Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Curr Issues Mol Biol ; 45(5): 4151-4167, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37232733

RESUMEN

Mulberry (Morus alba L.) is an economically important plant for the silk industry and has the possibility of contributing immensely to Chinese pharmacopeia because of its health benefits. Domesticated silkworms feed only on mulberry leaves, meaning that the worms' survival depends on the mulberry tree. Mulberry production is threatened by climate change and global warming. However, the regulatory mechanisms of mulberry responses to heat are poorly understood. We performed transcriptome analysis of high-temperature-stressed (42 °C) M. alba seedlings using RNA-Seq technologies. A total of 703 differentially expressed genes (DEGs) were discovered from 18,989 unigenes. Among these, 356 were up-regulated, and 347 were down-regulated. KEGG analysis revealed that most DEGs were enriched in valine, leucine and isoleucine degradation, and in starch and sucrose metabolism, alpha-linolenic acid metabolism, carotenoid biosynthesis and galactose metabolism, among others. In addition, TFs such as the NAC, HSF, IAA1, MYB, AP2, GATA, WRKY, HLH and TCP families were actively involved in response to high temperatures. Moreover, we used RT-qPCR to confirm the expression changes of eight genes under heat stress observed in the RNA-Seq analysis. This study provides M. alba transcriptome profiles under heat stress and provides theoretical bases to researchers for better understanding mulberry heat response mechanisms and breeding heat-tolerant mulberry plants.

2.
Crit Rev Biotechnol ; : 1-22, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778751

RESUMEN

Astaxanthin is a naturally occurring xanthophyll with powerful: antioxidant, antitumor, and antibacterial properties that are widely employed in food, feed, medicinal and nutraceutical industries. Currently, chemical synthesis dominates the world's astaxanthin market, but the increasing demand for natural products is shifting the market for natural astaxanthin. Haematococcus pluvialis (H. pluvialis) is the factory source of natural astaxanthin when grown in optimal conditions. Currently, various strategies for the production of astaxanthin have been proposed or are being developed in order to meet its market demand. This up-to-date review scrutinized the current approaches or strategies that aim to increase astaxanthin yield from H. pluvialis. We have emphasized the genetic and environmental parameters that increase astaxanthin yield. We also looked at the transcriptomic dynamics caused by environmental factors (phytohormones induction, light, salt, temperature, and nutrient starvation) on astaxanthin synthesizing genes and other metabolic changes. Genetic engineering and culture optimization (environmental factors) are effective approaches to producing more astaxanthin for commercial purposes. Genetic engineering, in particular, is accurate, specific, potent, and safer than conventional random mutagenesis approaches. New technologies, such as CRISPR-Cas9 coupled with omics and emerging computational tools, may be the principal strategies in the future to attain strains that can produce more astaxanthin. This review provides accessible data on the strategies to increase astaxanthin accumulation natively. Also, this review can be a starting point for new scholars interested in H. pluvialis research.

3.
Langmuir ; 39(24): 8414-8423, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37146209

RESUMEN

Bi2MoO6 (BMO) nanoparticles (NPs) have been widely used as a photocatalyst to decompose organic pollutants, but their potential for photodynamic therapy (PDT) is yet to be explored. Normally, the UV absorption property of BMO NPs is not suitable for clinical application because the penetration depth of the UV light is too small. To overcome this limitation, we rationally designed a novel nanocomposite based on Bi2MoO6/MoS2/AuNRs (BMO-MSA), which simultaneously possesses both the high photodynamic ability and POD-like activity under NIR-II light irradiation. Additionally, it has excellent photothermal stability with good photothermal conversion efficiency. The as-prepared BMO-MSA nanocomposite could induce the germline apoptosis of Caenorhabditis elegans (C. elegans) via the cep-1/p53 pathway after being illuminated by light with a wavelength of 1064 nm. The in vivo investigations confirmed the ability of the BMO-MSA nanocomposite for the induction of DNA damage in the worms, and the mechanism was approved by determining the egl-1 fold induction in the mutants that have a loss of function in the genes involved in DNA damage response mutants. Thus, this work has not only provided a novel PDT agent, which may be used for PDT in the NIR-II region, but also introduced a new approach to therapy, taking advantage of both PDT and CDT effects.


Asunto(s)
Nanocompuestos , Nanopartículas , Fotoquimioterapia , Animales , Molibdeno/farmacología , Caenorhabditis elegans
4.
Biochem Genet ; 59(2): 589-603, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33389282

RESUMEN

Copper (Cu) is an essential trace element for plant growth and development. It is widely involved in respiration, photosynthesis, pollen formation, and other biological processes. Therefore, low or excessive copper causes damage to plants. Mulberry is an essential perennial economic tree. At present, research on the abiotic stress responses in mulberry is mainly focused on the identification of resistant germplasm resources and cloning of resistant genes. In contrast, studies on the resistance function of microRNAs and the regulatory gene responses to stress are rare. In this study, small RNA libraries (control and copper stressed) were constructed from mulberry leaf RNA. High-throughput sequencing and screening were employed, a total of 65 known miRNAs and 78 predicted novel mature miRNAs were identified, among which 40 miRNAs were differentially expressed under copper stress. Subsequently, expression patterns were verified for 14 miRNAs by real-time fluorescence quantitative PCR (qPCR). The target genes of miRNAs were validated by 5' RLM-RACE. Our results provide the bases for further study on the molecular mechanism of copper stress regulation in mulberry.


Asunto(s)
Cobre/metabolismo , MicroARNs , Morus , Hojas de la Planta , Estrés Fisiológico , Estudio de Asociación del Genoma Completo , MicroARNs/biosíntesis , MicroARNs/genética , Morus/genética , Morus/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , ARN de Planta/biosíntesis , ARN de Planta/genética
5.
Bioresour Technol ; 393: 130001, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37956949

RESUMEN

The economical way of Haematococcus pluvialis farming is to simultaneously achieve biomass, astaxanthin and lipid using less expensive chemicals. This paper explores the role of exogenous arginine in promoting growth and astaxanthin accumulation under stressful conditions. The application of arginine exerts a synergic effect on biomass, astaxanthin and lipid by improving carbon utilization, activating the arginine pathway and regulating carotenoid and lipid-related genes. Genes related to arginine catabolism, such as ADC, OCT, ASS1, NOS, and OAT, were up-regulated at both the cultivation and astaxanthin induction stages, signifying their importance in both growth and astaxanthin synthesis. Furthermore, transcriptome analysis revealed that arginine up-regulated transcription levels of genes involved carbon fixing, lipid biosynthesis, pyruvate metabolism, carotenoid, tricarboxylic acid cycle, and arginine and proline metabolism. The results provide a significant mechanism and applicability of using exogenous arginine and high light to stimulate bioproducts from Haematococcus pluvialis.


Asunto(s)
Chlorophyceae , Biomasa , Chlorophyceae/metabolismo , Xantófilas/metabolismo , Lípidos , Carbono
6.
Food Funct ; 14(4): 1812-1838, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36734035

RESUMEN

With a long history in traditional Asian medicine, Ganoderma lucidum (G. lucidum) is a mushroom species suggested to improve health and extend life. Its medicinal reputation has merited it with numerous attributes and titles, and it is evidenced to be effective in the prevention and treatment of various metabolic disorders owing to its unique source of bioactive metabolites, primarily polysaccharides, triterpenoids, and polyphenols, attributed with antioxidant, anti-inflammatory, anticancer, hepatoprotective, antidiabetic activities, etc. These unique potential pharmaceutical properties have led to its demand as an important resource of nutrient supplements in the food industry. It is reported that the variety of therapeutic/pharmacological properties was mainly due to its extensive prebiotic and immunomodulatory functions. All literature summarized in this study was collated based on a systematic review of electronic libraries (PubMed, Scopus databases, Web of Science Core Collection, and Google Scholar) from 2010-2022. This review presents an updated and comprehensive summary of the studies on the immunomodulatory therapies and nutritional significance of G. lucidum, with the focus on recent advances in defining its immunobiological mechanisms and the possible applications in the food and pharmaceutical industries for the prevention and management of chronic diseases. In addition, toxicological evidence and the adoption of standard pharmaceutical methods for the safety assessment, quality assurance, and efficacy testing of G. lucidum-derived compounds will be the gateway to bringing them into health establishments.


Asunto(s)
Ganoderma , Reishi , Triterpenos , Antioxidantes/metabolismo , Suplementos Dietéticos , Preparaciones Farmacéuticas , Reishi/metabolismo , Triterpenos/metabolismo
7.
Bioresour Technol ; 343: 126095, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34624470

RESUMEN

Astaxanthin exhibits strong antioxidant ability, so researchers endeavor to improve astaxanthin production in Haematococcus pluvialis (H. pluvialis). Previous work revealed that low-temperature plasma (LTP) could improve the astaxanthin yield in H. pluvialis, but the mechanism is still elusive. In this work, we therefore explored the mechanism of LTP promoting algal growth astaxanthin yield, especially from the perspective of epigenetics. Through measurements of hormones and transcription genes, it was found that the levels of strigolactone and abscisic acid in H. pluvialis increased significantly after LTP treatment, accompanied by enhanced expression of astaxanthin synthesis genes. Particularly, one of the key genes, namely CRTISO, was specifically up-regulated. Further experiments via immunofluorescence and ChIP-PCR methods confirmed that histone H3 lysine 4 tri-methylation (H3K4me3) in the promoter region of CRTISO was increased. Therefore, this study demonstrates that LTP can regulate CRTISO and promote the algal growth and astaxanthin accumulation by stimulating phytohormones and regulating H3K4me3.


Asunto(s)
Histonas , Lisina , Metilación , Temperatura , Xantófilas
8.
Biomater Sci ; 10(11): 2857-2864, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35445670

RESUMEN

The clinical application of photodynamic therapy (PDT) is still limited because of the drawbacks of the traditional photosensitizers, such as low singlet oxygen (1O2) quantum yield and the problem of photobleaching. Herein, carbon quantum dots (CQDs) derived from broccoli natural biomass as a carbon source were fabricated via a simple hydrothermal method and showed outstanding PDT ability as an effective photodynamic agent tested in Caenorhabditis elegans (C. elegans) models. The as-prepared broccoli-derived CQDs (BCQDs) showed excellent water solubility and optical properties and could generate singlet oxygen (1O2) effectively under irradiated light with a wavelength of 660 nm. The in vivo experiment revealed that the PDT efficiency of the BCQDs was dependent on the induction of germline apoptosis through the cep-1/p53 pathway. Further investigation confirmed the DNA damage of the worm by the BCQDs after sufficient light irradiation, which was tested by measuring the egl-1-fold induction in hus-1(op244), and cep-1(w40) mutants that have a loss of function in the genes involved in DNA damage response such as hus-1 (DNA checkpoint gene) and cep-1/p53 (tumor suppressor). The lack of germline apoptosis in the loss of function mutants egl-1(n487), hus-1(op244), and cep-1(w40) exposed to light irradiation compared with the control proved the necessity of these genes in DNA damage-induced germline apoptosis. Therefore, this work has not only provided a new photodynamic agent but also introduced C. elegans as an easy and high-throughput model for the rapid evaluation of the efficiency of PDT.


Asunto(s)
Brassica , Fotoquimioterapia , Puntos Cuánticos , Animales , Apoptosis , Brassica/metabolismo , Caenorhabditis elegans/genética , Carbono/farmacología , Fármacos Fotosensibilizantes/farmacología , Oxígeno Singlete/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA