Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Pharmacol Pharm Sci ; 2020: 3176391, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33354670

RESUMEN

Streblus asper (SA) belonging to the Moraceae family is well known as a folk medicinal plant in Asian countries. This study aimed to investigate the antilipoxygenase activity and the anti-inflammatory effects of the SA leaf extract. An in vitro antilipoxygenase study was performed using a lipoxygenase assay, and the oxidation of linoleic acid into 13-hydroperoxy linoleic acid (HPODE) was detected with a UV spectrophotometer at a wavelength of 234 nm. In the animal study, twenty-five male ICR mice were induced as ear edema by topical xylene, and the ear thickness of the mice was measured. The lipoxygenase assay results showed that the IC50 values of diclofenac sodium and SA were 0.0015 and 37.96 µg/mL, respectively. In the animal study, mice that received diclofenac sodium exhibited significantly reduced ear edema induced by xylene from 30 min onward, while mice that received 250 mg/kg and 500 mg/kg SA exhibited significantly reduced ear edema compared with the control group 45 min after induction with xylene. These results suggested that the SA leaf extract had anti-inflammatory activity. However, further studies are required to evaluate these effects and the additional potential of the plant that might be beneficial for the development of pharmaceutical products that prevent and treat inflammation.

2.
Acta Biomater ; 61: 180-192, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28782723

RESUMEN

In this study, poly(ε-caprolactone)-co-poly(ethylene glycol) copolymers grafted with a cationic ligand, propargyltrimethyl ammonium iodide (PTA), to fabricate the cationized triblock (P(CatCLCL)2-PEG) and diblock (P(CatCLCL)-mPEG) copolymers were investigated their potential use for oral delivery of enoxaparin (ENX). Influences of various PTA contents and different structures of the copolymers on molecular characteristics, ENX encapsulation, particle characteristics, and capability of drug transport across Caco-2 cells were elucidated. The results showed that P(CatCLCL)2-PEG and P(CatCLCL)-mPEG copolymers self-aggregated and encapsulated ENX into spherical particles of ∼200-450nm. The increasing amount of PTA on the copolymers increased encapsulation efficiency of over 90%. The ENX release from both types of the cationized copolymer particles was pH-dependent which was retarded at pH 1.2 and accelerated at pH 7.4, supporting the drug protection in the acidic environment and possible release in the blood circulation. The toxicity of ENX-loaded particles on Caco-2 cells decreased when decreasing the amount of PTA. The triblock and diblock particles dramatically enhanced ENX uptake and transport across Caco-2 cells as compared to the ENX solution. However, the different structures of the copolymers slightly affected ENX transport. These results suggested that P(CatCLCL)2-PEG and P(CatCLCL)-mPEG copolymers would be potential carriers for oral delivery of ENX. STATEMENT OF SIGNIFICANCE: The anionic drugs such as proteins, peptides or polysaccharides are generally administered via invasive route causing patient incompliance and high cost of hospitalization. The development of biomaterials for non-invasive delivery of those drugs has gained much attention, especially for oral delivery. However, they have limitation due to non-biocompatibility and poor drug bioavailability. In this study, the novel poly(ε-caprolactone)-co-poly(ethylene glycol) copolymers grafted with propargyltrimethyl ammonium iodide, a small cationic ligand, were introduced to use as a carrier for oral delivery of enoxaparin, a highly negatively charged drug. The study showed that these cationized copolymers could achieve high enoxaparin entrapment efficiency, protect drug release in an acidic environment and enhance enoxaparin permeability across Caco-2 cells, the intestinal cell model. These characteristics of the cationized copolymers make them a potential candidate for oral delivery of anionic drugs for biomaterial applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Enoxaparina/administración & dosificación , Poliésteres/química , Polietilenglicoles/química , Administración Oral , Células CACO-2 , Cationes , Muerte Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Liberación de Fármacos , Enoxaparina/farmacología , Humanos , Imagenología Tridimensional , Tamaño de la Partícula , Propiedades de Superficie , Temperatura
3.
Mater Sci Eng C Mater Biol Appl ; 72: 444-455, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28024608

RESUMEN

Cationic copolymers have been attractive to investigate due to their potential to complexation with anionic drugs and expected to use in the pharmaceutical application. In this study, the modified poly(ε-caprolactone)2-co-poly(ethylene glycol) copolymers (P(CL)2-PEG) were successfully synthesized by click reaction. The amount of small molecular cationic ligand, propargyltrimethyl ammonium iodide, was varied and grafted onto various mole ratios of P(CL) to PEG. The effects of P(CL) chain length and amount of the grafting cationic ligand on physicochemical properties of polymers and particles were studied. The number-average molecular weights of the copolymers grafted with cationic ligand were found ranging between 10,000 and 23,000g/mol as investigated by NMR. From DSC study, the results showed that the grafting ligand affected thermal behaviors of the copolymers by increasing the glass transition temperature and decreasing the melting temperature of the copolymers. Furthermore, these cationic copolymers could self-aggregate with their critical aggregation concentration depending on mole ratios of hydrophilic to hydrophobic portions. The particles containing higher amounts of the cationic ligand tended to aggregate in both acidic and basic pH environment and at high salt concentration. Additionally, particle size, size distribution (PdI), and morphology of self-assembling particles varied depending on P(CL) chain length and the amount of the grafting cationic ligand. The synthesized cationic copolymer showed a capability to encapsulate a high negatively charged drug, enoxaparin, with an encapsulation efficiency of 87%. After drug incorporation, the particles substantially changed in size, shape, PdI, and zeta potential to become more suitable for drug delivery. These cationic copolymers with flexible properties will be the candidate for further development as carriers for the delivery of negatively charged drugs.


Asunto(s)
Ligandos , Poliésteres/química , Polietilenglicoles/química , Rastreo Diferencial de Calorimetría , Cationes/química , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Peso Molecular , Concentración Osmolar , Tamaño de la Partícula , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA