Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nitric Oxide ; 131: 18-25, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36565741

RESUMEN

Low basal nitric oxide (NO) production is associated with a dysfunctional endothelium and vascular diseases. We have shown that some angiotensin II (AngII) receptor type 1 (AT1R) blockers (ARBs), a group of clinic-approved blood pressure (BP)-lowering medications, are also capable of activating endothelial function acutely and chronically, both ex vivo and in vivo, in pleiotropic, AngII-independent fashions, which suggested that endothelial function enhancement with ARBs may be independent of their well-documented BP lowering properties. Herein, we attempt to identify the most potent ARB at activating endothelial function when administered at sub-BP-lowering doses and determine its anti-aortic root remodeling properties in a model of Marfan syndrome (MFS). Amongst the 8 clinically available ARBs tested, only telmisartan and azilsartan induced significant (70% and 49%, respectively) NO-dependent inhibition of aortic contractility when administered for 4 weeks at sub-BP lowering, EC5 doses. Low-dose telmisartan (0.47 mg/kg) attenuated MFS-associated aortic root widening, medial thickening, and elastic fiber fragmentation to the same degree as high-dose telmisartan (10 mg/kg) despite wide differences in BP lowering between the two doses. Our study suggests that telmisartan is the most potent ARB at promoting increased endothelial function at low sub-BP doses and that it retained major aortic root widening inhibition activities. ARBs may enhance endothelial function independently from BP-lowering pathways, which could lead to new therapeutic approaches.


Asunto(s)
Hipertensión , Síndrome de Marfan , Humanos , Telmisartán/farmacología , Telmisartán/uso terapéutico , Presión Sanguínea , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Endotelio , Benzoatos/farmacología , Hipertensión/tratamiento farmacológico
2.
Muscle Nerve ; 66(4): 513-522, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35859452

RESUMEN

INTRODUCTION/AIMS: Most mouse models of muscular dystrophy (MD) show mild phenotypes, which limits the translatability of experimental therapies to patients. A growing body of evidence suggests that MD is accompanied by metabolic abnormalities that could potentially exacerbate the primary muscle wasting process. Since thermoneutral (TN) housing of mice (~30°C) has been shown to affect many metabolic parameters, particularly when combined with a Western diet (WD), our aim was to determine whether the combination of TN and WD exacerbates muscle wasting in dysferlin-deficient BLAJ mice, a common model of limb-girdle MD type 2b (LGMD2b). METHODS: The 2-mo-old wild-type (WT) and BLAJ mice were housed at TN or room temperature (RT) and fed a WD or regular chow for 9 mo. Ambulatory function, muscle histology, and protein immunoblots of skeletal muscle were assessed. RESULTS: BLAJ mice at RT and fed a chow diet showed normal ambulation function similar to WT mice, whereas 90% of BLAJ mice under WD and TN combination showed ambulatory dysfunction (p < 0.001), and an up to 4.1-fold increase in quadriceps and gastrocnemius fat infiltration. Western blotting revealed decreased autophagy marker microtubules-associated protein 1 light chain 3-B (LC3BII/LC3BI) ratio and up-regulation of protein kinase B/AKT and ribosomal protein S6 phosphorylation, suggesting inefficient cellular debris and protein clearance in TN BLAJ mice fed a WD. Male and female BLAJ mice under TN and WD combination showed heterogenous fibro-fatty infiltrate composition. DISCUSSION: TN and WD combination exacerbates rodent LGMD2b without affecting WT mice. This improves rodent modeling of human MD and helps elucidate how metabolic abnormalities may play a causal role in muscle wasting.


Asunto(s)
Distrofia Muscular de Cinturas , Distrofias Musculares , Animales , Dieta Occidental/efectos adversos , Disferlina/genética , Disferlina/metabolismo , Femenino , Vivienda , Humanos , Masculino , Ratones , Músculo Esquelético , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Distrofias Musculares/patología , Distrofia Muscular de Cinturas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína S6 Ribosómica/metabolismo
3.
J Neuromuscul Dis ; 10(6): 1003-1012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37574742

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy (MD) that is characterized by early muscle wasting and lethal cardiorespiratory failure. While the mdx mouse is the most common model of DMD, it fails to replicate the severe loss of muscle mass and other complications observed in patients, in part due to the multiple rescue pathways found in mice. This led to several attempts at improving DMD animal models by interfering with these rescue pathways through double transgenic approaches, resulting in more severe phenotypes with mixed relevance to the human pathology. As a growing body of literature depicts DMD as a multi-system metabolic disease, improvements in mdx-based modeling of DMD may be achieved by modulating whole-body metabolism instead of muscle homeostasis. This review provides an overview of the established dual-transgenic approaches that exacerbate the mild mdx phenotype by primarily interfering with muscle homeostasis and highlights how advances in DMD modeling coincide with inducing whole-body metabolic changes. We focus on the DBA2/J strain-based D2.mdx mouse with heightened transforming growth factor (TGF)-ß signaling and the dyslipidemic mdx/apolipoprotein E (mdx/ApoE) knock-out (KO) mouse, and summarize how these novel models emulate the metabolic changes observed in DMD.


Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Animales , Ratones , Distrofia Muscular de Duchenne/metabolismo , Ratones Endogámicos mdx , Músculo Esquelético/patología , Ratones Endogámicos C57BL , Fenotipo
4.
Skelet Muscle ; 12(1): 25, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36447272

RESUMEN

Limb-girdle muscular dystrophy (MD) type 2B (LGMD2B) and Duchenne MD (DMD) are caused by mutations to the Dysferlin and Dystrophin genes, respectively. We have recently demonstrated in typically mild dysferlin- and dystrophin-deficient mouse models that increased plasma cholesterol levels severely exacerbate muscle wasting, and that DMD patients display primary dyslipidemia characterized by elevated plasma cholesterol and triglycerides. Herein, we investigate lipoprotein abnormalities in LGMD2B and if statin therapy protects dysferlin-deficient mice (Dysf) from muscle damage. Herein, lipoproteins and liver enzymes from LGMD2B patients and dysferlin-null (Dysf) mice were analyzed. Simvastatin, which exhibits anti-muscle wasting effects in mouse models of DMD and corrects aberrant expression of key markers of lipid metabolism and endogenous cholesterol synthesis, was tested in Dysf mice. Muscle damage and fibrosis were assessed by immunohistochemistry and cholesterol signalling pathways via Western blot. LGMD2B patients show reduced serum high-density lipoprotein cholesterol (HDL-C) levels compared to healthy controls and exhibit a greater prevalence of abnormal total cholesterol (CHOL)/HDL-C ratios despite an absence of liver dysfunction. While Dysf mice presented with reduced CHOL and associated HDL-C and LDL-C-associated fractions, simvastatin treatment did not prevent muscle wasting in quadriceps and triceps muscle groups or correct aberrant low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) protein expression. LGMD2B patients present with reduced serum concentrations of HDL-C, a major metabolic comorbidity, and as a result, statin therapy is unlikely to prevent muscle wasting in this population. We propose that like DMD, LGMD2B should be considered as a new type of genetic dyslipidemia.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Distrofia Muscular de Cinturas , Ratones , Animales , Disferlina/genética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Distrofina , HDL-Colesterol , Distrofia Muscular de Cinturas/tratamiento farmacológico , Distrofia Muscular de Cinturas/genética , Atrofia Muscular , Simvastatina/farmacología , Simvastatina/uso terapéutico
5.
Vascul Pharmacol ; 147: 107112, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36179789

RESUMEN

BACKGROUND AND PURPOSE: Losartan is an anti-hypertensive angiotensin II (ANGII) type 1 receptor (AT1R) blocker (ARB) with many unexpected therapeutic properties, even in non-blood pressure (BP)-related diseases. Administered as a prodrug, losartan undergoes serial metabolism into EXP3179, a metabolite alleged to lack AT1R-blocking properties, and EXP3174, the dominant AT1R antagonist. Having observed that losartan can decrease vascular tone in mice with low AT1R expression and inhibit Marfan aortic widening at very high doses, we investigated whether EXP3179 may have unique, AT1R-independent effects on vascular tone and endothelial function. EXPERIMENTAL APPROACH: We compared the AT1R blocking capabilities of EXP3179 and EXP3174 using AT1R-expressing cell lines. Their BP lowering and vasoactive properties were studied in normal, hypertensive and transgenic rodents, and ex vivo wire myography. KEY RESULTS: We observed that both EXP3179 and EXP3174 can fully block (100%) AT1R signaling in vitro and significantly decrease BP in normotensive and spontaneously hypertensive rats. Only EXP3179 prevented PE-induced contraction by up to 65% (p < 0.01) in L-NAME and endothelium removal-sensitive fashion. Use of transgenic mice revealed that these effects involve the eNOS/caveolin-1 axis and the endothelium-dependent hyperpolarization factor (EDHF). CONCLUSION AND IMPLICATIONS: We provide direct structure-activity evidence that EXP3179 is a BP-lowering AT1R blocker with unique endothelial function-enhancing properties not shared with losartan or EXP3174. The major pharmacological effects of losartan in patients are therefore likely more complex than simple blockade of AT1R by EXP3174, which helps rationalize its therapeutic and prophylactic properties, especially at very high doses. Reports relying on EXP3179 as an AT1R-independent losartan analogue may require careful re-evaluation.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II , Losartán , Ratas , Animales , Ratones , Losartán/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Antagonistas de Receptores de Angiotensina , Imidazoles/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina , Receptor de Angiotensina Tipo 1/metabolismo , Ratas Endogámicas SHR , Endotelio/metabolismo , Angiotensina II/farmacología
6.
PLoS One ; 14(8): e0220903, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31404091

RESUMEN

There is no cure or beneficial management option for Limb-Girdle muscular dystrophy (MD) type 2B (LGMD2B). Losartan, a blood pressure (BP) lowering angiotensin II (AngII) receptor type 1 (ATR1) blocker (ARB) with unique anti-transforming growth factor-ß (TGF-ß) properties, can protect muscles in various types of MD such as Duchenne MD, suggesting a potential benefit for LGMD2B patients. Herein, we show in a mild, dysferlin-null mouse model of LGMD2B that losartan increased quadriceps muscle fibrosis (142%; P<0.0001). In a severe, atherogenic diet-fed model of LGMD2B recently described by our group, losartan further exacerbated dysferlin-null mouse muscle wasting in quadriceps and triceps brachii, two muscles typically affected by LGMD2B, by 40% and 51%, respectively (P<0.05). Lower TGF-ß signalling was not observed with losartan, therefore plasma levels of atherogenic lipids known to aggravate LGMD2B severity were investigated. We report that losartan increased both plasma triglycerides and cholesterol concentrations in dysferlin-null mice. Other protective properties of losartan, such as increased nitric oxide release and BP lowering, were also reduced in the absence of dysferlin expression. Our data suggest that LGMD2B patients may show some resistance to the primary BP-lowering effects of losartan along with accelerated muscle wasting and dyslipidemia. Hence, we urge caution on the use of ARBs in this population as their ATR1 pathway may be dysfunctional.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Losartán/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Cinturas/tratamiento farmacológico , Animales , Colesterol/sangre , Creatina Quinasa/sangre , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/patología , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA