Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Nature ; 611(7937): 721-726, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36108675

RESUMEN

Small-ring cage hydrocarbons are popular bioisosteres (molecular replacements) for commonly found para-substituted benzene rings in drug design1. The utility of these cage structures derives from their superior pharmacokinetic properties compared with their parent aromatics, including improved solubility and reduced susceptibility to metabolism2,3. A prime example is the bicyclo[1.1.1]pentane motif, which is mainly synthesized by ring-opening of the interbridgehead bond of the strained hydrocarbon [1.1.1]propellane with radicals or anions4. By contrast, scaffolds mimicking meta-substituted arenes are lacking because of the challenge of synthesizing saturated isosteres that accurately reproduce substituent vectors5. Here we show that bicyclo[3.1.1]heptanes (BCHeps), which are hydrocarbons for which the bridgehead substituents map precisely onto the geometry of meta-substituted benzenes, can be conveniently accessed from [3.1.1]propellane. We found that [3.1.1]propellane can be synthesized on a multigram scale, and readily undergoes a range of radical-based transformations to generate medicinally relevant carbon- and heteroatom-substituted BCHeps, including pharmaceutical analogues. Comparison of the absorption, distribution, metabolism and excretion (ADME) properties of these analogues reveals enhanced metabolic stability relative to their parent arene-containing drugs, validating the potential of this meta-arene analogue as an sp3-rich motif in drug design. Collectively, our results show that BCHeps can be prepared on useful scales using a variety of methods, offering a new surrogate for meta-substituted benzene rings for implementation in drug discovery programmes.


Asunto(s)
Compuestos Bicíclicos con Puentes , Diseño de Fármacos , Heptanos , Aniones/química , Benceno/química , Compuestos Bicíclicos con Puentes/síntesis química , Compuestos Bicíclicos con Puentes/química , Descubrimiento de Drogas , Heptanos/síntesis química , Heptanos/química , Pentanos/síntesis química , Pentanos/química , Solubilidad
2.
J Am Chem Soc ; 146(1): 1196-1203, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38157245

RESUMEN

Bicyclo[1.1.0]butanes (BCBs), strained carbocycles comprising two fused cyclopropane rings, have become well-established building blocks in organic synthesis, medicinal chemistry, and chemical biology due to their diverse reactivity profile with radicals, nucleophiles, cations, and carbenes. The constraints of the bicyclic ring system confer high p-character on the interbridgehead C-C bond, leading to this broad reaction profile; however, the use of BCBs in pericyclic processes has to date been largely overlooked in favor of such stepwise, non-concerted additions. Here, we describe the use of BCBs as substrates for ene-like reactions with strained alkenes and alkynes, which give rise to cyclobutenes decorated with highly substituted cyclopropanes and arenes. The former products are obtained from highly stereoselective reactions with cyclopropenes, generated in situ from vinyl diazoacetates under blue light irradiation (440 nm). Cyclobutenes featuring a quaternary aryl-bearing carbon atom are prepared from equivalent reactions with arynes, which proceed in high yields under mild conditions. Mechanistic studies highlight the importance of electronic effects in this chemistry, while computational investigations support a concerted pathway and rationalize the excellent stereoselectivity of reactions with cyclopropenes.

3.
J Org Chem ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970491

RESUMEN

The release of strain energy is a fundamental driving force for organic reactions. However, absolute strain energy alone is an insufficient predictor of reactivity, evidenced by the similar ring strain but disparate reactivity of cyclopropanes and cyclobutanes. In this work, we demonstrate that electronic delocalization is a key factor that operates alongside strain release to boost, or even dominate, reactivity. This delocalization principle extends across a wide range of molecules containing three-membered rings such as epoxides, aziridines, and propellanes and also applies to strain-driven cycloaddition reactions. Our findings lead to a "rule of thumb" for the accurate prediction of activation barriers in such systems, which can be easily applied to reactions involving many of the strained building blocks commonly encountered in organic synthesis, medicinal chemistry, polymer science, and bioconjugation. Given the significance of electronic delocalization in organic chemistry, for example in aromatic π-systems and hyperconjugation, we anticipate that this concept will serve as a versatile tool to understand and predict organic reactivity.

4.
Chemistry ; 29(70): e202302821, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37767940

RESUMEN

Gold catalysis is an important method for alkyne functionalization. Here we report the gold-catalyzed formal [3+2] aminative cyclization of yndiamides and isoxazoles in a direct synthesis of polysubstituted diaminopyrroles, which are important motifs in drug discovery. Key to this process is the formation, and subsequent cyclization, of an α-imino gold Fischer carbene, which represents a new type of gold carbene intermediate. The reaction proceeds rapidly under mild conditions, with high regioselectivity being achieved by introducing a subtle steric bias between the nitrogen substituents on the yndiamide. DFT calculations revealed that the key to this regioselectivity was the interconversion of isomeric gold keteniminiun ions via a low-barrier π-complex transition state, which establishes a Curtin-Hammett scenario for isoxazole addition. By using benzisoxazoles as substrates, the reaction outcome could be switched to a formal [5+2] cyclization, leading to 1,4-oxazepines.

5.
Molecules ; 28(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298943

RESUMEN

Triterpenoid natural products from the Schisandraceae family have long presented a significant synthetic challenge. Lancifodilactone I, a member of the family not previously synthesized, was identified as a key natural product target, from which many other members could be synthesized. We envisaged that the core ring system of lancifodilactone I could be accessed by a strategy involving palladium-catalysed cascade cyclisation of a bromoenynamide, via carbopalladation, Suzuki coupling and 8π-electrocyclisation, to synthesize the core 7,8-fused ring system. Exploration of this strategy on model systems resulted in efficient syntheses of 5,6- and 5,8-fused systems in high yields, which represent the first such cyclisation where the ynamide nitrogen atom is 'external' to the forming ring system. The enamide functionality resident in the cascade cyclisation product was found to be less nucleophilic than the accompanying tri-/tetrasubstituted alkene(s), enabling regioselective oxidations. Application of this strategy to 7,6-, and 7,8-fused systems, and ultimately the 'real' substrate, was ultimately thwarted by the difficulty of 7-membered ring closure, leading to side product formation. Nevertheless, a tandem bromoenynamide carbopalladation, Suzuki coupling and 6/8π-electrocyclisation was shown to be a highly efficient tactic for the formation of bicyclic enamides, which may find applications in other synthetic contexts.


Asunto(s)
Productos Biológicos , Triterpenos , Schisandraceae , Ciclización , Oxidación-Reducción
6.
Angew Chem Int Ed Engl ; 62(3): e202213508, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36226350

RESUMEN

Sulfonylated aromatics are commonplace motifs in drugs and agrochemicals. However, methods for the direct synthesis of sulfonylated non-classical arene bioisosteres, which could improve the physicochemical properties of drug and agrochemical candidates, are limited. Here we report a solution to this challenge: a one-pot halosulfonylation of [1.1.1]propellane, [3.1.1]propellane and bicyclo[1.1.0]butanes that proceeds under practical, scalable and mild conditions. The sulfonyl halides used in this chemistry feature aryl, heteroaryl and alkyl substituents, and are conveniently generated in situ from readily available sulfinate salts and halogen atom sources. This methodology enables the synthesis of an array of pharmaceutically and agrochemically relevant halogen/sulfonyl-substituted bioisosteres and cyclobutanes, on up to multidecagram scale.


Asunto(s)
Butanos , Halógenos , Indicadores y Reactivos , Butanos/química
7.
J Am Chem Soc ; 144(22): 10017-10024, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609003

RESUMEN

Thiophene S,S-dioxides are underutilized tools for the de novo construction of benzene rings in organic synthesis. We report a collective synthesis of nine illudalane sesquiterpenes using bicyclic thiophene S,S-dioxides as generalized precursors to the indane core of the natural products. Exploiting furans as unusual dienophiles in this inverse electron demand Diels-Alder cascade, this concise and convergent approach enables the synthesis of these targets in as little as five steps. Theoretical studies rationalize the reactivity of thiophene S,S-dioxides with both electron-poor and electron-rich dienophiles and reveal reaction pathways involving either nonpolar pericyclic or bifurcating ambimodal cycloadditions. Overall, this work demonstrates the wider potential of thiophene S,S-dioxides as convenient and flexible precursors to polysubstituted arenes.


Asunto(s)
Electrones , Sesquiterpenos , Reacción de Cicloadición , Sesquiterpenos Policíclicos , Tiofenos
8.
Nucleic Acids Res ; 48(6): 2830-2840, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32052020

RESUMEN

The determination of distances between specific points in nucleic acids is essential to understanding their behaviour at the molecular level. The ability to measure distances of 2-10 nm is particularly important: deformations arising from protein binding commonly fall within this range, but the reliable measurement of such distances for a conformational ensemble remains a significant challenge. Using several techniques, we show that electron paramagnetic resonance (EPR) spectroscopy of oligonucleotides spin-labelled with triazole-appended nitroxides at the 2' position offers a robust and minimally perturbing tool for obtaining such measurements. For two nitroxides, we present results from EPR spectroscopy, X-ray crystal structures of B-form spin-labelled DNA duplexes, molecular dynamics simulations and nuclear magnetic resonance spectroscopy. These four methods are mutually supportive, and pinpoint the locations of the spin labels on the duplexes. In doing so, this work establishes 2'-alkynyl nitroxide spin-labelling as a minimally perturbing method for probing DNA conformation.


Asunto(s)
ADN/química , Marcadores de Spin , Secuencia de Bases , Cristalografía por Rayos X , ADN/síntesis química , Espectroscopía de Resonancia por Spin del Electrón , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular
9.
Chem Soc Rev ; 50(1): 58-71, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33226387

RESUMEN

Cascade reactions (also known as domino reactions) are arguably the most powerful means to achieve the construction of multiple ring systems in a single step. In this Tutorial Review, highlights in cascade polycyclizations applied to natural product syntheses over the last five years are discussed, including pericyclic, ionic, metal-catalyzed, organocatalytic, and radical processes. Significant developments in each of these fields that have advanced the state-of-the-art are a particular focus, including photochemical and electrochemical methods, novel biomimetic routes, and enantioselective cascades.


Asunto(s)
Productos Biológicos/síntesis química , Materiales Biomiméticos/síntesis química , Productos Biológicos/química , Materiales Biomiméticos/química , Ciclización , Técnicas Electroquímicas , Conformación Molecular , Procesos Fotoquímicos , Estereoisomerismo
10.
J Am Chem Soc ; 143(50): 21246-21251, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34904841

RESUMEN

Bicyclo[1.1.0]butanes (BCBs) are valuable substrates in the "strain release" synthesis of polysubstituted four-membered ring systems, with applications including bioconjugation agents. The introduction of substituents onto the BCB bridges is challenging due to limitations in current methods for the preparation of this bicyclic scaffold, typically necessitating linear syntheses with limited functional group tolerance and/or substituent scope. Here, we report the synthesis of tri- and tetrasubstituted BCBs via directed metalation of readily accessed BCB amides; this straightforward "late stage" approach generates a wide variety of bridge-substituted BCBs that can be easily converted into other useful small ring building blocks. Access to a monodeuterated BCB afforded unprecedented insight into the mechanism of dihalocarbene insertion into BCBs to afford bicyclo[1.1.1]pentanes (BCPs).

11.
J Am Chem Soc ; 143(26): 9729-9736, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34161076

RESUMEN

Bicyclo[1.1.1]pentylamines (BCPAs) are of growing importance to the pharmaceutical industry as sp3-rich bioisosteres of anilines and N-tert-butyl groups. Here we report a facile synthesis of 1,3-disubstituted BCPAs using a twofold radical functionalization strategy. Sulfonamidyl radicals, generated through fragmentation of α-iodoaziridines, undergo initial addition to [1.1.1]propellane to afford iodo-BCPAs; the newly formed C-I bond in these products is then functionalized via a silyl-mediated Giese reaction. This chemistry also translates smoothly to 1,3-disubstituted iodo-BCPs. A wide variety of radical acceptors and iodo-BCPAs are accommodated, providing straightforward access to an array of valuable aniline-like isosteres.

12.
Nat Prod Rep ; 38(12): 2214-2235, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913053

RESUMEN

Covering: 2000 up to 2021Natural products are an important resource in drug discovery, directly or indirectly delivering numerous small molecules for potential development as human medicines. Among the many classes of natural products, alkaloids have a rich history of therapeutic applications. The extensive chemodiversity of alkaloids found in the marine environment has attracted considerable attention for such uses, while the scarcity of these natural materials has stimulated efforts towards their total synthesis. This review focuses on the biological activity of marine alkaloids (covering 2000 to up to 2021) towards Neglected Tropical Diseases (NTDs) caused by protozoan parasites, and malaria. Chemotherapy represents the only form of treatment for Chagas disease, human African trypanosomiasis, leishmaniasis and malaria, but there is currently a restricted arsenal of drugs, which often elicit severe adverse effects, show variable efficacy or resistance, or are costly. Natural product scaffolds have re-emerged as a focus of academic drug discovery programmes, offering a different resource to discover new chemical entities with new modes of action. In this review, the potential of a range of marine alkaloids is analyzed, accompanied by coverage of synthetic efforts that enable further studies of key antiprotozoal natural product scaffolds.


Asunto(s)
Alcaloides/uso terapéutico , Antiprotozoarios/uso terapéutico , Organismos Acuáticos/química , Productos Biológicos/uso terapéutico , Malaria/tratamiento farmacológico , Enfermedades Desatendidas/tratamiento farmacológico , Infecciones por Protozoos/tratamiento farmacológico , Antiprotozoarios/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Estructura Molecular
13.
J Org Chem ; 86(2): 1938-1947, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33356269

RESUMEN

Ynamides, though relatively more stable than ynamines, are still moisture-sensitive and prone to hydration especially under acidic and heating conditions. Here we report an environmentally benign, robust protocol to synthesize sulfonamide-based ynamides and arylynamines via Sonogashira coupling reactions in water, using a readily available quaternary ammonium salt as the surfactant.

14.
Bioorg Med Chem Lett ; 30(16): 127349, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32631547

RESUMEN

Dehydrodieugenol B and five related natural neolignans were isolated from the Brazilian plant species Nectandra leucantha. Three of these compounds were shown to be active against murine (B16F10) and human (A2058) melanoma cells but non-toxic to human fibroblasts (T75). These results stimulated the preparation of a series of 23 semi-synthetic derivatives in order to explore structure-activity relationships and study the biological potential of these derivatives against B16F10 and A2058 cell lines. These structurally-related neolignan derivatives were analyzed by multivariate statistics and machine learning, which indicated that the most important characteristics were related to their three-dimensional structure and, mainly, to the substituents on the neolignan skeleton. The results suggested that the presence of hydroxyl or alkoxyl groups at positions 3, 4 and 5 (with appropriate sidechains) promoted an increase in electropological and charge density, which seem to be important for biological activity against murine (B16F10) and human (A2058) melanoma cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diseño de Fármacos , Lignanos/farmacología , Animales , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Lignanos/síntesis química , Lignanos/química , Aprendizaje Automático , Ratones , Estructura Molecular , Análisis Multivariante , Relación Estructura-Actividad
15.
Angew Chem Int Ed Engl ; 59(29): 11866-11870, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32346946

RESUMEN

1,3-Disubstituted bicyclo[1.1.1]pentanes (BCPs) are important motifs in drug design as surrogates for p-substituted arenes and alkynes. Access to all-carbon disubstituted BCPs via cross-coupling has to date been limited to use of the BCP as the organometallic component, which restricts scope due to the harsh conditions typically required for the synthesis of metallated BCPs. Here we report a general method to access 1,3-C-disubstituted BCPs from 1-iodo-bicyclo[1.1.1]pentanes (iodo-BCPs) by direct iron-catalyzed cross-coupling with aryl and heteroaryl Grignard reagents. This chemistry represents the first general use of iodo-BCPs as electrophiles in cross-coupling, and the first Kumada coupling of tertiary iodides. Benefiting from short reaction times, mild conditions, and broad scope of the coupling partners, it enables the synthesis of a wide range of 1,3-C-disubstituted BCPs including various drug analogues.

16.
J Am Chem Soc ; 141(4): 1593-1598, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30667220

RESUMEN

An unprecedented conversion of terminal alkynes into N-sulfonimidamides (amidines) is reported by a silver-catalyzed, one-pot, four-component reaction with TMSN3, sodium sulfinate, and sulfonyl azide. The reaction scope includes both aromatic and aliphatic alkynes. A possible cascade reaction mechanism, consisting of alkyne hydroazidation, sulfonyl radical addition, 1,3-dipolar cycloaddition by TMSN3, and retro-1,3-dipolar cycloaddition, is proposed. TMSN3 is found to play an essential role in each step of the reaction.

17.
J Org Chem ; 84(22): 14868-14882, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31646859

RESUMEN

Cyclic dimethylalkenylsiloxanes, useful motifs for (Z)-selective Hiyama cross-coupling, are accessed from alkynyl benzyldimethylsilanes featuring adjacent allylic or homoallylic oxygen substituents by semihydrogenation/debenzylation/cyclization. While formation of 5- and 6-membered rings can be achieved from the free alcohols using fluoride or silanolate, allylic acetate precursors to 5-membered rings display distinct modes of activation. The utility of these compounds is demonstrated through the preparation of a variety of (Z)-alkene-containing polyenes and application to a concise total synthesis of leukotriene B3.

18.
Chem Soc Rev ; 47(3): 668-680, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29192696

RESUMEN

EPR spectroscopy is an increasingly useful analytical tool to probe biomolecule structure, dynamic behaviour, and interactions. Nitroxide radicals are the most commonly used radical probe in EPR experiments, and many methods have been developed for their synthesis, as well as incorporation into biomolecules using site-directed spin labelling. In this Tutorial Review, we discuss the most practical methods for the synthesis of nitroxides, focusing on the tunability of their structures, the manipulation of their sidechains into spin labelling handles, and their installation into biomolecules.


Asunto(s)
Óxidos de Nitrógeno/síntesis química , Marcadores de Spin , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/síntesis química , Radicales Libres/química , Óxidos de Nitrógeno/química
19.
Angew Chem Int Ed Engl ; 58(50): 18177-18181, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31595605

RESUMEN

A highly convergent strategy for the synthesis of the natural product (-)-rubriflordilactone B, and the proposed structure of (-)-pseudo-rubriflordilactone B, is described. Late stage coupling of diynes containing the respective natural product FG rings with a common AB ring aldehyde precedes rhodium-catalyzed [2+2+2] alkyne cyclotrimerization to form the natural product skeleton, with the syntheses completed in just one further operation. This work resolves the uncertainty surrounding the identity of pseudo-rubriflordilactone B and provides a robust platform for further synthetic and biological investigations.


Asunto(s)
Triterpenos/síntesis química , Alquinos/química , Productos Biológicos/química , Catálisis , Cristalografía por Rayos X , Diinos/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Rodio/química , Estereoisomerismo
20.
Chem Soc Rev ; 46(23): 7208-7228, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-29125611

RESUMEN

Vinyl azides are highly versatile synthons that provide access to numerous N-heterocycles and other functional groups. α-Substituted vinyl azides (azido vinylidenes) are a special class that display unique reactivity, able to react not only as azides, but also as radical acceptors, enamine-type nucleophiles, and even electrophiles, thus delivering a wide range of nitrogen-containing compounds and their derivatives. An impressive variety of intermediates - such as iminodiazonium ions, nitrilium ions, iminyl radicals, and metal enaminyl radicals - can be generated from vinyl azides and exploited in cycloadditions, C-H functionalizations, hydrolysis processes, and cascade reactions under transition metal/photoredox catalysis. In addition to presenting synthetic protocols to access vinyl azides, this Review offers a comprehensive coverage of the development of their multifaceted reactivity, and highlights their potential as versatile precursors for synthetic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA