Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Inf Model ; 63(17): 5513-5528, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625010

RESUMEN

Traditional small-molecule drug discovery is a time-consuming and costly endeavor. High-throughput chemical screening can only assess a tiny fraction of drug-like chemical space. The strong predictive power of modern machine-learning methods for virtual chemical screening enables training models on known active and inactive compounds and extrapolating to much larger chemical libraries. However, there has been limited experimental validation of these methods in practical applications on large commercially available or synthesize-on-demand chemical libraries. Through a prospective evaluation with the bacterial protein-protein interaction PriA-SSB, we demonstrate that ligand-based virtual screening can identify many active compounds in large commercial libraries. We use cross-validation to compare different types of supervised learning models and select a random forest (RF) classifier as the best model for this target. When predicting the activity of more than 8 million compounds from Aldrich Market Select, the RF substantially outperforms a naïve baseline based on chemical structure similarity. 48% of the RF's 701 selected compounds are active. The RF model easily scales to score one billion compounds from the synthesize-on-demand Enamine REAL database. We tested 68 chemically diverse top predictions from Enamine REAL and observed 31 hits (46%), including one with an IC50 value of 1.3 µM.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Bibliotecas de Moléculas Pequeñas , Bases de Datos Factuales , Descubrimiento de Drogas , Aprendizaje Automático Supervisado
2.
J Chem Inf Model ; 59(1): 282-293, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30500183

RESUMEN

Virtual (computational) high-throughput screening provides a strategy for prioritizing compounds for experimental screens, but the choice of virtual screening algorithm depends on the data set and evaluation strategy. We consider a wide range of ligand-based machine learning and docking-based approaches for virtual screening on two protein-protein interactions, PriA-SSB and RMI-FANCM, and present a strategy for choosing which algorithm is best for prospective compound prioritization. Our workflow identifies a random forest as the best algorithm for these targets over more sophisticated neural network-based models. The top 250 predictions from our selected random forest recover 37 of the 54 active compounds from a library of 22,434 new molecules assayed on PriA-SSB. We show that virtual screening methods that perform well on public data sets and synthetic benchmarks, like multi-task neural networks, may not always translate to prospective screening performance on a specific assay of interest.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Aprendizaje Automático , Simulación del Acoplamiento Molecular , Algoritmos , Conformación Proteica , Proteínas/química , Proteínas/metabolismo , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA