Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396760

RESUMEN

Serine/arginine-rich splicing factors (SRSFs) are a family of proteins involved in RNA metabolism, including pre-mRNA constitutive and alternative splicing. The role of SRSF proteins in regulating mitochondrial activity has already been shown for SRSF6, but SRSF4 altered expression has never been reported as a cause of bone marrow failure. An 8-year-old patient admitted to the hematology unit because of leukopenia, lymphopenia, and neutropenia showed a missense variant of unknown significance of the SRSF4 gene (p.R235W) found via whole genome sequencing analysis and inherited from the mother who suffered from mild leuko-neutropenia. Both patients showed lower SRSF4 protein expression and altered mitochondrial function and energetic metabolism in primary lymphocytes and Epstein-Barr-virus (EBV)-immortalized lymphoblasts compared to healthy donor (HD) cells, which appeared associated with low mTOR phosphorylation and an imbalance in the proteins regulating mitochondrial biogenesis (i.e., CLUH) and dynamics (i.e., DRP1 and OPA1). Transfection with the wtSRSF4 gene restored mitochondrial function. In conclusion, this study shows that the described variant of the SRSF4 gene is pathogenetic and causes reduced SRSF4 protein expression, which leads to mitochondrial dysfunction. Since mitochondrial function is crucial for hematopoietic stem cell maintenance and some genetic bone marrow failure syndromes display mitochondrial defects, the SRSF4 mutation could have substantially contributed to the clinical phenotype of our patient.


Asunto(s)
Médula Ósea , Mitocondrias , Neutropenia , Factores de Empalme Serina-Arginina , Niño , Humanos , Empalme Alternativo , Médula Ósea/metabolismo , Médula Ósea/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosfoproteínas/metabolismo , Precursores del ARN/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047537

RESUMEN

Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure and aplastic anemia. So far, 23 genes are involved in this pathology, and their mutations lead to a defect in DNA repair. In recent years, it has been observed that FA cells also display mitochondrial metabolism defects, causing an accumulation of intracellular lipids and oxidative damage. However, the molecular mechanisms involved in the metabolic alterations have not yet been elucidated. In this work, by using lymphoblasts and fibroblasts mutated for the FANC-A gene, oxidative phosphorylation (OxPhos) and mitochondria dynamics markers expression was analyzed. Results show that the metabolic defect does not depend on an altered expression of the proteins involved in OxPhos. However, FA cells are characterized by increased uncoupling protein UCP2 expression. FANC-A mutation is also associated with DRP1 overexpression that causes an imbalance in the mitochondrial dynamic toward fission and lower expression of Parkin and Beclin1. Treatment with P110, a specific inhibitor of DRP1, shows a partial mitochondrial function recovery and the decrement of DRP1 and UCP2 expression, suggesting a pivotal role of the mitochondrial dynamics in the etiopathology of Fanconi anemia.


Asunto(s)
Anemia de Fanconi , Dinámicas Mitocondriales , Humanos , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas/metabolismo , Dinaminas/metabolismo
3.
Br J Haematol ; 187(4): 502-508, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31309545

RESUMEN

Autoimmune lymphoproliferative syndrome (ALPS) is a congenital disorder that results in an apoptosis impairment of lymphocytes, leading to chronic lymphoproliferation and autoimmunity, mainly autoimmune cytopenias. FAS gene defects are often responsible for the disease, the phenotype of which can vary from asymptomatic/mild forms to severe disease. More rarely, defects are associated to  other genes involved in apoptosis pathway, such as CASP10. Few data are available on CASP10-mutated patients. To date, two CASP10 mutations have been recognized as pathogenic (I406L and L258F) and others have been reported with controversial result on their pathogenicity (V410l, Y446C) or are known to be polymorphic variants (L522l). In this study, we evaluated apoptosis function in patients with an ALPS/ALPS-like phenotype carrying CASP10 variants. Molecular findings were obtained by next generation sequencing analysis of genes involved in immune dysregulation syndromes. Functional studies were performed after inducing apoptosis by FAS-ligand/TRIAL stimulation and analysing cell death and the function of CASP10, CASP8 and PARP proteins. We identified 6 patients with an ALPS (n = 2) or ALPS-like (n = 4) phenotype, carrying I406L (n = 1),V410l (n = 2),Y446C (n = 1) heterozygous CASP10 variants or the L522l polymorphisms (n = 2) associated with another polymorphic homozygote variant on CASP8 or a compound heterozygous mutation on TNFRSF13C. Apoptosis was impaired in all patients showing that such variants may play a role in the development of clinical phenotype.


Asunto(s)
Apoptosis/genética , Síndrome Linfoproliferativo Autoinmune/genética , Caspasa 10/genética , Polimorfismo Genético , Adulto , Síndrome Linfoproliferativo Autoinmune/patología , Caspasa 8/genética , Proteína Ligando Fas/fisiología , Femenino , Heterocigoto , Homocigoto , Humanos , Masculino , Mutación , Fenotipo , Receptor fas/fisiología
4.
Haematologica ; 103(3): 417-426, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29269525

RESUMEN

Fanconi anemia is a rare disease characterized by congenital malformations, aplastic anemia, and predisposition to cancer. Despite the consolidated role of the Fanconi anemia proteins in DNA repair, their involvement in mitochondrial function is emerging. The purpose of this work was to assess whether the mitochondrial phenotype, independent of genomic integrity, could correlate with patient phenotype. We evaluated mitochondrial and clinical features of 11 affected individuals homozygous or compound heterozygous for p.His913Pro and p.Arg951Gln/Trp, the two residues of FANCA that are more frequently affected in our cohort of patients. Although p.His913Pro and p.Arg951Gln proteins are stably expressed in cytoplasm, they are unable to migrate in the nucleus, preventing cells from repairing DNA. In these cells, the electron transfer between respiring complex I-III is reduced and the ATP/AMP ratio is impaired with defective ATP production and AMP accumulation. These activities are intermediate between those observed in wild-type and FANCA-/- cells, suggesting that the variants at residues His913 and Arg951 are hypomorphic mutations. Consistent with these findings, the clinical phenotype of most of the patients carrying these mutations is mild. These data further support the recent finding that the Fanconi anemia proteins play a role in mitochondria, and open up possibilities for genotype/phenotype studies based on novel mitochondrial criteria.


Asunto(s)
Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Anemia de Fanconi/genética , Mitocondrias , Mutación Missense , Adenosina Trifosfato/biosíntesis , Adolescente , Núcleo Celular/metabolismo , Niño , Preescolar , Reparación del ADN/genética , Transporte de Electrón , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Femenino , Humanos , Mutación con Pérdida de Función , Masculino , Fenotipo
5.
Hum Mutat ; 38(7): 849-862, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28477385

RESUMEN

The transfer of genomic information into the primary RNA sequence can be altered by RNA editing. We have previously shown that genomic variants can be RNA-edited to wild-type. The presence of distinct "edited" iduronate 2-sulfatase (IDS) mRNA transcripts ex vivo evidenced the correction of a nonsense and frameshift variant, respectively, in three unrelated Hunter syndrome patients. This phenomenon was confirmed in various patient samples by a variety of techniques, and was quantified by single-nucleotide primer extension. Western blotting also confirmed the presence of IDS protein similar in size to the wild-type. Since preliminary experimental evidence suggested that the "corrected" IDS proteins produced by the patients were similar in molecular weight and net charge to their wild-type counterparts, an in vitro system employing different cell types was established to recapitulate the site-specific editing of IDS RNA (uridine to cytidine conversion and uridine deletion), and to confirm the findings previously observed ex vivo in the three patients. In addition, confocal microscopy and flow cytometry analyses demonstrated the expression and lysosomal localization in HEK293 cells of GFP-labeled proteins translated from edited IDS mRNAs. Confocal high-content analysis of the two patients' cells expressing wild-type or mutated IDS confirmed lysosomal localization and showed no accumulation in the Golgi or early endosomes.


Asunto(s)
Glicoproteínas/genética , Mucopolisacaridosis II/genética , Mutación , ARN Mensajero/genética , Secuencia de Bases , Codón sin Sentido , Biología Computacional , Exones , Mutación del Sistema de Lectura , Variación Genética , Vectores Genéticos , Genoma Humano , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Hemicigoto , Humanos , Lisosomas/metabolismo , Masculino , Biosíntesis de Proteínas , Edición de ARN
7.
Mol Genet Metab ; 119(4): 329-337, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27802905

RESUMEN

The chromosomal region, in which the GBA gene is located, is structurally subject to misalignments, reciprocal and nonreciprocal homologous recombination events, leading to structural defects such as deletions, duplications and gene-pseudogene complex rearrangements causing Gaucher Disease (GD). Interestingly deletions and duplications, belonging to the heterogeneous group of structural defects collectively termed Copy Number Variations (CNVs), together with gene-pseudogene complex rearrangements represent the main cause of pitfalls in GD mutational analysis. In the present study, we set up and validate a Multiplex Ligation-dependent Probe Amplification (MLPA)-based approach to simultaneously investigate the potential occurrence of CNVs and complex rearrangements in 8 unrelated GD patients who had still not-well-characterized or uncharacterized alleles. The findings allowed us to complete the mutational analysis in 4 patients, identifying a rare deletion (g.-3100_+834del3934) and 2 novel recombinant alleles (g.4356_7031conJ03060.1:g.2544_4568; g.1942_7319conJ03060.1:g.1092_4856). These results demonstrate the diagnostic usefulness of MLPA in the detection of GBA deletions and recombinations. In addition, MLPA findings have also served as a basis for developing molecular approaches to precisely pinpoint the breakpoints and characterize the underlying mechanism of copy number variations.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Alelos , Femenino , Enfermedad de Gaucher/diagnóstico , Duplicación de Gen/genética , Humanos , Masculino , Eliminación de Secuencia/genética
8.
Am J Hematol ; 91(7): 666-71, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27013026

RESUMEN

We analyzed 97 Fanconi anemia patients from a clinic/biological database for genotype, somatic, and hematologic phenotype, adverse hematological events, solid tumors, and treatment. Seventy-two patients belonged to complementation group A. Eighty percent of patients presented with mild/moderate somatic phenotype and most with cytopenia. No correlation was seen between somatic/hematologic phenotype and number of missense mutations of FANCA alleles. Over follow-up, 33% of patients improved or maintained mild/moderate cytopenia or normal blood count, whereas remaining worsened cytopenia. Eleven patients developed a hematological adverse event (MDS, AML, pathological cytogenetics) and three developed solid tumors. 10 years cumulative risk of death of the whole cohort was 25.6% with median follow-up 5.8 years. In patients eligible to hematopoietic stem cell transplantation because of moderate cytopenia, mortality was significantly higher in subjects transplanted from matched unrelated donor over nontransplanted subjects, whereas there was no significant difference between matched sibling donor transplants and nontransplanted patients. In patients eligible to transplant because of severe cytopenia and clonal disease, mortality risk was not significantly different in transplanted from matched unrelated versus matched sibling donor versus nontransplanted subjects. The decision to transplant should rely on various elements including, type of donor, HLA matching, patient comorbidities, impairment, and clonal evolution of hematopoiesis. Am. J. Hematol. 91:666-671, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Anemia de Fanconi/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Adolescente , Adulto , Niño , Preescolar , Toma de Decisiones , Anemia de Fanconi/mortalidad , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/mortalidad , Prueba de Histocompatibilidad , Humanos , Lactante , Recién Nacido , Italia , Masculino , Pancitopenia/inducido químicamente , Fenotipo , Hermanos , Donantes de Tejidos , Resultado del Tratamiento , Adulto Joven
9.
Clin Genet ; 85(3): 267-72, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23711321

RESUMEN

Proteolipid protein 1 (PLP1) gene-related disorders due to mutations in the PLP1 include a wide spectrum of X-linked disorders ranging from severe connatal Pelizaeus-Merzbacher disease (PMD) to spastic paraplegia 2 (SPG2). Duplications, deletions or point mutations in coding and noncoding regions of the PLP1 gene may occur. We report the clinical, neuroradiologic and molecular findings in six patients from two unrelated families. The affected males showed severe mental retardation, spastic tetraparesis, inability of walking and pes cavus at onset in early infancy. Brain magnetic resonance imaging (MRI) showed hypomyelination and brain atrophy. Nystagmus was never observed. The affected females showed adult-onset progressive spastic paraparesis leading to wheel-chair dependency and subtle white matter changes on brain MRI. Molecular studies in the two families identified two different intronic mutations, the novel c.622+2T>C and the known c.622+1G>A, leading to the skipping of PLP1-exon 4. The clinical presentation of the affected males did not consistently fit in any of the PLP1-related disorder subtypes (i.e., connatal or classic PMD, SPG2 and 'PLP1 null syndrome'), and in addition, the carrier females were symptomatic despite the severe clinical picture of their respective probands. This study provides new insight into the genotype-phenotype correlations of patients with PLP1 splice-site mutations.


Asunto(s)
Exones , Estudios de Asociación Genética , Mutación , Proteína Proteolipídica de la Mielina/genética , Adulto , Encéfalo/patología , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Enfermedad de Pelizaeus-Merzbacher/diagnóstico , Enfermedad de Pelizaeus-Merzbacher/genética , Mutación Puntual , Sitios de Empalme de ARN , Adulto Joven
10.
Haematologica ; 99(6): 1022-31, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24584348

RESUMEN

Fanconi anemia is an inherited disease characterized by congenital malformations, pancytopenia, cancer predisposition, and sensitivity to cross-linking agents. The molecular diagnosis of Fanconi anemia is relatively complex for several aspects including genetic heterogeneity with mutations in at least 16 different genes. In this paper, we report the mutations identified in 100 unrelated probands enrolled into the National Network of the Italian Association of Pediatric Hematoly and Oncology. In approximately half of these cases, mutational screening was carried out after retroviral complementation analyses or protein analysis. In the other half, the analysis was performed on the most frequently mutated genes or using a next generation sequencing approach. We identified 108 distinct variants of the FANCA, FANCG, FANCC, FANCD2, and FANCB genes in 85, 9, 3, 2, and 1 families, respectively. Despite the relatively high number of private mutations, 45 of which are novel Fanconi anemia alleles, 26% of the FANCA alleles are due to 5 distinct mutations. Most of the mutations are large genomic deletions and nonsense or frameshift mutations, although we identified a series of missense mutations, whose pathogenetic role was not always certain. The molecular diagnosis of Fanconi anemia is still a tiered procedure that requires identifying candidate genes to avoid useless sequencing. Introduction of next generation sequencing strategies will greatly improve the diagnostic process, allowing a rapid analysis of all the genes.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Anemia de Fanconi/genética , Mutación , Sustitución de Aminoácidos , Línea Celular , Estudios de Cohortes , Biología Computacional , Bases de Datos de Ácidos Nucleicos , Efecto Fundador , Genotipo , Humanos , Italia , Mosaicismo , Polimorfismo de Nucleótido Simple
11.
Am J Hematol ; 88(6): 472-6, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23483621

RESUMEN

In this study, the immunological status of 61 patients with Fanconi anemia (FA) with advanced marrow failure before hematopoietic stem cell transplantation was analyzed by assessing the phenotype of peripheral blood lymphocytes, serum immunoglobulin (Ig) levels, and inflammatory cytokines. In patients with FA, total absolute lymphocytes (P < 0.0001), B cells (P < 0.0001), and NK cells (P = 0.003) were reduced when compared with normal controls. T cells (CD3), that is, cytotoxic T cells, naïve T cells, and regulatory T cells, showed a relative increase when compared with controls. Serum levels of IgG (P < 0.0001) and IgM (P = 0.004) were significantly lower, whereas IgA level was higher (P < 0.0001) than in normal controls. TGF-ß (P = 0.007) and interleukin (IL)-6 (P = 0.0007) levels were increased in the serum of patients when compared with controls, whereas sCD40L level decreases (P < 0.0001). No differences were noted in the serum levels of IL-1ß, IL-2, IL-4, IL-10, IL-13, IL-17, and IL-23 between FA subjects and controls. This comprehensive immunological study shows that patients with FA with advanced marrow failure have an altered immune status. This is in accordance with some characteristics of FA such as the proinflammatory and proapoptotic status. In addition, B lymphocyte failure may make tight and early immunological monitoring advisable.


Asunto(s)
Anemia de Fanconi/inmunología , Adolescente , Adulto , Niño , Preescolar , Citocinas/sangre , Citocinas/inmunología , Anemia de Fanconi/sangre , Femenino , Humanos , Inmunoglobulinas/sangre , Inmunoglobulinas/inmunología , Inmunofenotipificación , Subgrupos Linfocitarios/inmunología , Masculino , Estudios Retrospectivos , Adulto Joven
12.
Antioxidants (Basel) ; 12(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37237966

RESUMEN

Fanconi anemia (FA) is a rare genetic disease characterized by a dysfunctional DNA repair and an oxidative stress accumulation due to defective mitochondrial energy metabolism, not counteracted by endogenous antioxidant defenses, which appear down-expressed compared to the control. Since the antioxidant response lack could depend on the hypoacetylation of genes coding for detoxifying enzymes, we treated lymphoblasts and fibroblasts mutated for the FANC-A gene with some histone deacetylase inhibitors (HDACi), namely, valproic acid (VPA), beta-hydroxybutyrate (OHB), and EX527 (a Sirt1 inhibitor), under basal conditions and after hydrogen peroxide addition. The results show that VPA increased catalase and glutathione reductase expression and activity, corrected the metabolic defect, lowered lipid peroxidation, restored the mitochondrial fusion and fission balance, and improved mitomycin survival. In contrast, OHB, despite a slight increase in antioxidant enzyme expressions, exacerbated the metabolic defect, increasing oxidative stress production, probably because it also acts as an oxidative phosphorylation metabolite, while EX527 showed no effect. In conclusion, the data suggest that VPA could be a promising drug to modulate the gene expression in FA cells, confirming that the antioxidant response modulation plays a pivotal in FA pathogenesis as it acts on both oxidative stress levels and the mitochondrial metabolism and dynamics quality.

13.
Front Genet ; 14: 1209138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547463

RESUMEN

Introduction: Fanconi anemia (FA) is a genome instability condition that drives somatic mosaicism in up to 25% of all patients, a phenomenon now acknowledged as a good prognostic factor. Herein, we describe the case of P1, a FA proband carrying a splicing variant, molecularly compensated by a de novo insertion. Methods and Results: Targeted next-generation sequencing on P1's peripheral blood DNA detected the known FANCA c.2778 + 83C > G intronic mutation and suggested the presence of a large deletion on the other allele, which was then assessed by MLPA and RT-PCR. To determine the c.2778 + 83C > G splicing effect, we performed a RT-PCR on P1's lymphoblastoid cell line (LCL) and on the LCL of another patient (P2) carrying the same variant. Although we confirmed the expected alternative spliced form with a partial intronic retention in P2, we detected no aberrant products in P1's sample. Sequencing of P1's LCL DNA allowed identification of the de novo c.2778 + 86insT variant, predicted to compensate 2778 + 83C > G impact. Albeit not found in P1's bone marrow (BM) DNA, c.2778 + 86insT was detected in a second P1's LCL established afterward, suggesting its occurrence at a low level in vivo. Minigene assay recapitulated the c.2778 + 83C > G effect on splicing and the compensatory role of c.2778 + 86insT in re-establishing the physiological mechanism. Accordingly, P1's LCL under mitomycin C selection preserved the FA pathway activity in terms of FANCD2 monoubiquitination and cell survival. Discussion: Our findings prove the role of c.2778 + 86insT as a second-site variant capable of rescuing c.2778 + 83C > G pathogenicity in vitro, which might contribute to a slow hematopoietic deterioration and a mild hematologic evolution.

14.
Front Immunol ; 13: 869033, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35655776

RESUMEN

Background: Evans syndrome (ES) is a rare disorder classically defined as the simultaneous or sequential presence of autoimmune haemolytic anaemia and immune thrombocytopenia, but it has also been described as the presence of at least two autoimmune cytopenias. Recent reports have shown that ES is often a manifestation of an underlying inborn error of immunity (IEI) that can benefit from specific treatments. Aims: The aim of this study is to investigate the clinical and immunological characteristics and the underlying genetic background of a single-centre cohort of patients with ES. Methods: Data were obtained from a retrospective chart review of patients with a diagnosis of ES followed in our centre. Genetic studies were performed with NGS analysis of 315 genes related to both haematological and immunological disorders, in particular IEI. Results: Between 1985 and 2020, 40 patients (23 men, 17 women) with a median age at onset of 6 years (range 0-16) were studied. ES was concomitant and sequential in 18 (45%) and 22 (55%) patients, respectively. Nine of the 40 (8%) patients had a positive family history of autoimmunity. Other abnormal immunological features and signs of lymphoproliferation were present in 24/40 (60%) and 27/40 (67%) of cases, respectively. Seventeen out of 40 (42%) children fit the ALPS diagnostic criteria. The remaining 21 (42%) and 2 (5%) were classified as having an ALPS-like and an idiopathic disease, respectively. Eighteen patients (45%) were found to have an underlying genetic defect on genes FAS, CASP10, TNFSF13B, LRBA, CTLA4, STAT3, IKBGK, CARD11, ADA2, and LIG4. No significant differences were noted between patients with or without variant and between subjects with classical ES and the ones with other forms of multilineage cytopenias. Conclusions: This study shows that nearly half of patients with ES have a genetic background being in most cases secondary to IEI, and therefore, a molecular evaluation should be offered to all patients.


Asunto(s)
Anemia Hemolítica Autoinmune , Púrpura Trombocitopénica Idiopática , Trombocitopenia , Proteínas Adaptadoras Transductoras de Señales , Adolescente , Anemia Hemolítica Autoinmune/genética , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Estudios Retrospectivos
15.
Metabolites ; 12(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35050128

RESUMEN

Fanconi Anemia (FA) is a rare recessive genetic disorder characterized by aplastic anemia due to a defective DNA repair system. In addition, dysfunctional energy metabolism, lipid droplets accumulation, and unbalanced oxidative stress are involved in FA pathogenesis. Thus, to modulate the altered metabolism, Fanc-A lymphoblast cell lines were treated with quercetin, a flavonoid compound, C75 (4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid), a fatty acid synthesis inhibitor, and rapamycin, an mTOR inhibitor, alone or in combination. As a control, isogenic FA cell lines corrected with the functional Fanc-A gene were used. Results showed that: (i) quercetin recovered the energy metabolism efficiency, reducing oxidative stress; (ii) C75 caused the lipid accumulation decrement and a slight oxidative stress reduction, without improving the energy metabolism; (iii) rapamycin reduced the aerobic metabolism and the oxidative stress, without increasing the energy status. In addition, all molecules reduce the accumulation of DNA double-strand breaks. Two-by-two combinations of the three drugs showed an additive effect compared with the action of the single molecule. Specifically, the quercetin/C75 combination appeared the most efficient in the mitochondrial and lipid metabolism improvement and in oxidative stress production reduction, while the quercetin/rapamycin combination seemed the most efficient in the DNA breaks decrement. Thus, data reported herein suggest that FA is a complex and multifactorial disease, and a multidrug strategy is necessary to correct the metabolic alterations.

16.
Hum Mutat ; 31(12): E1894-914, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20886637

RESUMEN

The characterization of the underlying GALC gene lesions was performed in 30 unrelated patients affected by Krabbe disease, an autosomal recessive leukodystrophy caused by the deficiency of lysosomal enzyme galactocerebrosidase. The GALC mutational spectrum comprised 33 distinct mutant (including 15 previously unreported) alleles. With the exception of 4 novel missense mutations that replaced evolutionarily highly conserved residues (p.P318R, p.G323R, p.I384T, p.Y490N), most of the newly described lesions altered mRNA processing. These included 7 frameshift mutations (c.61delG, c.408delA, c.521delA, c.1171_1175delCATTCinsA, c.1405_1407delCTCinsT, c.302_308dupAAATAGG, c.1819_1826dupGTTACAGG), 3 nonsense mutations (p.R69X, p.K88X, p.R127X) one of which (p.K88X) mediated the skipping of exon 2, and a splicing mutation (c.1489+1G>A) which induced the partial skipping of exon 13. In addition, 6 previously unreported GALC polymorphisms were identified. The functional significance of the novel GALC missense mutations and polymorphisms was investigated using the MutPred analysis tool. This study, reporting one of the largest genotype-phenotype analyses of the GALC gene so far performed in a European Krabbe disease cohort, revealed that the Italian GALC mutational profile differs significantly from other populations of European origin. This is due in part to a GALC missense substitution (p.G553R) that occurs at high frequency on a common founder haplotype background in patients originating from the Naples region.


Asunto(s)
Galactosilceramidasa/genética , Leucodistrofia de Células Globoides/enzimología , Leucodistrofia de Células Globoides/genética , Mutación Missense/genética , Adulto , Secuencia de Aminoácidos , Aminoácidos/genética , Secuencia de Bases , Niño , Preescolar , Secuencia Conservada/genética , Evolución Molecular , Femenino , Efecto Fundador , Galactosilceramidasa/química , Estudios de Asociación Genética , Humanos , Lactante , Recién Nacido , Italia , Masculino , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Procesamiento Postranscripcional del ARN/genética , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Programas Informáticos
17.
Hum Mutat ; 31(4): E1261-85, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20104590

RESUMEN

Sequence analysis of the X-linked iduronate-2-sulfatase (IDS) gene in two Hunter syndrome patients revealed a lack of concordance between IDS genomic DNA and cDNA. These individuals were found to be hemizygous respectively for a nonsense mutation [c.22C>T;p.R8X] and a frameshift micro-insertion [c.10insT;p.P4Sfs] in their genomic DNA. However, both wild-type and mutant IDS sequences were evident upon cDNA analysis. Similar discrepant results were also obtained in a third unrelated patient carrying the same p.R8X mutation. Since both p.R8X mutations were inherited from carrier mothers, somatic mosaicism could be excluded. Although the presence of wild-type IDSmRNA-transcripts was confirmed in all three patients by restriction enzyme digestion, clone sequencing, pyrosequencing and single nucleotide primer extension (SNuPE), no wild-type IDS genomic sequence was detectable. The relative abundance of wild-type and mutation-bearing IDS-transcripts in different tissues was quantified by SNuPE. Although IDS transcript levels, as measured by real-time PCR, were reduced (51-71% normal) in these patients, some wild-type IDS protein was detectable by western blotting. Various possible explanations for these unprecedented findings (e.g. accidental contamination, artefactual in vitro nucleotide misincorporation, malsegregation of an extra maternal X-chromosome) were explored and experimentally excluded. PCR-based discriminant assay and segregation analysis of a linked IDS polymorphism (rs1141608) also served to exclude the presence of IDS cDNA derived from the maternal wild-type chromosome. Although it remains to be formally demonstrated by direct experimentation, the intriguing possibility arises that we have observed the in vivo correction of heritable gene lesions at the RNA level operating via a correction mechanism akin to RNA-editing. (c) 2010 Wiley-Liss, Inc.


Asunto(s)
Glicoproteínas/genética , Mucopolisacaridosis II/enzimología , Mucopolisacaridosis II/genética , Mutación/genética , Adolescente , Adulto , Secuencia de Bases , Western Blotting , Niño , Preescolar , Análisis Mutacional de ADN , ADN Complementario/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Humanos , Masculino , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Linaje , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cromosomas Sexuales/genética , Adulto Joven
18.
Biochim Biophys Acta ; 1792(6): 548-54, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19376225

RESUMEN

The PLP1 gene encodes two protein isoforms (PLP and DM20) which represent the predominant protein portion in myelin of the central nervous system. The two products are generated from the same primary transcript by alternative splicing. Defects of the PLP1 gene cause Pelizaeus-Merzbacher disease (PMD) or X-linked spastic paraplegia type 2 (SPG2). Duplication of the PLP1 gene is the most frequent gene defect, usually responsible for the classic form of PMD. To investigate the effects of PLP1 gene over dosage on gene expression, we analysed the PLP/DM20 expression profile in fibroblasts from three PMD patients with a PLP1 gene duplication. Gene expression was evaluated by real-time PCR using two different PLP1 amplicons and two different reference genes (GAPDH and GUSB). Fibroblasts from the three patients showed a 4-5 fold increase of PLP1 gene expression compared to fibroblasts from three normal controls. The contribution of the two alternatively spliced transcript isoforms (PLP and DM20) to the whole PLP1 gene expression was investigated using a DM20-specific amplicon. The three patients showed a decrease of the DM20/(DM20+PLP) ratio in comparison to the three normal controls, suggesting a prominent contribution of the PLP transcript to the PLP1 gene overexpression detected in the patients. Therefore, PLP1 gene duplication seems to result both in overexpression and in a shift of the PLP/DM20 splicing balance in direction of the PLP isoform.


Asunto(s)
Empalme Alternativo , Duplicación de Gen , Proteína Proteolipídica de la Mielina/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Fibroblastos/metabolismo , Dosificación de Gen , Expresión Génica , Humanos , Regulación hacia Arriba
19.
Hum Mutat ; 30(11): E956-73, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19634183

RESUMEN

Mutational analysis of the GNPTAB gene was performed in 46 apparently unrelated patients with mucolipidosis IIalpha/beta or IIIalpha/beta, characterized by the mistargeting of multiple lysosomal enzymes as a consequence of a UDP-GlcNAc-1-phosphotransferase defect. The GNPTAB mutational spectrum comprised 25 distinct mutant alleles, 22 of which were novel, including 3 nonsense mutations (p.Q314X, p.R375X, p.Q507X), 5 missense mutations (p.I403T, p.C442Y, p.C461G, p.Q926P, p.L1001P), 6 microduplications (c.749dupA, c.857dupA, c.1191_1194dupGCTG, c.1206dupT, c.1331dupG, c.2220_2221dupGA) and 8 microdeletions (c.755_759delCCTCT, c.1399delG, c.1959_1962delTAGT, c.1965delC, c.2550_2554delGAAAA, c.3443_3446delTTTG, c.3487_3490delACAG, c.3523_3529delATGTTCC). All micro-duplications/deletions were predicted to result in the premature termination of translation. A novel exonic SNP (c.303G>A; E101E) was identified which is predicted to create an SFRS1 (SF2/ASF) binding site that may be of potential functional/clinical relevance. This study of mutations in the GNPTAB gene, the largest yet reported, extends our knowledge of the mutational heterogeneity evident in MLIIalpha/beta/MLIIIalpha/beta.


Asunto(s)
Mucolipidosis/genética , Mutación , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Adolescente , Adulto , Animales , Células COS , Niño , Preescolar , Chlorocebus aethiops , Codón sin Sentido , Análisis Mutacional de ADN , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Mutación Missense , Eliminación de Secuencia
20.
Neurogenetics ; 10(3): 229-39, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19252935

RESUMEN

Niemann-Pick C, the autosomal recessive neuro-visceral disease resulting from a failure of cholesterol trafficking within the endosomal-lysosomal pathway, is due to mutations in NPC1 or NPC2 genes. We characterized 34 unrelated patients including 32 patients with mutations in NPC1 gene and two patients in NPC2 gene. Overall, 33 distinct genotypes were encountered. Among the 21 unpublished NPC1 alleles, 15 were due to point mutations resulting in 13 codon replacements (p.C100S, p.P237L, p.R389L, p.L472H, p.Y634C, p.S636F, p.V780G, p.Q921P, p.Y1019C, p.R1077Q, p.L1102F, p.A1187V, and p.L1191F) and in two premature stop codons (p.R934X and p.Q447X); a new mutant carried two in cis mutations, p.[L648H;M1142T] and four other NPC1 alleles were small deletions/insertions leading both to frame shifts and premature protein truncations (p.C31WfsX26, p.F284LfsX26, p.E1188fsX54, and p.T1205NfsX53). Finally, the new intronic c.464-2A>C change at the 3' acceptor splice site of intron 4 affected NPC1 messenger RNA processing. We also found a new NPC2 mutant caused by a change of the first codon (p.M1L). The novel missense mutations were further investigated by two bioinformatics approaches. Panther proein classification system computationally predicted the detrimental effect of all new missense mutations occurring at evolutionary conserved positions. The other bioinformatics approach was based on prediction of structural alterations induced by missense mutations on the NPC1 atomic models. The in silico analysis predicted protein malfunctioning and/or local folding alteration for most missense mutations. Moreover, the effects of the missense mutations (p.Y634C, p.S636F, p.L648H, and p.V780G) affecting the sterol-sensing domain (SSD) were evaluated by docking simulation between the atomic coordinates of SSD model and cholesterol.


Asunto(s)
Proteínas Portadoras/genética , Glicoproteínas/genética , Glicoproteínas de Membrana/genética , Mutación Missense , Enfermedad de Niemann-Pick Tipo C/genética , Adolescente , Adulto , Edad de Inicio , Secuencia de Aminoácidos , Niño , Preescolar , Análisis Mutacional de ADN , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular , Italia , Modelos Moleculares , Datos de Secuencia Molecular , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/fisiopatología , Fenotipo , Conformación Proteica , Proteínas de Transporte Vesicular , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA