Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(19): 7841-7847, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36126277

RESUMO

2D materials have intriguing quantum phenomena that are distinctively different from their bulk counterparts. Recently, epitaxially synthesized wafer-scale 2D metals, composed of elemental atoms, are attracting attention not only for their potential applications but also for exotic quantum effects such as superconductivity. By mapping momentum-resolved electronic states using time-resolved and angle-resolved photoemission spectroscopy (ARPES), we reveal that monolayer Ag confined between bilayer graphene and SiC is a large gap (>1 eV) 2D semiconductor, consistent with ab initio GW calculations. The measured valence band dispersion matches the GW quasiparticle band structure. However, the conduction band dispersion shows an anomalously large effective mass of 2.4 m0. Possible mechanisms for this large enhancement in the "apparent mass" are discussed.

2.
Light Sci Appl ; 6(10): e17075, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30167207

RESUMO

We report long-lived, highly spatially localized plasmon states on the surface of nanoporous gold nanoparticles-nanosponges-with high excitation efficiency. It is well known that disorder on the nanometer scale, particularly in two-dimensional systems, can lead to plasmon localization and large field enhancements, which can, in turn, be used to enhance nonlinear optical effects and to study and exploit quantum optical processes. Here, we introduce promising, three-dimensional model systems for light capture and plasmon localization as gold nanosponges that are formed by the dewetting of gold/silver bilayers and dealloying. We study light-induced electron emission from single nanosponges, a nonlinear process with exponents of n≈5...7, using ultrashort laser pulse excitation to achieve femtosecond time resolution. The long-lived electron emission process proves, in combination with optical extinction measurements and finite-difference time-domain calculations, the existence of localized modes with lifetimes of more than 20 fs. These electrons couple efficiently to the dipole antenna mode of each individual nanosponge, which in turn couples to the far-field. Thus, individual gold nanosponges are cheap and robust disordered nanoantennas with strong local resonances, and an ensemble of nanosponges constitutes a meta material with a strong polarization independent, nonlinear response over a wide frequency range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA