Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Med Biol ; 68(8)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36893469

RESUMEN

Objective.Automatic segmentation of organs-at-risk in radiotherapy planning computed tomography (CT) scans using convolutional neural networks (CNNs) is an active research area. Very large datasets are usually required to train such CNN models. In radiotherapy, large, high-quality datasets are scarce and combining data from several sources can reduce the consistency of training segmentations. It is therefore important to understand the impact of training data quality on the performance of auto-segmentation models for radiotherapy.Approach.In this study, we took an existing 3D CNN architecture for head and neck CT auto-segmentation and compare the performance of models trained with a small, well-curated dataset (n= 34) and then a far larger dataset (n= 185) containing less consistent training segmentations. We performed 5-fold cross-validations in each dataset and tested segmentation performance using the 95th percentile Hausdorff distance and mean distance-to-agreement metrics. Finally, we validated the generalisability of our models with an external cohort of patient data (n= 12) with five expert annotators.Main results.The models trained with a large dataset were greatly outperformed by models (of identical architecture) trained with a smaller, but higher consistency set of training samples. Our models trained with a small dataset produce segmentations of similar accuracy as expert human observers and generalised well to new data, performing within inter-observer variation.Significance.We empirically demonstrate the importance of highly consistent training samples when training a 3D auto-segmentation model for use in radiotherapy. Crucially, it is the consistency of the training segmentations which had a greater impact on model performance rather than the size of the dataset used.


Asunto(s)
Cabeza , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Cuello , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X
2.
Phys Imaging Radiat Oncol ; 22: 44-50, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35514528

RESUMEN

Background and purpose: Convolutional neural networks (CNNs) are increasingly used to automate segmentation for radiotherapy planning, where accurate segmentation of organs-at-risk (OARs) is crucial. Training CNNs often requires large amounts of data. However, large, high quality datasets are scarce. The aim of this study was to develop a CNN capable of accurate head and neck (HN) 3D auto-segmentation of planning CT scans using a small training dataset (34 CTs). Materials and Method: Elements of our custom CNN architecture were varied to optimise segmentation performance. We tested and evaluated the impact of: using multiple contrast channels for the CT scan input at specific soft tissue and bony anatomy windows, resize vs. transpose convolutions, and loss functions based on overlap metrics and cross-entropy in different combinations. Model segmentation performance was compared with the inter-observer deviation of two doctors' gold standard segmentations using the 95th percentile Hausdorff distance and mean distance-to-agreement (mDTA). The best performing configuration was further validated on a popular public dataset to compare with state-of-the-art (SOTA) auto-segmentation methods. Results: Our best performing CNN configuration was competitive with current SOTA methods when evaluated on the public dataset with mDTA of ( 0.81 ± 0.31 ) mm for the brainstem, ( 0.20 ± 0.08 ) mm for the mandible, ( 0.77 ± 0.14 ) mm for the left parotid and ( 0.81 ± 0.28 ) mm for the right parotid. Conclusions: Through careful tuning and customisation we trained a 3D CNN with a small dataset to produce segmentations of HN OARs with an accuracy that is comparable with inter-clinician deviations. Our proposed model performed competitively with current SOTA methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA