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Regulação da Expressão Gênica , MicroRNAs/genética , Animais , Linhagem Celular , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Reparo do DNA/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Tolerância a Radiação , Reparo de DNA por Recombinação/efeitos da radiação
16.
J Biol Chem ; 291(39): 20779-86, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27519413

RESUMO

The bacterial single-stranded DNA binding protein (SSB) acts as an organizer of DNA repair complexes. The radD gene was recently identified as having an unspecified role in repair of radiation damage and, more specifically, DNA double-strand breaks. Purified RadD protein displays a DNA-independent ATPase activity. However, ATP hydrolytic rates are stimulated by SSB through its C terminus. The RadD and SSB proteins also directly interact in vivo in a yeast two-hybrid assay and in vitro through ammonium sulfate co-precipitation. Therefore, it is likely that the repair function of RadD is mediated through interaction with SSB at the site of damage.


Assuntos
Adenosina Trifosfatases/metabolismo , Dano ao DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Adenosina Trifosfatases/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ligação Proteica
17.
J Biol Chem ; 291(37): 19545-57, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27466362

RESUMO

Protein synthesis inhibition is an immediate response during stress to switch the composition of protein pool in order to adapt to the new environment. It was reported that this response could be either protective or deleterious. However, how cells choose to live or die upon protein synthesis inhibition is largely unknown. Previously, we have shown that elongation factor-2 kinase (eEF2K), a protein kinase that suppresses protein synthesis during elongation phase, is a positive regulator of apoptosis both in vivo and in vitro Consistently, here we report that knock-out of eEF2K protects mice from a lethal dose of whole-body ionizing radiation at 8 Gy by reducing apoptosis levels in both bone marrow and gastrointestinal tracts. Surprisingly, similar to the loss of p53, eEF2K deficiency results in more severe damage to the gastrointestinal tract at 20 Gy with the increased mitotic cell death in small intestinal stem cells. Furthermore, using epithelial cell lines, we showed that eEF2K is required for G2/M arrest induced by radiation to prevent mitotic catastrophe in a p53-independent manner. Specifically, we observed the elevation of Akt/ERK activity as well as the reduction of p21 expression in Eef2k(-/-) cells. Therefore, eEF2K also provides a protective strategy to maintain genomic integrity by arresting cell cycle in response to stress. Our results suggest that protective versus pro-apoptotic roles of eEF2K depend on the type of cells: eEF2K is protective in highly proliferative cells, such as small intestinal stem cells and cancer cells, which are more susceptible to mitotic catastrophe.


Assuntos
Quinase do Fator 2 de Elongação , Raios gama/efeitos adversos , Intestino Delgado , Mitose , Lesões Experimentais por Radiação , Tolerância a Radiação , Células-Tronco , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos , Camundongos Knockout , Mitose/genética , Mitose/efeitos da radiação , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/prevenção & controle , Tolerância a Radiação/genética , Tolerância a Radiação/efeitos da radiação , Células-Tronco/metabolismo , Células-Tronco/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Stem Cells ; 34(6): 1626-36, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26891025

RESUMO

Blood vessel epicardial substance (BVES/Popdc1) is a junctional-associated transmembrane protein that is underexpressed in a number of malignancies and regulates epithelial-to-mesenchymal transition. We previously identified a role for BVES in regulation of the Wnt pathway, a modulator of intestinal stem cell programs, but its role in small intestinal (SI) biology remains unexplored. We hypothesized that BVES influences intestinal stem cell programs and is critical to SI homeostasis after radiation injury. At baseline, Bves(-/-) mice demonstrated increased crypt height, as well as elevated proliferation and expression of the stem cell marker Lgr5 compared to wild-type (WT) mice. Intercross with Lgr5-EGFP reporter mice confirmed expansion of the stem cell compartment in Bves(-/-) mice. To examine stem cell function after BVES deletion, we used ex vivo 3D-enteroid cultures. Bves(-/-) enteroids demonstrated increased stemness compared to WT, when examining parameters such as plating efficiency, stem spheroid formation, and retention of peripheral cystic structures. Furthermore, we observed increased proliferation, expression of crypt-base columnar "CBC" and "+4" stem cell markers, amplified Wnt signaling, and responsiveness to Wnt activation in the Bves(-/-) enteroids. Bves expression was downregulated after radiation in WT mice. Moreover, after radiation, Bves(-/-) mice demonstrated significantly greater SI crypt viability, proliferation, and amplified Wnt signaling in comparison to WT mice. Bves(-/-) mice also demonstrated elevations in Lgr5 and Ascl2 expression, and putative damage-responsive stem cell populations marked by Bmi1 and TERT. Therefore, BVES is a key regulator of intestinal stem cell programs and mucosal homeostasis. Stem Cells 2016;34:1626-1636.


Assuntos
Moléculas de Adesão Celular/metabolismo , Raios gama , Intestinos/citologia , Proteínas Musculares/metabolismo , Células-Tronco/citologia , Animais , Moléculas de Adesão Celular/genética , Sobrevivência Celular/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Feminino , Deleção de Genes , Homeostase/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Tolerância a Radiação/efeitos da radiação , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos da radiação , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação , Via de Sinalização Wnt/efeitos da radiação
19.
BMC Cancer ; 17(1): 528, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28789624

RESUMO

BACKGROUND: 177Lu-octreotate can be used to treat somatostatin receptor expressing neuroendocrine tumors. It is highly effective in animal models, but clinical studies have so far only demonstrated low cure rates. Hedgehog inhibitors have shown therapeutic effect as monotherapy in neuroendocrine tumor model systems and might be one option to enhance the efficacy of 177Lu-octreotate therapy. The aim of this study was to determine the therapeutic effect of combination therapy using 177Lu-octreotate and the Hedgehog signaling pathway inhibitor sonidegib. METHODS: GOT1-bearing BALB/c nude mice were treated with either sonidegib (80 mg/kg twice a week via oral gavage), a single injection of 30 MBq 177Lu-octreotate i.v., or a combination of both. Untreated animals served as controls. Tumor size was measured twice-weekly using calipers. The animals were killed 41 d after injection followed by excision of the tumors. Total RNA was extracted from each tumor sample and then subjected to gene expression analysis. Gene expression patterns were compared with those of untreated controls using Nexus Expression 3.0, IPA and Gene Ontology terms. Western blot was carried out on total protein extracted from the tumor samples to analyze activation-states of the Hh and PI3K/AKT/mTOR pathways. RESULTS: Sonidegib monotherapy resulted in inhibition of tumor growth, while a significant reduction in mean tumor volume was observed after 177Lu-octreotate monotherapy and combination therapy. Time to progression was prolonged in the combination therapy group compared with 177Lu-octreotate monotherapy. Gene expression analysis revealed a more pronounced response following combination therapy compared with both monotherapies, regarding the number of regulated genes and biological processes. Several cancer-related signaling pathways (i.e. Wnt/ß-catenin, PI3K/AKT/mTOR, G-protein coupled receptor, and Notch) were affected by the combination therapy, but not by either monotherapy. Protein expression analysis revealed an activation of the Hh- and PI3K/AKT/mTOR pathways in tumors exposed to 177Lu-octreotate monotherapy and combination therapy. CONCLUSIONS: A comparative analysis of the different treatment groups showed that combination therapy using sonidegib and 177Lu-octreotate could be beneficial to patients with neuroendocrine tumors. Gene expression analysis revealed a functional interaction between sonidegib and 177Lu-octreotate, i.e. several cancer-related signaling pathways were modulated that were not affected by either monotherapy. Protein expression analysis indicated a possible PI3K/AKT/mTOR-dependent activation of the Hh pathway, independent of SMO.


Assuntos
Compostos de Bifenilo/farmacologia , Proteínas Hedgehog/antagonistas & inibidores , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Octreotida/análogos & derivados , Piridinas/farmacologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias Intestinais/tratamento farmacológico , Neoplasias Intestinais/mortalidade , Camundongos , Camundongos Nus , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/mortalidade , Octreotida/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Biol Chem ; 290(7): 4003-9, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25477522

RESUMO

Spore photoproduct lyase (SPL) repairs 5-thyminyl-5,6-dihydrothymine, a thymine dimer that is also called the spore photoproduct (SP), in germinating endospores. SPL is a radical S-adenosylmethionine (SAM) enzyme, utilizing the 5'-deoxyadenosyl radical generated by SAM reductive cleavage reaction to revert SP to two thymine residues. Here we review the current progress in SPL mechanistic studies. Protein radicals are known to be involved in SPL catalysis; however, how these radicals are quenched to close the catalytic cycle is under debate.


Assuntos
Radicais Livres/química , Proteínas/metabolismo , S-Adenosilmetionina/metabolismo , Esporos Bacterianos , Proteínas/química , S-Adenosilmetionina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA