Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Phys ; 50(1): 119-148, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38261235

RESUMEN

Motile bacteria in hybrid nanofluids cause bioconvection. Bacillus cereus, Pseudomonas viscosa, Bacillus brevis, Salmonella typhimurium, and Pseudomonas fluorescens were used to evaluate their effect and dispersion in the hybrid nanofluid. Using similarity analysis, a two-phase model for mixed bioconvection magnetohydrodynamic flow was developed using hybrid nanoparticles of Al2O3 and Cu (Cu-Al2O3/water). The parametric investigation, covering the magnetic parameter, permeability coefficient, nanoparticle shape factor, temperature ratio, radiation parameter, nanoparticle fraction ratio, Brownian parameter, thermophoresis parameter, motile bacteria diffusivity, chemotaxis parameter, and Nusselt, Reynold, Prandtl, Sherwood numbers, as well as the number of motile microorganisms', showed significant outcomes. Velocity and shear stresses are sensitive to M, Pr, and [Formula: see text]. Magnetic, radiation, and chemotaxis factors impact bacterial density. The hybrid nanofluid velocity decreases when the magnetic parameter, M, Prandtl number Pr increases, while it increases with the increasing of porosity coefficient, [Formula: see text], and the hybrid nanoparticle ratio Nf. The temperature distribution decreases with the increasing of Prandtl number and Nf. Increasing temperature differential and bacterium diffusivity increases bacterial aggregation.


Asunto(s)
Hidrodinámica , Nanopartículas , Calor , Temperatura , Porosidad
2.
Chaos Solitons Fractals ; 170: 113395, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37009628

RESUMEN

This paper presents a stochastic model for COVID-19 that takes into account factors such as incubation times, vaccine effectiveness, and quarantine periods in the spread of the virus in symptomatically contagious populations. The paper outlines the conditions necessary for the existence and uniqueness of a global solution for the stochastic model. Additionally, the paper employs nonlinear analysis to demonstrate some results on the ergodic aspect of the stochastic model. The model is also simulated and compared to deterministic dynamics. To validate and demonstrate the usefulness of the proposed system, the paper compares the results of the infected class with actual cases from Iraq, Bangladesh, and Croatia. Furthermore, the paper visualizes the impact of vaccination rates and transition rates on the dynamics of infected people in the infected class.

3.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617122

RESUMEN

The development of robotic applications necessitates the availability of useful, adaptable, and accessible programming frameworks. Robotic, IoT, and sensor-based systems open up new possibilities for the development of innovative applications, taking advantage of existing and new technologies. Despite much progress, the development of these applications remains a complex, time-consuming, and demanding activity. Development of these applications requires wide utilization of software components. In this paper, we propose a platform that efficiently searches and recommends code components for reuse. To locate and rank the source code snippets, our approach uses a machine learning approach to train the schema. Our platform uses trained schema to rank code snippets in the top k results. This platform facilitates the process of reuse by recommending suitable components for a given query. The platform provides a user-friendly interface where developers can enter queries (specifications) for code search. The evaluation shows that our platform effectively ranks the source code snippets and outperforms existing baselines. A survey is also conducted to affirm the viability of the proposed methodology.


Asunto(s)
Programas Informáticos , Interfaz Usuario-Computador
4.
Molecules ; 25(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32527041

RESUMEN

Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: Aspergillus nidulans, Trichaptum biforme, Penicillium italicum, Fusarium oxysporum, and Colletotrichum gloeosporioides, while the class of bacteria employed include Pseudomonas aeruginosa, Aeromonas hydrophila, Escherichia coli, and Citrobacter freundii as Gram (-) bacteria, and Listeria monocytogenes and Staphylococcus epidermidis as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of A. nidulans growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Oro/química , Luteolina/farmacología , Nanopartículas del Metal/administración & dosificación , Plata/química , Antibacterianos/administración & dosificación , Antifúngicos/administración & dosificación , Luteolina/administración & dosificación , Nanopartículas del Metal/química
5.
Microb Pathog ; 92: 19-25, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26724740

RESUMEN

Lmof2365_2117 is a Listeria monocytogenes putative cell wall surface anchor protein with a conserved domain found in collagen binding proteins. We constructed a deletion mutation in lmof2365_2117 in serotype 4b strain F2365, evaluated its virulence, and determined its ability to adhere and invade colonic epithelial cells and macrophages. In A/J mice, colonization of liver was significantly higher for F2365 than for F2365Δ2117. The ability of F2365Δ2117 to adhere to Caco-2 cells was significantly lower than F2365. The mutant also showed impaired ability to replicate in intestinal epithelial cell and murine macrophages relative to wild type F2365. Lmof2365_2117 contributed to L. monocytogenes attachment to catfish fillets. Because of its role in adherence to Caco-2 cells, we designated Lmof2365_2117 Listeria adhesion protein B (LapB). The carboxy terminus of LapB is similar to a domain in collagen binding proteins, but our results show that L. monocytogenes does not bind collagen.


Asunto(s)
Pared Celular/metabolismo , Listeria monocytogenes/fisiología , Listeria monocytogenes/patogenicidad , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Animales , Adhesión Bacteriana/genética , Línea Celular , Modelos Animales de Enfermedad , Humanos , Listeriosis/microbiología , Ratones , Eliminación de Secuencia , Virulencia/genética
6.
Sci Rep ; 14(1): 21665, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289413

RESUMEN

In this article, we explore exact solitary wave solutions to the van der Waals equation which is crucial for numerous applications involving a variety of physical occurrences. This system is used to define the behavior of real gases taking into consideration finite size of molecules and also has some applications in industry for granular materials. The model is studied under the effect of fractional derivatives by employing two different definitions: ß , and M-truncated. Further, new extended direct algebraic method is employed to construct the solitary wave solutions for the model. The solutions transmit several novel solutions, such as dark-singular, dark-bright, singular-periodic and dark solutions, and this method establishes the conditions required for the formation of these structures. To show the comparative analysis between two different fractional operators, results are graphically represented in the form of 2-dimensional and 3-dimensional visualizations.

7.
Sci Rep ; 14(1): 17421, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075130

RESUMEN

The COVID-19 pandemic came with many setbacks, be it to a country's economy or the global missions of organizations like WHO, UNICEF or GTFCC. One of the setbacks is the rise in cholera cases in developing countries due to the lack of cholera vaccination. This model suggested a solution by introducing another public intervention, such as adding Chlorine to water bodies and vaccination. A novel delay differential model of fractional order was recommended, with two different delays, one representing the latent period of the disease and the other being the delay in adding a disinfectant to the aquatic environment. This model also takes into account the population that will receive a vaccination. This study utilized sensitivity analysis of reproduction number to analytically prove the effectiveness of control measures in preventing the spread of the disease. This analysis provided the mathematical evidence for adding disinfectants in water bodies and inoculating susceptible individuals. The stability of the equilibrium points has been discussed. The existence of stability switching curves is determined. Numerical simulation showed the effect of delay, resulting in fluctuations in some compartments. It also depicted the impact of the order of derivative on the oscillations.


Asunto(s)
COVID-19 , Cólera , Vacunación , Cólera/prevención & control , Cólera/epidemiología , Humanos , COVID-19/prevención & control , COVID-19/epidemiología , Vacunas contra el Cólera , Modelos Teóricos , SARS-CoV-2 , Pandemias/prevención & control , Simulación por Computador
8.
Comput Biol Med ; 178: 108756, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901190

RESUMEN

BACKGROUND: Tuberculosis, a global health concern, was anticipated to grow to 10.6 million new cases by 2021, with an increase in multidrug-resistant tuberculosis. Despite 1.6 million deaths in 2021, present treatments save millions of lives, and tuberculosis may overtake COVID-19 as the greatest cause of mortality. This study provides a six-compartmental deterministic model that employs a fractal-fractional operator with a power law kernel to investigate the impact of vaccination on tuberculosis dynamics in a population. METHODS: Some important characteristics, such as vaccination and infection rate, are considered. We first show that the suggested model has positive bounded solutions and a positive invariant area. We evaluate the equation for the most important threshold parameter, the basic reproduction number, and investigate the model's equilibria. We perform sensitivity analysis to determine the elements that influence tuberculosis dynamics. Fixed-point concepts show the presence and uniqueness of a solution to the suggested model. We use the two-step Newton polynomial technique to investigate the effect of the fractional operator on the generalized form of the power law kernel. RESULTS: The stability analysis of the fractal-fractional model has been confirmed for both Ulam-Hyers and generalized Ulam-Hyers types. Numerical simulations show the effects of different fractional order values on tuberculosis infection dynamics in society. According to numerical simulations, limiting contact with infected patients and enhancing vaccine efficacy can help reduce the tuberculosis burden. The fractal-fractional operator produces better results than the ordinary integer order in the sense of memory effect at diffract fractal and fractional order values. CONCLUSION: According to our findings, fractional modeling offers important insights into the dynamic behavior of tuberculosis disease, facilitating a more thorough comprehension of their epidemiology and possible means of control.


Asunto(s)
COVID-19 , Simulación por Computador , Fractales , Tuberculosis , Humanos , Tuberculosis/epidemiología , Tuberculosis/prevención & control , COVID-19/prevención & control , COVID-19/epidemiología , SARS-CoV-2 , Prevalencia , Modelos Biológicos
9.
Sci Rep ; 14(1): 1712, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242934

RESUMEN

The current research presents a novel technique for numerically solving the one-dimensional advection-diffusion equation. This approach utilizes subdivision scheme based collocation method to interpolate the space dimension along with the finite difference method for the time derivative. The proposed technique is examined on a variety of problems and the obtained results are presented both quantitatively in tables and visually in figures. Additionally, a comparative analysis is conducted between the numerical outcomes of the proposed technique with previously published methods to validate the correctness and accuracy of the current approach. The primary objective of this research is to investigate the application of subdivision schemes in the fields of physical sciences and engineering. Our approach involves transforming the problem into a set of algebraic equations.

10.
PLoS One ; 19(4): e0298620, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625847

RESUMEN

In this manuscript, we developed a nonlinear fractional order Ebola virus with a novel piecewise hybrid technique to observe the dynamical transmission having eight compartments. The existence and uniqueness of a solution of piecewise derivative is treated for a system with Arzel'a-Ascoli and Schauder conditions. We investigate the effects of classical and modified fractional calculus operators, specifically the classical Caputo piecewise operator, on the behavior of the model. A model shows that a completely continuous operator is uniformly continuous, and bounded according to the equilibrium points. The reproductive number R0 is derived for the biological feasibility of the model with sensitivity analysis with different parameters impact on the model. Sensitivity analysis is an essential tool for comprehending how various model parameters affect the spread of illness. Through a methodical manipulation of important parameters and an assessment of their impact on Ro, we are able to learn more about the resiliency and susceptibility of the model. Local stability is established with next Matignon method and global stability is conducted with the Lyapunov function for a feasible solution of the proposed model. In the end, a numerical solution is derived with Newton's polynomial technique for a piecewise Caputo operator through simulations of the compartments at various fractional orders by using real data. Our findings highlight the importance of fractional operators in enhancing the accuracy of the model in capturing the intricate dynamics of the disease. This research contributes to a deeper understanding of Ebola virus dynamics and provides valuable insights for improving disease modeling and public health strategies.


Asunto(s)
Ebolavirus , Epidemias , Fiebre Hemorrágica Ebola , Humanos , Fiebre Hemorrágica Ebola/epidemiología , Aprendizaje , Salud Pública
11.
Sci Rep ; 14(1): 20776, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39237562

RESUMEN

In this paper, we investigate the optimal conditions to the boundaries where the unique existence of the solutions to an advection-diffusion-reaction equation is secured by applying the contraction mapping theorem from the study of fixed points. Also, we extract, traveling wave solutions of the underlying equation. To this purpose, a new extended direct algebraic method with traveling wave transformation has been used. Achieved soliton solutions are different functions which are hyperbolic, trigonometric, exponential, and some mixed trigonometric functions. These functions show the nature of solitons. Two and three-dimensional plots are drawn using different values of parameters and coefficients for the comparison and behavior of solitons as combined bright-dark, dark, and bright solitons.

12.
Sci Rep ; 14(1): 20821, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242649

RESUMEN

A four level chiral medium is considered to analyze and investigate theoretically the reflection/transmission coefficients of right circularly polarized (RCP) beam and left circularly polarized (LCP) beam as well as their corresponding GH-shifts under the effect of compton scattering. Density matrix formalism is used for calculation of electric and magnetic probe fields coherence. The polarization and magnetization are calculated from probes coherence terms in the chiral medium. The electric and magnetic susceptibilities as well as chiral coefficients are related with polarization and magnetization. The refractive indices of RCP and LCP beams under compton scattering effect is modified from the electric/magnetic susceptibilities, chiral coefficients, mass and charge of electron as well as compton scattering angle. The giant positive and negative birefringent Goos-Hänchen (GH) shifts in reflection and transmission beams are investigated in this manuscript under Compton scattering effect. The RCP and LCP beams obey the normalization condition | R ( + , - ) | + | T ( + , - ) | = 1 at the interface of a lossy chiral medium of | A ( + , - ) | ≃ 0 and a thin sheet of balsa wood under the effect of compton scattering angle, incident angle, probe field detuning, control field Rabi frequency, phases of electric and magnetic fields and phase of superposition states. Significant positive/negative giant GH-shifts in reflection and transmission beams are investigated. The results show potential applications in modification of cloaking devices, image coding, polarizing filters and LCD displays.

13.
Sci Rep ; 14(1): 18710, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134570

RESUMEN

In this study, we introduce a novel iterative method combined with the Elzaki transformation to address a system of partial differential equations involving the Caputo derivative. The Elzaki transformation, known for its effectiveness in solving differential equations, is incorporated into the proposed iterative approach to enhance its efficiency. The system of partial differential equations under consideration is characterized by the presence of Caputo derivatives, which capture fractional order dynamics. The developed method aims to provide accurate and efficient solutions to this complex mathematical system, contributing to the broader understanding of fractional calculus applications in the context of partial differential equations. Through numerical experiments and comparisons, we demonstrate the efficacy of the proposed Elzaki-transform-based iterative method in handling the intricate dynamics inherent in the given system. The study not only showcases the versatility of the Elzaki transformation but also highlights the potential of the developed iterative technique for addressing similar problems in various scientific and engineering domains.

14.
Sci Rep ; 14(1): 19842, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191851

RESUMEN

Within fluid mechanics, the flow of hybrid nanofluids over a stretching surface has been extensively researched due to their influence on the flow and heat transfer properties. Expanding on this concept by introducing porous media, the current study explore the flow and heat and mass transport characteristics of hybrid nanofluid. This investigation includes the effect of magnetohydrodynamic (MHD) with chemical reaction, thermal radiation, and slip effects. The nanoparticles, copper, and alumina are combined with water for the formation of a hybrid nanofluid. Using the self-similar method for the reduction of Partial differential equations (PDEs) to the system of Ordinary differential equations (ODEs). These nonlinear equation systems are solved numerically using the bvp4c (boundary value solver) technique. The effect of the different physical non-dimensional flow parameters on different flow profiles such as velocity, temperature, concentration, skin friction, Nusselt and mass transfer rate are depicted through graphs and tables. The velocity profiles diminish with the effect of magnetic and slip parameters. The temperature and concentration slip parameters reduce the temperature and concentration profile respectively. The higher values of magnetic factor lessened the skin friction coefficient for both slip and no-slip conditions. An elevation in the thermal slip parameter reduced the boundary layer thickness and the heat transfer from the surface to the fluid. The Nusselt number amplified with the climbing values of the radiation parameter. The mass transfer rate depressed with the solutal slip parameter. Comparison is made with the published work in the literature and there is excellent agreement between them.

15.
Sci Rep ; 14(1): 7193, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531996

RESUMEN

This article investigates natural convection with double-diffusive properties numerically in a vertical bi-layered square enclosure. The cavity has two parts: one part is an isotropic and homogeneous porous along the wall, and an adjacent part is an aqueous fluid. Adiabatic, impermeable horizontal walls and constant and uniform temperatures and concentrations on other walls are maintained. To solve the governing equations, the finite element method (FEM) employed and predicted results shows the impact of typical elements of convection on double diffusion, namely the porosity thickness, cavity rotation angle, and thermal conductivity ratio. Different Darcy and Rayleigh numbers effects on heat transfer conditions were investigated, and the Nusselt number in the border of two layers was obtained. The expected results, presented as temperature field (isothermal lines) and velocity behavior in X and Y directions, show the different effects of the aforementioned parameters on double diffusion convective heat transfer. Also results show that with the increase in the thickness of the porous layer, the Nusselt number decreases, but at a thickness higher than 0.8, we will see an increase in the Nusselt number. Increasing the thermal conductivity ratio in values less than one leads to a decrease in the average Nusselt number, and by increasing that parameter from 1 to 10, the Nusselt values increase. A higher rotational angle of the cavity reduces the thermosolutal convective heat transfer, and increasing the Rayleigh and Darcy numbers, increases Nusselt. These results confirm that the findings obtained from the Finite Element Method (FEM), which is the main idea of this research, are in good agreement with previous studies that have been done with other numerical methods.

16.
Sci Rep ; 14(1): 10927, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740856

RESUMEN

To study the dynamical system, it is necessary to formulate the mathematical model to understand the dynamics of various diseases which are spread in the world wide. The objective of the research study is to assess the early diagnosis and treatment of cholera virus by implementing remedial methods with and without the use of drugs. A mathematical model is built with the hypothesis of strengthening the immune system, and a ABC operator is employed to turn the model into a fractional-order model. A newly developed system SEIBR, which is examined both qualitatively and quantitatively to determine its stable position as well as the verification of flip bifurcation has been made for developed system. The local stability of this model has been explored concerning limited observations, a fundamental aspect of epidemic models. We have derived the reproductive number using next generation method, denoted as " R 0 ", to analyze its impact rate across various sub-compartments, which serves as a critical determinant of its community-wide transmission rate. The sensitivity analysis has been verified according to its each parameters to identify that how much rate of change of parameters are sensitive. Atangana-Toufik scheme is employed to find the solution for the developed system using different fractional values which is advanced tool for reliable bounded solution. Also the error analysis has been made for developed scheme. Simulations have been made to see the real behavior and effects of cholera disease with early detection and treatment by implementing remedial methods without the use of drugs in the community. Also identify the real situation the spread of cholera disease after implementing remedial methods with and without the use of drugs. Such type of investigation will be useful to investigate the spread of virus as well as helpful in developing control strategies from our justified outcomes.


Asunto(s)
Cólera , Modelos Teóricos , Cólera/epidemiología , Humanos , Epidemias/prevención & control , Simulación por Computador
17.
Heliyon ; 10(10): e30989, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813199

RESUMEN

This article investigates the concept of dominant metric dimensions in zero divisor graphs (ZD-graphs) associated with rings. Consider a finite commutative ring with unity, denoted as R, where nonzero elements x and y are identified as zero divisors if their product results in zero (x.y=0). The set of zero divisors in ring R is referred to as L(R). To analyze various algebraic properties of R, a graph known as the zero-divisor graph is constructed using L(R). This manuscript establishes specific general bounds for the dominant metric dimension (Ddim) concerning the ZD-graph of R. To achieve this objective, we examine the zero divisor graphs for specific rings, such as the ring of Gaussian integers modulo m, denoted as Zm[i], the ring of integers modulo n, denoted as Zn, and some quotient polynomial rings. Our research unveils new insights into the structural similarities and differences among commutative rings sharing identical metric dimensions and dominant metric dimensions. Additionally, we present a general result outlining bounds for the dominant metric dimension expressed in terms of the maximum degree, girth, clique number, and diameter of the associated ZD-graphs. Through this exploration, we aim to provide a comprehensive framework for analyzing commutative rings and their associated zero divisor graphs, thereby advancing both theoretical knowledge and practical applications in diverse domains.

18.
Sci Rep ; 14(1): 2175, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272984

RESUMEN

Respiratory syncytial virus (RSV) is the cause of lung infection, nose, throat, and breathing issues in a population of constant humans with super-spreading infected dynamics transmission in society. This research emphasizes on examining a sustainable fractional derivative-based approach to the dynamics of this infectious disease. We proposed a fractional order to establish a set of fractional differential equations (FDEs) for the time-fractional order RSV model. The equilibrium analysis confirmed the existence and uniqueness of our proposed model solution. Both sensitivity and qualitative analysis were employed to study the fractional order. We explored the Ulam-Hyres stability of the model through functional analysis theory. To study the influence of the fractional operator and illustrate the societal implications of RSV, we employed a two-step Lagrange polynomial represented in the generalized form of the Power-Law kernel. Also, the fractional order RSV model is demonstrated with chaotic behaviors which shows the trajectory path in a stable region of the compartments. Such a study will aid in the understanding of RSV behavior and the development of prevention strategies for those who are affected. Our numerical simulations show that fractional order dynamic modeling is an excellent and suitable mathematical modeling technique for creating and researching infectious disease models.


Asunto(s)
Enfermedades Transmisibles , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Cuello , Nariz
19.
Sci Rep ; 14(1): 17237, 2024 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060276

RESUMEN

This study introduces a fractional order model to investigate the dynamics of polio disease spread, focusing on its significance, unique results, and conclusions. We emphasize the importance of understanding polio transmission dynamics and propose a novel approach using a fractional order model with an exponential decay kernel. Through rigorous analysis, including existence and stability assessment applying the Caputo Fabrizio fractional operator, we derive key insights into the disease dynamics. Our findings reveal distinct disease-free equilibrium (DFE) and endemic equilibrium (EE) points, shedding light on the disease's stability. Furthermore, graphical representations and numerical simulations demonstrate the behavior of the disease under various parameter values, enhancing our understanding of polio transmission dynamics. In conclusion, this study offers valuable insights into the spread of polio and contributes to the broader understanding of infectious disease dynamics.


Asunto(s)
Poliomielitis , Poliomielitis/epidemiología , Poliomielitis/virología , Humanos , Poliovirus , Simulación por Computador , Modelos Teóricos , Modelos Epidemiológicos
20.
Sci Rep ; 14(1): 17327, 2024 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068187

RESUMEN

This paper focuses on the urgent issue of minimising the impact of pollutants on aquatic life in river ecosystems. Our innovative approach involves the integration of mathematical modelling and strategic control methods to counteract the negative consequences of industrial and agricultural activities. The model, developed in a one-dimensional context, captures the complex dynamics of species population and pollutant concentration. Using an optimisation framework, we strive to achieve a harmonious balance that limits pollution, enhances species diversity and optimises control expenditure. Ultimately, we seek to harmonise industrial progress with ecological vitality, promoting the sustainability of river ecosystems for generations to come.


Asunto(s)
Ecosistema , Modelos Teóricos , Ríos , Ríos/química , Contaminantes Químicos del Agua/análisis , Organismos Acuáticos/efectos de los fármacos , Animales , Biodiversidad , Conservación de los Recursos Naturales/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA