Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(12): e2116543119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35298336

RESUMEN

Here, we report the use of an amphiphilic Pt(II) complex, K[Pt{(O3SCH2CH2CH2)2bzimpy}Cl] (PtB), as a model to elucidate the key role of Pt···Pt interactions in directing self-assembly by combining temperature-dependent ultraviolet-visible (UV-Vis) spectroscopy, stopped-flow kinetic experiments, quantum mechanics (QM) calculations, and molecular dynamics (MD) simulations. Interestingly, we found that the self-assembly mechanism of PtB in aqueous solution follows a nucleation-free isodesmic model, as revealed by the temperature-dependent UV-Vis experiments. In contrast, a cooperative growth is found for the self-assembly of PtB in acetone­water (7:1, vol/vol) solution, which is further verified by the stopped-flow experiments, which clearly indicates the existence of a nucleation phase in the acetone­water (7:1, vol/vol) solution. To reveal the underlying reasons and driving forces for these self-assembly processes, we performed QM calculations and show that the Pt···Pt interactions arising from the interaction between the pz and dz2 orbitals play a crucial role in determining the formation of ordered self-assembled structures. In subsequent oligomer MD simulations, we demonstrate that this directional Pt···Pt interaction can indeed facilitate the formation of linear structures packed in a helix-like fashion. Our results suggest that the self-assembly of PtB in acetone­water (7:1, vol/vol) solution is predominantly driven by the directional noncovalent Pt···Pt interaction, leading to the cooperative growth and the formation of fibrous nanostructures. On the contrary, the self-assembly in aqueous solution forms spherical nanostructures of PtB, which is primarily due to the predominant contribution from the less directional hydrophobic interactions over the directional Pt···Pt and π−π interactions that result in an isodesmic growth.

2.
Proc Natl Acad Sci U S A ; 116(28): 13856-13861, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31243146

RESUMEN

With the rapidly growing exploration of artificial molecular machines and their applications, there is a strong demand to develop molecular machines that can have their motional states and configuration/conformation changes detectable by more sensitive and innovative methods. A visual artificial molecular hinge with phosphorescence behavior changes is designed and synthesized using square-planar cyclometalated platinum(II) complex and rigid aromatic alkynyl groups as the building blocks to construct the wings/flaps and axis, respectively. The molecular motions of this single molecular hinge and its reversible processes can be powered by both solvent and temperature changes. The rotary motion can be conveniently observed by the visual phosphorescence changes from deep-red to green emission in real time.

3.
J Am Chem Soc ; 141(28): 11204-11211, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31274293

RESUMEN

Recovering heavy and precious metals from wastewater is both economically and environmentally attractive. However, a challenge still remains in how to realize the highly selective removal and recovery of a particular metal of interest, such as platinum. Here we experimentally demonstrate a two-dimensional (2D) supramolecular polymer that can serve as a host for the highly selective capture of anionic platinum(II) (PtII) species including its metal-organic complexes and water-soluble ions. This host polymer possesses a 2D honeycomb-like nanostructure noncovalently bridged by cationic alkynylplatinum(II) terpyridine dimers. Anionic PtII guests readily bind to the dimeric PtII building blocks of the internal cavities via electrostatic and specific PtII···PtII interactions. Such unique host-guest interactions have endowed thin membranes comprising highly oriented supramolecular polymers with a versatile ability to selectively recognize and adsorb anionic PtII species over other metal ions in water upon simple filtration.

4.
J Am Chem Soc ; 141(49): 19466-19478, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31789511

RESUMEN

A new class of amphiphilic tridentate cyclometalated gold(III) complexes has been designed and synthesized as luminescent supramolecular building blocks. Positively charged trimethylammonium (-CH2NMe3+) containing alkynyl ligands have been incorporated to introduce the electrostatic interactions. The X-ray crystal structures of two of the complexes have been determined, and the existence of π-π interactions between molecules has been observed. Steady-state and time-resolved absorption and emission studies have been carried out to investigate the nature of the excited states. The complexes are found to exhibit self-assembly properties with the assistance of π-π stacking and hydrophobic interactions and possibly weak Au···Au interaction, resulting in notable emergence of low-energy absorption bands and luminescence changes. The presence of a large hydrophobic moiety is found to be crucial for the formation of aggregates, especially in polar media where hydrophobic interactions play an important role. The nature of the counterion has been shown to have a significant effect on the extent of self-assembly in different media. Upon aggregation, nanofibers are formed in polar media, while nanorods are observed in nonpolar media in one of the representative complexes. Interestingly, a small modification on the alkynyl ligand resulted in the formation of nanoribbons instead. Intriguing luminescence mechanochromic properties have also been observed. This orthogonal and rational molecular design strategy has been shown to be effective in the construction of gold(III)-based smart and multiresponsive materials.

5.
Acc Chem Res ; 51(12): 3041-3051, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30427166

RESUMEN

Alkynylplatinum(II) terpyridine complexes have been increasingly explored since the previous decades, mainly arising from their intriguing photophysical properties and aggregation affinities associated with their extensive Pt(II)···Pt(II) and π-π stacking interactions. Through molecular engineering, one can modulate their fundamental properties and assembly behavior by introduction of various functional groups and structural features. They can therefore serve as ideal candidates to construct metal complex-based molecular architectures to provide an alternative to organic compounds. The metal-based framework can be simultaneously built from predetermined building blocks, giving rise to their well-defined, unique, and discrete natures for molecular recognition. The individual constituents can contribute to molecular architectures with their integrated properties, allowing the manipulation of the various noncovalent intermolecular forces and interactions for selective guest capture. In this Account, our recent progress in the development of these metallomolecular frameworks based on the alkynylplatinum(II) terpyridine system and their recognition properties toward different guest molecules will be presented. Phosphorescent molecular tweezers have been constructed from the alkynylplatinum(II) terpyridine moiety to demonstrate host-guest interactions with cationic, charge-neutral and anionic platinum(II), palladium(II), gold(I), and gold(III) complexes and their binding affinities were found to be perturbed by different metal···metal, π-π and electrostatic interactions. The host-guest assembly process has also resulted in dramatic color changes, together with the turning on of near-IR (NIR) emissions as a result of extensive Pt(II)···Pt(II) interactions. Further work has also been performed to demonstrate that the tweezers can selectively recognize π-surfaces of different planar π-conjugated organic guests. The framework of molecular tweezers has been extended to a double-decker tweezers structure, or a triple-decker structure, which can bind two equivalents of square-planar platinum(II) guests cooperatively to induce a significant color change in solution, representing rare examples of discrete Magnus' green-like salts. By the approaches of structural modifications, we have further modulated the host architecture from molecular tweezers to molecular rectangles. The rectangles have been found to show selective encapsulation of different transition metal complex guests based on the size and steric environment of the host cavity. The molecular rectangles also exhibit reversible host-guest association, in which guest capture and ejection processes can be manipulated by the pH environment, illustrating a potential approach for precise and smart delivery of therapeutic reagents to the slightly more acidic cancer cells.

6.
Chemistry ; 25(20): 5251-5258, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30680815

RESUMEN

An l-glutamine-derived functional group was introduced to the bis(arylalkynyl)platinum(II) bipyridine complexes 1-4. The emission could be switched between the 3 MLCT excited state and the triplet excimeric state through solvent or temperature changes, which is attributed to the formation and disruption of hydrogen-bonding, π-π stacking, and metal-metal interactions. Different architectures with various morphologies, such as honeycomb nanostructures and nanospheres, were formed upon solvent variations, and these changes were accompanied by 1 H NMR and distinct emission changes. Additionally, yellow and red emissive metallogels were formed at room temperature due to the different aggregation behaviors introduced by the substituent groups on bipyridine. The thermoresponsive metallogel showed emission behavior with tunable colors by controlling the temperature. The negative Gibbs free-energy change (ΔG) and the large association constant for excimer formation have suggested that the molecules undergo aggregation through hydrogen-bonding, π-π, and metal-metal interactions, resulting in triplet excimeric emission.

7.
J Am Chem Soc ; 140(26): 8321-8329, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29943985

RESUMEN

Various rhodium(I) pincer complexes with different structural features have been prepared and found to display interesting self-assembly properties due to the extensive Rh(I)···Rh(I) interactions. The incorporation of electron-withdrawing -CF3 substituent has been found to improve the stability of the complexes and also facilitate the directed assembly of complex molecules, providing an opportunity for the systematic investigation of the various noncovalent interactions in their versatile self-assembly behaviors and insights into the structure-property relationship in governing the intermolecular interactions. An isodesmic growth mechanism is identified for the solvent-induced aggregation process. The complex molecules exhibit intense low-energy absorption bands corresponding to the absorptions of the dimers, trimers, and higher order oligomers upon aggregation, with energies related to the electronic properties of the tridentate N-donor ligand. Chiral auxiliaries have also been introduced into the rhodium(I) complexes to build up helical supramolecular assemblies and soft materials.

8.
J Am Chem Soc ; 140(2): 657-666, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29303262

RESUMEN

A new class of water-soluble double complex salts (DCSs), [Pt{bzimpy(TEG)2}Cl][Pt{bzimpy(PrSO3)2}Cl] and its alkylplatinum(II) bzimpy derivatives (bzimpy = 2,6-bis(benzimidazol-2'-yl)pyridine, has been demonstrated to exhibit strong aggregation in water through Pt···Pt and π-π stacking interactions to give a variety of distinctive nanostructures based on the formation of one-dimensional (1D) infinite chains. The self-association process can be systemically controlled by varying the solvent composition and temperature and has been studied by 1H NMR, 2D NOESY NMR, mass spectrometry, electron and confocal fluorescence microscopy, UV-vis absorption, and emission spectroscopy.

9.
J Am Chem Soc ; 140(39): 12521-12526, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30049208

RESUMEN

A thermally activated delayed fluorescence (TADF) tetrametallic Cu(I) metallacycle A behaves as a conformationally adaptive preorganized precursor to afford, through straightforward and rational coordination-driven supramolecular processes, a variety of room-temperature solid-state luminescent polymetallic assemblies. Reacting various cyano-based building blocks with A, a homometallic Cu(I) 1D-helical coordination polymer C and Cu8M discrete circular heterobimetallic assemblies DM (M = Ni, Pd, Pt) are obtained. Their luminescence behaviors are studied, revealing notably the crucial impact of the spin-orbit coupling offered by the central M metal center on the photophysical properties of the heterobimetallic DM derivatives.

10.
Chemistry ; 24(45): 11611-11618, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30063269

RESUMEN

A series of bipyridine platinum(II) complexes with different sizes of triangular metallacycles and alkyl/oligoether chains has been synthesized and characterized. They are packed in a zig-zag fashion with the formation of dimeric structures according to their X-ray crystal structures. Different emission origins are observed due to the different sizes of the triangular ligands. Their morphologies could be tuned by the modification of the molecular structures with different metallacyclic alkynyl ligands and alkyl/oligoether chains and solvents. More interestingly, unusual electronic absorption changes and upfield shifts of the aromatic proton resonances are observed upon increasing the temperature, suggesting further aggregation of the architectures. Near-infrared (NIR) emission is also realized through the tuning of the π-π stacking, Pt⋅⋅⋅Pt interactions, and the packing of planar metallacycles.

11.
Proc Natl Acad Sci U S A ; 112(3): 690-5, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25568083

RESUMEN

A series of multiaddressable platinum(II) molecular rectangles with different rigidities and cavity sizes has been synthesized by endcapping the U-shaped diplatinum(II) terpyridine moiety with various bis-alkynyl ligands. The studies of the host-guest association with various square planar platinum(II), palladium(II), and gold(III) complexes and the related low-dimensional gold(I) complexes, most of which are potential anticancer therapeutics, have been performed. Excellent guest confinement and selectivity of the rectangular architecture have been shown. Introduction of pH-responsive functionalities to the ligand backbone generates multifunctional molecular rectangles that exhibit reversible guest release and capture on the addition of acids and bases, indicating their potential in controlled therapeutics delivery on pH modulation. The reversible host-guest interactions are found to be strongly perturbed by metal-metal and π-π interactions and to a certain extent, electrostatic interactions, giving rise to various spectroscopic changes depending on the nature of the guest molecules. Their binding mode and thermodynamic parameters have been determined by 2D NMR and van't Hoff analysis and supported by computational study.

12.
J Am Chem Soc ; 139(31): 10750-10761, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28759219

RESUMEN

A series of luminescent cyclometalated N^C^N [N^C^N = 1,3-bis(N-alkylbenzimidazol-2'-yl)benzene]platinum(II) alkynyl and carbazolyl complexes has been prepared. The structure of one platinum(II) carbazolyl complex has been characterized by X-ray crystallography. The corresponding electrochemical and photophysical properties have been explored and analyzed. The N^C^N platinum(II) complexes displayed rich luminescence in degassed dichloromethane solution, with their emission profiles dependent on the coordinated alkynyl and carbazolyl ligands. Their emission energies are correlated to the electronic properties of the alkynyl and carbazolyl ligands. By varying the electronic properties of the alkynyl and carbazolyl ligands, emission energies could be fine-tuned to cover a wide range of the visible spectrum, as supported by computational studies. A donor-acceptor platinum(II) complex has been utilized to fabricate memory devices that exhibit binary memory performances with low operating voltages, high ON/OFF ratios, and long retention times. Solution-processable OLEDs have been fabricated based on another platinum(II) carbazolyl complex, resulting in a maximum external quantum efficiency of up to 7.2%, which is comparable to that of the vacuum-deposited devices based on the small-molecule counterpart, illustrating the multifunctional nature of the platinum(II)-containing materials.

13.
J Am Chem Soc ; 139(39): 13858-13866, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28933841

RESUMEN

A series of amphiphilic platinum(II) complexes with tridentate N-donor ligands has been synthesized and characterized. Different supramolecular architectures are constructed using the amphiphilic molecules as the building blocks through the formation of Pt···Pt and π-π stacking interactions in aqueous media. The aggregation-deaggregation-aggregation self-assembly behavior together with obvious spectroscopic changes could be fine-tuned by the addition of THF in aqueous media. More interestingly, one of the complexes is found to show fast response and high selectivity toward alcohol and water vapors with good reversibility, leading to drastic color and luminescence changes, and hence unique dual switching behavior, with the water molecules readily displaced by the alcohol vapor. Rapid writing and erasure have been realized via the control of a jet or a stream of alcohol vapor flow. In addition, it has been employed as active materials in the fabrication of small-molecule solution-processable resistive memory devices, exhibiting stable and promising binary memory performance with threshold voltages of ca. 3.4 V, high ON/OFF ratios of up to 105 and long retention times of over 104 s. The vapochromic and vapoluminescent materials are demonstrated to have potential applications in chemosensing, logic gates, VOC monitoring, and memory functions.

14.
Soft Matter ; 13(45): 8408-8418, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29077127

RESUMEN

A new class of small molecule-based amphiphilic carbazole-containing compounds has been designed and synthesized. Detailed analysis of the temperature- and solvent-dependent UV-vis absorption spectra has provided insights into the cooperative self-assembly mechanism of the carbazole-containing compounds. Interestingly, the prepared amphiphilic rigid-soft compounds were also found to display a lower critical solution temperature (LCST) behavior in aqueous solution, which is relatively less explored in small molecule-based materials, leading to promising candidates for the design of a new class of thermo-responsive materials.

15.
Angew Chem Int Ed Engl ; 56(47): 15103-15107, 2017 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-29024526

RESUMEN

Discrete pentanuclear PtII stacks were prepared by the host-guest adduct formation between multinuclear tweezer-type PtII complexes. The formation of the PtII stacks in solution was accompanied by color changes and the turning on of near-infrared emission resulting from Pt⋅⋅⋅Pt and π-π interactions. The X-ray crystal structure revealed the formation of a discrete 1:1 adduct, in which a linear stack of five PtII centers with extended Pt⋅⋅⋅Pt interactions was observed. Additional binding affinity and stability have been achieved through a multinuclear host-guest system. The binding behaviors can be fine-tuned by varying the spacer between the two PtII moieties in the guests. This work provides important insights for the construction of discrete higher-order supramolecular metal-ligand aggregates using a tweezer-directed approach.

16.
Inorg Chem ; 55(7): 3685-91, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26991111

RESUMEN

New classes of tridentate N-donor rhodium(I) complexes have been synthesized and demonstrated to exhibit interesting induced self-assembly behavior by variation of external stimuli, as a result of extensive Rh(I)···Rh(I) interactions, with the assistance of π-π stacking and hydrophobic-hydrophobic interactions. An isodesmic aggregation mechanism has also been identified in the temperature-dependent process. Upon aggregation in acetone solution, the complex molecules form wire-like nanostructures with their shape dependent on the π-conjugation of the tridentate ligands. On the other hand, crystalline needles of rhodium(I) complexes obtained from recrystallization have also been shown to exhibit conductivity on the order of 10(-3) S cm(-1).

17.
J Am Chem Soc ; 137(21): 6920-31, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25984814

RESUMEN

A series of tetrakis(isocyano)rhodium(I) complexes with different chain lengths of alkyl substituents has been found to exhibit a strong tendency toward solution state aggregation upon altering the concentration, temperature and solvent composition. Temperature- and solvent-dependent UV-vis absorption studies have been performed, and the data have been analyzed using the aggregation model to elucidate the growth mechanism. The aggregation is found to involve extensive Rh(I)···Rh(I) interactions that are synergistically assisted by hydrophobic-hydrophobic interactions to give a rainbow array of solution aggregate colors. It is noted that the presence of three long alkyl substituents is crucial for the observed cooperativity in the aggregation. Molecular assemblies in the form of nanoplates and nanovesicles have been observed in the hexane-dichloromethane solvent mixtures, arising from the different formation mechanisms based on the alkyl chain length of the complexes. Benzo-15-crown-5 moieties have been incorporated for selective potassium ion binding to induce dimer formation and drastic color changes, rendering the system as potential colorimetric and luminescent cation sensors and as building blocks for ion-controlled supramolecular assembly.

18.
Chemistry ; 19(41): 13910-24, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23999951

RESUMEN

A series of luminescent cyclometalated platinum(II) complexes of N^C^N ligands [N^C^N=2,6-bis(benzoxazol-2'-yl)benzene (bzoxb), 2,6-bis(benzothiazol-2'-yl)benzene (bzthb), and 2,6-bis(N-alkylnaphthoimidazol-2'-yl)benzene (naphimb)] has been synthesized and characterized. Two of the platinum(II) complexes have been structurally characterized by X-ray crystallography. Their electrochemical, electronic absorption, and luminescence properties have been investigated. In dichloromethane solution at room temperature, the cyclometalated N^C^N platinum(II) complexes exhibited rich luminescence with well-resolved vibronic-structured emission bands. The emission energies of the complexes are found to be closely related to the electronic properties of the N^C^N ligands. By varying the electronic properties of the cyclometalated ligands, a fine-tuning of the emission energies can be achieved, as supported by computational studies. Multilayer organic light-emitting devices have been prepared by utilizing two of these platinum(II) complexes as phosphorescent dopants, in which a saturated yellow emission with Commission International de I'Eclairage coordinates of (0.50, 0.49) was achieved.

19.
Chem Asian J ; 16(22): 3669-3676, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34569719

RESUMEN

A series of heteroleptic cyclometalated platinum(II) complexes, [Pt(C^N)(O^O)], (1-10) with various donors and acceptors has been synthesized and characterized by 1 H NMR spectroscopy, elemental analyses, infrared spectroscopy and mass spectrometry. The X-ray structure of 2 has also been determined. The electrochemical and photophysical properties of the platinum(II) complexes were studied. These experimental results have been supported by computational studies. Furthermore, two of the complexes have been employed as the active material in the fabrication of resistive memory devices, exhibiting stable binary memory performance with low operating voltage, high ON/OFF ratio and long retention time.

20.
Chem Sci ; 11(2): 499-507, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-32190269

RESUMEN

A new class of bent amphiphilic alkynylplatinum(ii) terpyridine complexes was found to adopt different modes of molecular stacking to give diverse nanostructures. In chlorinated solvents, the complexes aggregate in the presence of water droplets and assist in the formation of porous networks, while in DMSO solutions, they self-assemble to give fibrous nanostructures. The complexes would adopt a head-to-tail tetragonal stacking arrangement, as revealed by X-ray crystallographic studies, computational studies and powder X-ray diffraction (PXRD) studies. Their self-assembly follows a cooperative growth mechanism in DMSO and an isodesmic growth mechanism in DMSO-H2O mixture. The balance between hydrophobic and hydrophilic components of the complex system, in conjunction with the nuclearity and the positioning of the substituents, are found to govern the mode of molecular stacking and the fabrication of precise functional nanostructures. This class of complexes serve as versatile building blocks to construct orderly packed molecular materials and functional materials in a well-controlled manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA