RESUMO
This paper proposes a monitoring procedure based on characterizing state probability distributions estimated using particle filters. The work highlights what types of information can be obtained during state estimation and how the revealed information helps to solve fault diagnosis tasks. If a failure is present in the system, the output predicted by the model is inconsistent with the actual output, which affects the operation of the estimator. The heterogeneity of the probability distribution of states increases, and a large proportion of the particles lose their information content. The correlation structure of the posterior probability density can also be altered by failures. The proposed method uses various indicators that characterize the heterogeneity and correlation structure of the state distribution, as well as the consistency between model predictions and observed behavior, to identify the effects of failures.The applicability of the utilized measures is demonstrated through a dynamic vehicle model, where actuator and sensor failure scenarios are investigated.
RESUMO
Sensors are a key component in industrial automation systems. A fault or malfunction in sensors may degrade control system performance. An engineering system model is usually disturbed by input uncertainties, which brings a challenge for monitoring, diagnosis, and control. In this study, a novel estimation technique, called adaptive unknown-input observer, is proposed to simultaneously reconstruct sensor faults as well as system states. Specifically, the unknown input observer is used to decouple partial disturbances, the un-decoupled disturbances are attenuated by the optimization using linear matrix inequalities, and the adaptive technique is explored to track sensor faults. As a result, a robust reconstruction of the sensor fault as well as system states is then achieved. Furthermore, the proposed robustly adaptive fault reconstruction technique is extended to Lipschitz nonlinear systems subjected to sensor faults and unknown input uncertainties. Finally, the effectiveness of the algorithms is demonstrated using an aircraft system model and robotic arm and comparison studies.
RESUMO
In recent years, electric vehicles powered by lithium-ion batteries have developed rapidly, and the safety and reliability of lithium-ion batteries have been a paramount issue. Battery management systems are highly dependent on sensor measurements to ensure the proper functioning of lithium-ion batteries. Therefore, it is imperative to develop a suitable fault diagnosis scheme for battery sensors, to realize a diagnosis at an early stage. The main objective of this paper is to establish validated electrical and thermal models for batteries, and address a model-based fault diagnosis scheme for battery sensors. Descriptor proportional and derivate observer systems are applied for sensor diagnosis, based on electrical and thermal models of lithium-ion batteries, which can realize the real-time estimation of voltage sensor fault, current sensor fault, and temperature sensor fault. To verify the estimation effect of the proposed scheme, various types of faults are utilized for simulation experiments. Battery experimental data are used for battery modeling and observer-based fault diagnosis in battery sensors.
RESUMO
In order to improve robust operating performance and enhance bus voltage stability, a learning observer-based fault-tolerant control strategy is proposed for the distributed generation in islanded microgrid with sensor faults and uncertain disturbances. Firstly, the output feedback control theory and the linear matrix inequality method are used to design closed-loop controller for the voltage source inverter of distributed generation; secondly, a fault-tolerant model and control structure of the distributed generation in an islanded microgrid with sensor faults is analyzed. By employing the fault output signal conversion filter and proportional derivative type learning observer, the online estimation and real-time compensation of the sensor fault signal are realized. Thirdly, the system synthesis of output feedback control and fault-tolerant control is completed. Finally, the multi-scenario sensor fault scheme simulation experiment verifies that the proposed control strategy has strong sensor fault tolerance and adaptability.
RESUMO
The paper deals with a robust sensor fault estimation by proposing a novel algorithm capable of reconstructing faults occurring in the system. The provided approach relies on calculating the fault estimation adaptively in every discrete time instance. The approach is developed for the systems influenced by unknown measurement and process disturbance. Such an issue has been handled with applying the commonly known H∞ approach. The novelty of the proposed algorithm consists of eliminating a difference between consecutive samples of the fault in an estimation error. This results in a easier way of designing the robust estimator by simplification of the linear matrix inequalities. The final part of the paper is devoted to an illustrative example with implementation to a laboratory two-rotor aerodynamical system.
RESUMO
In this paper, the problem of actuator and sensor faults of a quadrotor unmanned aerial vehicle (QUAV) system is studied. In the system fault model, time delay, nonlinear term, and disturbances of QUAV during the flight are considered. A fault estimation algorithm based on an intermediate observer is proposed. To deal with a single actuator fault, an intermediate variable is introduced, and the intermediate observer is designed for the system to estimate fault. For simultaneous actuator and sensor faults, the system is first augmented, and then two intermediate variables are introduced, and an intermediate observer is designed for the augmented system to estimate the system state, faults, and disturbances. The Lyapunov-Krasovskii functional is used to prove that the estimation error system is uniformly eventually bounded. The simulation results verify the feasibility and effectiveness of the proposed fault estimation method.
RESUMO
Because the number of air quality measurement stations governed by a public authority is limited, many methodologies have been developed in order to integrate low-cost sensors and to improve the spatial density of air quality measurements. However, at the large-scale level, the integration of a huge number of sensors brings many challenges. The volume, velocity and processing requirements regarding the management of the sensor life cycle and the operation of system services overcome the capabilities of the centralized cloud model. In this paper, we present the methodology and the architectural framework for building large-scale sensing infrastructure for air quality monitoring applicable in urban scenarios. The proposed tiered architectural solution based on the adopted fog computing model is capable of handling the processing requirements of a large-scale application, while at the same time sustaining real-time performance. Furthermore, the proposed methodology introduces the collection of methods for the management of edge-tier node operation through different phases of the node life cycle, including the methods for node commission, provision, fault detection and recovery. The related sensor-side processing is encapsulated in the form of microservices that reside on the different tiers of system architecture. The operation of system microservices and their collaboration was verified through the presented experimental case study.
Assuntos
Poluição do Ar , Computação em NuvemRESUMO
The traction converter is one of the key components of high-speed trains. Current and voltage sensor faults in the converter may lead to feedback values deviation and system degradation, which will bring security risks to the train. This paper proposes a real-time fault diagnosis method for grid current, DC-link voltage and stator current sensor faults in the traction converter with two stator current sensors, which can not only detect and locate faults but also identify the types of faults. Moreover, the faults considered in this paper are incipient. First, the DC-link model is established, and the fault is detected by the residual of the DC-link voltage. Next, the differential of DC-link voltage residual is calculated, which is applied to fault location. Then, according to the change of the differential values, different fault types are determined. Finally, the hardware-in-the-loop (HIL) platform is built and the effectiveness and accuracy of the proposed method are verified by the HIL tests.
RESUMO
This paper presents a robust model-based technique to detect multiple faults in permanent magnet synchronous motors (PMSMs), namely inter-turn short circuit (ITSC) and encoder faults. The proposed model is based on a structural analysis, which uses the dynamic mathematical model of a PMSM in an abc frame to evaluate the system's structural model in matrix form. The just-determined and over-determined parts of the system are separated by a Dulmage-Mendelsohn decomposition tool. Subsequently, the analytical redundant relations obtained using the over-determined part of the system are used to form smaller redundant testable sub-models based on the number of defined fault terms. Furthermore, four structured residuals are designed based on the acquired redundant sub-models to detect measurement faults in the encoder and ITSC faults, which are applied in different levels of each phase winding. The effectiveness of the proposed detection method is validated by an in-house test setup of an inverter-fed PMSM, where ITSC and encoder faults are applied to the system in different time intervals using controllable relays. Finally, a statistical detector, namely a generalized likelihood ratio test algorithm, is implemented in the decision-making diagnostic system resulting in the ability to detect ITSC faults as small as one single short-circuited turn out of 102, i.e., when less than 1% of the PMSM phase winding is short-circuited.
RESUMO
BACKGROUND: Blood glucose (BG) management is crucial for type-1 diabetes patients resulting in the necessity of reliable artificial pancreas or insulin infusion systems. In recent years, deep learning techniques have been utilized for a more accurate BG level prediction system. However, continuous glucose monitoring (CGM) readings are susceptible to sensor errors. As a result, inaccurate CGM readings would affect BG prediction and make it unreliable, even if the most optimal machine learning model is used. METHODS: In this work, we propose a novel approach to predicting blood glucose level with a stacked Long short-term memory (LSTM) based deep recurrent neural network (RNN) model considering sensor fault. We use the Kalman smoothing technique for the correction of the inaccurate CGM readings due to sensor error. RESULTS: For the OhioT1DM (2018) dataset, containing eight weeks' data from six different patients, we achieve an average RMSE of 6.45 and 17.24 mg/dl for 30 min and 60 min of prediction horizon (PH), respectively. CONCLUSIONS: To the best of our knowledge, this is the leading average prediction accuracy for the ohioT1DM dataset. Different physiological information, e.g., Kalman smoothed CGM data, carbohydrates from the meal, bolus insulin, and cumulative step counts in a fixed time interval, are crafted to represent meaningful features used as input to the model. The goal of our approach is to lower the difference between the predicted CGM values and the fingerstick blood glucose readings-the ground truth. Our results indicate that the proposed approach is feasible for more reliable BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D diabetes management.
Assuntos
Glicemia , Diabetes Mellitus Tipo 1 , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Sistemas de Infusão de Insulina , Redes Neurais de ComputaçãoRESUMO
Modern computing platforms usually use multiple sensors to report system information. In order to achieve high availability (HA) for the platform, the sensors can be used to efficiently detect system faults that make a cloud service not live. However, a sensor may fail and disable HA protection. In this case, human intervention is needed, either to change the original fault model or to fix the sensor fault. Therefore, this study proposes an HA mechanism that can continuously provide HA to a cloud system based on dynamic fault model reconstruction. We have implemented the proposed HA mechanism on a four-layer OpenStack cloud system and tested the performance of the proposed mechanism for all possible sets of sensor faults. For each fault model, we inject possible system faults and measure the average fault detection time. The experimental result shows that the proposed mechanism can accurately detect and recover an injected system fault with disabled sensors. In addition, the system fault detection time increases as the number of sensor faults increases, until the HA mechanism is degraded to a one-system-fault model, which is the worst case as the system layer heartbeating.
RESUMO
Owing to the fact that large-scale peak-load-regulation nuclear power turbine units' thermal signal is greatly influenced by background noise and has non-stationary and nonlinear characteristics, this paper proposes a new fault diagnosis method for thermal sensors based on an improved independent component analysis (Improved-ICA) algorithm and random forest (RF) algorithm. This method is based on independent component analysis (ICA), which is not capable of extracting components independently. Therefore, we propose the use of the maximum approximate information negative entropy optimization model in order to improve the ICA algorithm's independent principal component extraction ability and obtain better non-Gaussian physical source signal separation results. The improved ICA algorithm is used for the blind source separation of the thermal parameters of peak-load-regulation nuclear power units. A series of stationary physical source functions and a series of non-stationary noise signals are obtained. Then, according to the specific signal format and data volume of the nuclear power parameter signal, the network parameters of the random forest algorithm are determined, giving rise to the fault diagnosis model. Finally, the real-time operation data of an 1121 MW nuclear power unit are used to complete the training and fault diagnosis of the random forest network and analyze the diagnosis results. The results indicate that the model can effectively mine the abnormal sample points of thermal parameters and classify the fault type of the thermal sensor during peak load operation of the nuclear power unit. The accuracy rate is found to be at the threshold of 99%.
RESUMO
This study considers the problem of distinguishing between process and sensor faults in nonlinear chemical processes. An integrated fault diagnosis framework is proposed to distinguish chemical process sensor faults from process faults. The key idea of the framework is to embed the cycle temporal algorithm into the dynamic kernel principal component analysis to improve the fault detection speed and accuracy. It is combined with the fault diagnosis method based on the reconstruction-based contribution graph to diagnose the fault variables and then distinguish the two fault types according to their characteristics. Finally, the integrated fault diagnosis framework is applied to the Tennessee Eastman process and acid gas absorption process, and its effectiveness is proved.
RESUMO
This paper proposes a data-driven method-based fault diagnosis method using the deep convolutional neural network (DCNN). The DCNN is used to deal with sensor and actuator faults of robot joints, such as gain error, offset error, and malfunction for both sensors and actuators, and different fault types are diagnosed using the trained neural network. In order to achieve the above goal, the fused data of sensors and actuators are used, where both types of fault are described in one formulation. Then, the deep convolutional neural network is applied to learn characteristic features from the merged data to try to find discriminative information for each kind of fault. After that, the fully connected layer does prediction work based on learned features. In order to verify the effectiveness of the proposed deep convolutional neural network model, different fault diagnosis methods including support vector machine (SVM), artificial neural network (ANN), conventional neural network (CNN) using the LeNet-5 method, and long-term memory network (LTMN) are investigated and compared with DCNN method. The results show that the DCNN fault diagnosis method can realize high fault recognition accuracy while needing less model training time.
RESUMO
Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel approach for online validation of sensor readings. The basic idea is to compare the original sensor reading with predictions for this sensor reading based on the remaining sensor network's information. Deviations between original and predicted sensor readings are used to indicate sensor faults. Since especially batch processes show varying lengths and different phases (e.g., lag and exponential phase), prediction models that are dependent on process time are necessary. The binary particle swarm optimization algorithm is used to select the best prediction models for each time step. A regularization approach is utilized to avoid overfitting. Models with high complexity and prediction errors are penalized, resulting in optimal predictions for the sensor reading at each time step (5% mean relative prediction error). The sensor reliability is calculated by the Kullback-Leibler divergence between the distribution of model-based predictions and the distribution of a moving window of original sensor readings (moving window size = 10 readings). The developed system allows for the online detection of sensor faults. This is especially important when sensor data are used as input to soft sensors for critical quality attributes or the process control system. The proof-of-concept is exemplarily shown for a turbidity sensor that is used to monitor a Pichia pastoris-batch process.
Assuntos
Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos , Técnicas Biossensoriais/instrumentação , Saccharomycetales/metabolismo , Inteligência Artificial , Desenho de Equipamento , Modelos Biológicos , Saccharomycetales/citologiaRESUMO
Emergency situations in nuclear power plants are accompanied by an automatic reactor shutdown, which gives a big task burden to the plant operators under highly stressful conditions. Diagnosis of the occurred accident is an essential sequence for optimum mitigations; however, it is also a critical source of error because the results of accident identification determine the task flow connected to all subsequent tasks. To support accident identification in nuclear power plants, recurrent neural network (RNN)-based approaches have recently shown outstanding performances. Despite the achievements though, the robustness of RNN models is not promising because wrong inputs have been shown to degrade the performance of RNNs to a greater extent than other methods in some applications. In this research, an accident diagnosis system that is tolerant to sensor faults is developed based on an existing RNN model and tested with anticipated sensor errors. To find the optimum strategy to mitigate sensor error, Missforest, selected from among various imputation methods, and gated recurrent unit with decay (GRUD), developed for multivariate time series imputation based on the RNN model, are compared to examine the extent that they recover the diagnosis accuracies within a given threshold.
RESUMO
In this paper, an actuator fault estimation technique is proposed for quadcopters under uncertainties. In previous studies, matching conditions were required for the observer design, but they were found to be complex for solving linear matrix inequalities (LMIs). To overcome these limitations, in this study, an improved intermediate estimator algorithm was applied to the quadcopter model, which can be used to estimate actuator faults and system states. The system stability was validated using Lyapunov theory. It was shown that system errors are uniformly ultimately bounded. To increase the accuracy of the proposed fault estimation algorithm, a magnitude order balance method was applied. Experiments were verified with four scenarios to show the effectiveness of the proposed algorithm. Two first scenarios were compared to show the effectiveness of the magnitude order balance method. The remaining scenarios were described to test the reliability of the presented method in the presence of multiple actuator faults. Different from previous studies on observer-based fault estimation, this proposal not only can estimate the fault magnitude of the roll, pitch, yaw, and thrust channel, but also can estimate the loss of control effectiveness of each actuator under uncertainties.
RESUMO
A nuclear power plant (NPP) consists of an enormous number of components with complex interconnections. Various techniques to detect sensor errors have been developed to monitor the state of the sensors during normal NPP operation, but not for emergency situations. In an emergency situation with a reactor trip, all the plant parameters undergo drastic changes following the sudden decrease in core reactivity. In this paper, a machine learning model adopting a consistency index is suggested for sensor error detection during NPP emergency situations. The proposed consistency index refers to the soundness of the sensors based on their measurement accuracy. The application of consistency index labeling makes it possible to detect sensor error immediately and specify the particular sensor where the error occurred. From a compact nuclear simulator, selected plant parameters were extracted during typical emergency situations, and artificial sensor errors were injected into the raw data. The trained system successfully generated output that gave both sensor error states and error-free states.
RESUMO
The paper is devoted to the problem of estimating simultaneously states, as well as actuator and sensor faults for Takagi-Sugeno systems. The proposed scheme is intended to cope with multiple sensor and actuator faults. To achieve such a goal, the original Takagi-Sugeno system is transformed into a descriptor one containing all state and fault variables within an extended state vector. Moreover, to facilitate the overall design procedure an auxiliary fault vector is introduced. In comparison to the approaches proposed in the literature, a usual restrictive assumption concerning fixed fault rate of change is removed. Finally, the robust convergence of the whole observer is guaranteed by the so-called quadratic boundedness approach which assumes that process and measurement uncertainties are unknown but bounded within an ellipsoid. The last part of the paper portrays an exemplary application concerning a nonlinear twin-rotor system.
RESUMO
Due to the importance of sensors in railway traction drives availability, sensor fault diagnosis has become a key point in order to move from preventive maintenance to condition-based maintenance. Most research works are limited to sensor fault detection and isolation, but only a few of them analyze the types of sensor faults, such as offset or gain, with the aim of reconfiguring the sensor in order to implement a fault tolerant system. This article is based on a fusion of model-based and data-driven techniques. First, an observer-based approach, using a Sliding Mode observer, is utilized for sensor fault reconstruction in real time. Then, once the fault is detected, a time window of sensor measurements and sensor fault reconstruction is sent to the remote maintenance center for fault evaluation. Finally, an offline processing is carried out to discriminate between gain and offset sensor faults, in order to get a maintenance decision-making to reconfigure the sensor during the next train stop. Fault classification is done by means of histograms and statistics. The technique here proposed is applied to the DC-link voltage sensor in a railway traction drive and is validated in a hardware-in-the-loop platform.