Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Analyst ; 139(20): 5134-9, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25134792

RESUMEN

(13)C-engineered carbon quantum dots ((13)C-QDs) were used as magnetic resonance (MR) and fluorescence dual-response probe. The enhanced (13)C-MR signal was observed at 171 ppm from carboxylic and carboxyl carbons in (13)C-QDs with 160-fold improvement on signal-to-noise ratio even when no hyperpolarization was applied, whereas the intrinsic fluorescence of C-QDs was still maintained. The stable MR and fluorescence dual-response was successfully used for long-term observation of zebrafish embryonic development. Cross-validation between MR and fluorescence confirmed the distribution of (13)C-QD in zebrafish. (13)C-MR provides specific information about the presence, magnitude, and progression of (13)C-QDs by defining MR intensity, whereas fluorescence reveals the location of (13)C-QDs with its high sensitivity. (13)C-MR and fluorescence was simultaneously observed within (13)C-QDs, and this work may expand the applications of isotope-engineered nanomaterials.


Asunto(s)
Espectroscopía de Resonancia Magnética , Microscopía Fluorescente , Puntos Cuánticos/metabolismo , Animales , Isótopos de Carbono/química , Embrión no Mamífero/química , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Puntos Cuánticos/química , Pez Cebra
2.
Neural Regen Res ; 12(5): 795-803, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28616037

RESUMEN

Direct exposure to intensive visible light can lead to solar retinopathy, including macular injury. The signs and symptoms include central scotoma, metamorphopsia, and decreased vision. However, there have been few studies examining retinal injury due to intensive light stimulation at the cellular level. Neural network arrangements and gene expression patterns in zebrafish photoreceptors are similar to those observed in humans, and photoreceptor injury in zebrafish can induce stem cell-based cellular regeneration. Therefore, the zebrafish retina is considered a useful model for studying photoreceptor injury in humans. In the current study, the central retinal photoreceptors of zebrafish were selectively ablated by stimulation with high-intensity light. Retinal injury, cell proliferation and regeneration of cones and rods were assessed at 1, 3 and 7 days post lesion with immunohistochemistry and in situ hybridization. Additionally, a light/dark box test was used to assess zebrafish behavior. The results revealed that photoreceptors were regenerated by 7 days after the light-induced injury. However, the regenerated cells showed a disrupted arrangement at the lesion site. During the injury-regeneration process, the zebrafish exhibited reduced locomotor capacity, weakened phototaxis and increased movement angular velocity. These behaviors matched the morphological changes of retinal injury and regeneration in a number of ways. This study demonstrates that the zebrafish retina has a robust capacity for regeneration. Visual impairment and stress responses following high-intensity light stimulation appear to contribute to the alteration of behaviors.

3.
Int J Ophthalmol ; 9(6): 831-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27366683

RESUMEN

AIM: To investigate the role of tumor necrosis factor-alpha (TNF-α) in zebrafish retinal development and myelination. METHODS: Morpholino oligonucleotides (MO), which are complementary to the translation start site of the wild-type embryonic zebrafish TNF-α mRNA sequence, were synthesized and injected into one- to four-cell embryos. The translation blocking specificity was verified by Western blotting using an anti-TNF-α antibody, whole-mount in situ hybridization using a hepatocyte-specific mRNA probe ceruloplasmin (cp), and co-injection of TNF-α MO and TNF-α mRNA. An atonal homolog 7 (atoh7) mRNA probe was used to detect neurogenesis onset. The retinal neurodifferentiation was analyzed by immunohistochemistry using antibodies Zn12, Zpr1, and Zpr3 to label ganglion cells, cones, and rods, respectively. Myelin basic protein (mbp) was used as a marker to track and observe the myelination using whole-mount in situ hybridization. RESULTS: Targeted knockdown of TNF-α resulted in specific suppression of TNF-α expression and a severely underdeveloped liver. The co-injection of TNF-α MO and mRNA rescued the liver development. Retinal neurogenesis in TNF-α morphants was initiated on time. The retina was fully laminated, while ganglion cells, cones, and rods were well differentiated at 72 hours post-fertilization (hpf). mbp was expressed in Schwann cells in the lateral line nerves and cranial nerves from 3 days post-fertilization (dpf) as well as in oligodendrocytes linearly along the hindbrain bundles and the spinal cord from 4 dpf, which closely resembled its endogenous profile. CONCLUSION: TNF-α is not an essential regulator for retinal neurogenesis and optic myelination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA