RESUMEN
Synthesis of the acetylcholinesterase inhibitor paraoxon (POX) as a carbon-11 positron emission tomography tracer ([11C]POX) and profiling in live rats is reported. Naïve rats intravenously injected with [11C]POX showed a rapid decrease in parent tracer to â¼1%, with an increase in radiolabeled serum proteins to 87% and red blood cells (RBCs) to 9%. Protein and RBC leveled over 60 minutes, reflecting covalent modification of proteins by [11C]POX. Ex vivo biodistribution and imaging profiles in naïve rats had the highest radioactivity levels in lung followed by heart and kidney, and brain and liver the lowest. Brain radioactivity levels were low but observed immediately after injection and persisted over the 60-minute experiment. This showed for the first time that even low POX exposures (â¼200 ng tracer) can rapidly enter brain. Rats given an LD50 dose of nonradioactive paraoxon at the LD50 20 or 60 minutes prior to [11C]POX tracer revealed that protein pools were blocked. Blood radioactivity at 20 minutes was markedly lower than naïve levels due to rapid protein modification by nonradioactive POX; however, by 60 minutes the blood radioactivity returned to near naïve levels. Live rat tissue imaging-derived radioactivity values were 10%-37% of naïve levels in nonradioactive POX pretreated rats at 20 minutes, but by 60 minutes the area under the curve (AUC) values had recovered to 25%-80% of naïve. The live rat imaging supported blockade by nonradioactive POX pretreatment at 20 minutes and recovery of proteins by 60 minutes. SIGNIFICANCE STATEMENT: Paraoxon (POX) is an organophosphorus (OP) compound and a powerful prototype and substitute for OP chemical warfare agents (CWAs) such as sarin, VX, etc. To study the distribution and penetration of POX into the central nervous system (CNS) and other tissues, a positron emission tomography (PET) tracer analog, carbon-11-labeled paraoxon ([11C]POX), was prepared. Blood and tissue radioactivity levels in live rats demonstrated immediate penetration into the CNS and persistent radioactivity levels in tissues indicative of covalent target modification.
Asunto(s)
Acetilcolinesterasa , Radioisótopos de Carbono , Paraoxon , Ratas , Animales , Distribución Tisular , Tomografía de Emisión de Positrones , Compuestos OrganofosforadosRESUMEN
PURPOSE: To evaluate radiolabeled doxorubicin (Dox) analogs as tracers of baseline Dox biodistribution in vivo during hepatic intra-arterial chemotherapy and to assess the efficacy of ChemoFilter devices to bind Dox in vitro. MATERIALS AND METHODS: In an in vitro static experiment, [fluorine-18]N-succinimidyl 4-fluorobenzoate ([18F]SFB) and [fluorine-18]fluorobenzoyl-doxorubicin ([18F]FB-Dox) were added to a beaker containing a filter material (Dowex cation exchange resin, single-stranded DNA (ssDNA) resin, or sulfonated polymer coated mesh). In an in vitro flow model, [18F]FB-Dox was added into a Dox solution in phosphate-buffered saline, and the solution flowed via a syringe column containing the filter materials. In an in vitro flow experiment, using micro-positron emission tomography (PET), images were taken as [18F]SFB and [18F]FB-Dox moved through a phantom. For in vivo biodistribution testing, a catheter was placed into the common hepatic artery of a swine, and [18F]FB-Dox was infused over 30 seconds. A 10-minute dynamic image and three 20-minute static images were acquired using 3T PET/MR imaging. RESULTS: In the in vitro static experiment, [18F]FB-Dox demonstrated 76.7%, 88.0%, and 52.4% binding to the Dowex resin, ssDNA resin, and coated mesh, respectively. In the in vitro flow model, the first-pass binding of [18F]FB-Dox to the Dowex resin, ssDNA resin, and coated mesh was 76.7%, 74.2%, and 76.2%, respectively, and the total bound fraction was 80.9%, 84.6%, and 79.9%, respectively. In the in vitro flow experiment using micro-PET, the phantom demonstrated a greater amount of [18F]FB-Dox bound to both filter cartridges than of the control [18F]SFB. In in vivo biodistribution testing, the first 10 minutes depicted [18F]FB-Dox moving through the right upper quadrant of the abdomen. A region-of-interest analysis showed that the relative amount increased by 2.97 times in the gallbladder and 1.08 times in the kidney. The amount decreased by 0.74 times in the brain and 0.57 times in the heart. CONCLUSIONS: [18F]FB-Dox can be used to assess Dox binding to ChemoFilters as well as in vivo biodistribution. This sets the stage for the evaluation of ChemoFilter effectiveness in reducing systemic toxicity from intra-arterial chemotherapy.
Asunto(s)
Doxorrubicina , Tomografía de Emisión de Positrones , Animales , Arteria Hepática , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones/métodos , Porcinos , Distribución TisularRESUMEN
Organophosphorus esters (OPs) were originally developed as pesticides but were repurposed as easily manufactured, inexpensive, and highly toxic chemical warfare agents. Acute OP toxicity is primarily due to inhibition of acetylcholinesterase (AChE), an enzyme in the central and peripheral nervous system. OP inhibition of AChE can be reversed using oxime reactivators but many show poor CNS penetration, indicating a need for new clinically viable reactivators. However, challenges exist on how to best measure restored AChE activity in vivo and assess the reactivating agent efficacy. This work reports the development of molecular imaging tools using radiolabeled OP analog tracers that are less toxic to handle in the laboratory, yet inhibit AChE in a similar fashion to the actual OPs. Carbon-11 and fluorine-18 radiolabeled analog tracers of VX and sarin OP agents were prepared. Following intravenous injection in normal Sprague-Dawley rats (n = 3-4/tracer), the tracers were evaluated and compared using noninvasive microPET/CT imaging, biodistribution assay, and arterial blood analyses. All showed rapid uptake and stable retention in brain, heart, liver, and kidney tissues determined by imaging and biodistribution. Lung uptake of the sarin analog tracers was elevated, 2-fold and 4-fold higher uptake at 5 and 30 min, respectively, compared to that for the VX analog tracers. All tracers rapidly bound to red blood cells (RBC) and blood proteins as measured in the biodistribution and arterial blood samples. Analysis of the plasma soluble activity (nonprotein/cell bound activity) showed only 1-6% parent tracer and 88-95% of the activity in the combined solid fractions (RBC and protein bound) as early as 0.5 min post injection. Multivariate analysis of tracer production yield, molar activity, brain uptake, brain area under the curve over 0-15 min, and the amount of parent tracer in the plasma at 5 min revealed the [18F]VX analog tracer had the most favorable values for each metric. This tracer was considered the more optimal tracer relative to the other tracers studied and suitable for future in vivo OP exposure and reactivation studies.
Asunto(s)
Sustancias para la Guerra Química/farmacología , Inhibidores de la Colinesterasa/farmacología , Compuestos Organotiofosforados/farmacología , Sarín/farmacología , Acetilcolinesterasa/metabolismo , Animales , Radioisótopos de Carbono , Sustancias para la Guerra Química/química , Inhibidores de la Colinesterasa/química , Radioisótopos de Flúor , Masculino , Estructura Molecular , Compuestos Organotiofosforados/química , Ratas , Ratas Sprague-Dawley , Sarín/química , Distribución TisularRESUMEN
Alterations in Zn2+ concentration are seen in normal tissues and in disease states, and for this reason imaging of Zn2+ is an area of active investigation. Herein, enriched [1-13 C]cysteine and [1-13 C2 ]iminodiacetic acid were developed as Zn2+ -specific imaging probes using hyperpolarized 13 C magnetic resonance spectroscopy. [1-13 C]cysteine was used to accurately quantify Zn2+ in complex biological mixtures. These sensors can be employed to detect Zn2+ via imaging mechanisms including changes in 13 C chemical shift, resonance linewidth, or T1 .
RESUMEN
Boron neutron capture therapy (BNCT) is a therapeutic modality which has been used for the treatment of cancers, including brain and head and neck tumors. For effective treatment via BNCT, efficient and selective delivery of a high boron dose to cancer cells is needed. Prostate-specific membrane antigen (PSMA) is a target for prostate cancer imaging and drug delivery. In this study, we conjugated boronic acid or carborane functional groups to a well-established PSMA inhibitor scaffold to deliver boron to prostate cancer cells and prostate tumor xenograft models. Eight boron-containing PSMA inhibitors were synthesized. All of these compounds showed a strong binding affinity to PSMA in a competition radioligand binding assay (IC50 from 555.7 to 20.3 nM). Three selected compounds 1a, 1d, and 1f were administered to mice, and their in vivo blocking of 68Ga-PSMA-11 uptake was demonstrated through a positron emission tomography (PET) imaging and biodistribution experiment. Biodistribution analysis demonstrated boron uptake of 4-7 µg/g in 22Rv1 prostate xenograft tumors and similar tumor/muscle ratios compared to the ratio for the most commonly used BNCT compound, 4-borono-l-phenylalanine (BPA). Taken together, these data suggest a potential role for PSMA targeted BNCT agents in prostate cancer therapy following suitable optimization.
Asunto(s)
Antígenos de Superficie/metabolismo , Terapia por Captura de Neutrón de Boro/métodos , Ácidos Borónicos/química , Ácidos Borónicos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Glutamato Carboxipeptidasa II/metabolismo , Neoplasias de la Próstata/radioterapia , Animales , Compuestos de Boro/química , Compuestos de Boro/farmacocinética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ácido Edético/análogos & derivados , Ácido Edético/farmacocinética , Isótopos de Galio , Radioisótopos de Galio , Humanos , Concentración 50 Inhibidora , Ligandos , Masculino , Ratones , Ratones Desnudos , Oligopéptidos/farmacocinética , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/farmacocinética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata/patología , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Distribución Tisular , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
O-(1-Fluoropropan-2-yl)-O-(4-nitrophenyl) methylphosphonate is a reactive organophosphate ester (OP) developed as a surrogate of the chemical warfare agent sarin that forms a similar covalent adduct at the active site serine of acetylcholinesterase. The radiolabeled O-(1-[18 F]fluoropropan-2-yl)-O-(4-nitrophenyl) methylphosphonate ([18 F] fluorosarin surrogate) has not been previously prepared. In this paper, we report the first radiosynthesis of this tracer from the reaction of bis-(4-nitrophenyl) methylphosphonate with 1-[18 F]fluoro-2-propanol in the presence of DBU. The 1-[18 F]fluoro-2-propanol was prepared by reaction of propylene sulfite with Kryptofix 2.2.2 and [18 F] fluoride ion. The desired tracer O-(1-[18 F]fluoropropan-2-yl)-O-(4-nitrophenyl) methylphosphonate was obtained in a >98% radiochemical purity with a 2.4% ± 0.6% yield (n = 5, 65 minutes from start of synthesis) based on starting [18 F] fluoride ion and a molar activity of 49.9 GBq/µmol (1.349 ± 0.329 Ci/µmol, n = 3). This new facile radiosynthesis routinely affords sufficient quantities of [18 F] fluorosarin surrogate in high radiochemical purity, which will further enable the tracer development as a novel radiolabeled OP acetylcholinesterase inhibitor for assessment of OP modes of action with PET imaging in vivo.
Asunto(s)
Nitrocompuestos/química , Nitrocompuestos/síntesis química , Organofosfonatos/química , Organofosfonatos/síntesis química , Tomografía de Emisión de Positrones , Sarín , Técnicas de Química Sintética , Trazadores Radiactivos , RadioquímicaRESUMEN
Developing new strategies to rapidly incorporate the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core into biological targeting vectors in radiopharmaceuticals continues to expand as molecules become more complex and as efforts to minimize nonspecific binding increase. This work examines a novel isothiocyanate-functionalized bifunctional chelate based on 2,2'-dipicolylamine (DPA) specifically designed for complexing the fac-[M(I)(CO)3](+) core. Two strategies (postlabeling and prelabeling) were explored using the isothiocyanate-functionalized DPA to determine the effectiveness of assembly on the overall yield and purity of the complex with amine containing biomolecules. A model amino acid (lysine) examined (1) amine conjugation of isothiocyanate-functionalized DPA followed by complexation with fac-[M(I)(CO)3](+) (postlabeling) and (2) complexation of fac-[M(I)(CO)3](+) with isothiocyanate-functionalized DPA followed by amine conjugation (prelabeling). Conducted with stable Re and radioactive (99m)Tc analogs, both strategies formed the product in good to excellent yields under macroscopic and radiotracer concentrations. A synthetic peptide (AE105) which targets an emerging biomarker in CaP prognosis, urokinase-type plasminogen activator receptor (uPAR), was also explored using the isothiocyanate-functionalized DPA strategy. In vitro PC-3 (uPAR+) cell uptake assays with the (99m)Tc-labeled peptide (8a) showed 4.2 ± 0.5% uptake at 4 h. In a murine model bearing PC-3 tumor xenografts, in vivo biodistribution of 8a led to favorable tumor uptake (3.7 ± 0.7% ID/g) at 4 h p.i. with relatively low accumulation (<2% ID/g) in normal organs not associated with normal peptide excretion. These results illustrate the promise of the isothiocyanate-functionalized approach for labeling amine containing biological targeting vectors with fac-[M(I)(CO)3](+).
Asunto(s)
Quelantes/química , Quelantes/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Radiofármacos/farmacocinética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones Desnudos , Terapia Molecular Dirigida/métodos , Compuestos de Organotecnecio/química , Péptidos/química , Radiofármacos/química , Renio/química , Tecnecio/química , Distribución Tisular , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
While a number of chelate strategies have been developed for the organometallic precursor fac-[M(I)(OH2)3(CO)3](+) (M = Re, (99m)Tc), a unique challenge has been to improve the overall function and performance of these complexes for in vivo and in vitro applications. Since its discovery, fac-[M(I)(OH2)3(CO)3](+) has served as an essential scaffold for the development of new targeted (99m)Tc based radiopharmaceuticals due to its labile aquo ligands. However, the lipophilic nature of the fac-[M(I)(CO)3](+) core can influence the in vivo pharmacokinetics and biodistribution of the complexes. In an effort to understand and improve this behavior, monosubstituted pyridine ligands were used to assess the impact of donor nitrogen basicity on binding strength and stability of fac-[M(I)(CO)3](+) in a 2 + 1 labeling strategy. A series of Re and (99m)Tc complexes were synthesized with picolinic acid as a bidentate ligand and 4-substituted pyridine ligands. These complexes were designed to probe the effect of pKa from the monodentate pyridine ligand both at the macro scale and radiochemical concentrations. Comparison of X-ray structural data and radiochemical solution experiments clearly indicate an increase in overall yield and stability as pyridine basicity increased.
Asunto(s)
Monóxido de Carbono/química , Compuestos Organometálicos/química , Piridinas/química , Renio/química , Tecnecio/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química , EstereoisomerismoRESUMEN
The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction was used to incorporate alkyne-functionalized dipicolylamine (DPA) ligands (1 and 3) for fac-[M(I)(CO)3](+) (M = Re/(99m)Tc) complexation into an α-melanocyte stimulating hormone (α-MSH) peptide analogue. A novel DPA ligand with carboxylate substitutions on the pyridyl rings (3) was designed to increase the hydrophilicity and to decrease in vivo hepatobiliary retention of fac-[(99m)Tc(I)(CO)3](+) complexes used in single photon emission computed tomography (SPECT) imaging studies with targeting biomolecules. The fac-[Re(I)(CO)3(3)] complex (4) was used for chemical characterization and X-ray crystal analysis prior to radiolabeling studies between 3 and fac-[(99m)Tc(I)(OH2)3(CO)3](+). The corresponding (99m)Tc complex (4a) was obtained in high radiochemical yields, was stable in vitro for 24 h during amino acid challenge and serum stability assays, and showed increased hydrophilicity by log P analysis compared to an analogous complex with nonfunctionalized pyridine rings (2a). An α-MSH peptide functionalized with an azide was labeled with fac-[M(I)(CO)3](+) using both click, then chelate (CuAAC reaction with 1 or 3 followed by metal complexation) and chelate, then click (metal complexation of 1 and 3 followed by CuAAC with the peptide) strategies to assess the effects of CuAAC conditions on fac-[M(I)(CO)3](+) complexation within a peptide framework. The peptides from the click, then chelate strategy had different HPLC tR's and in vitro stabilities compared to those from the chelate, then click strategy, suggesting nonspecific coordination of fac-[M(I)(CO)3](+) using this synthetic route. The fac-[M(I)(CO)3](+)-complexed peptides from the chelate, then click strategy showed >90% stability during in vitro challenge conditions for 6 h, demonstrated high affinity and specificity for the melanocortin 1 receptor (MC1R) in IC50 analyses, and led to moderately high uptake in B16F10 melanoma cells. Log P analysis of the (99m)Tc-labeled peptides confirmed the enhanced hydrophilicity of the peptide bearing the novel, carboxylate-functionalized DPA chelate (10a') compared to the peptide with the unmodified DPA chelate (9a'). In vivo biodistribution analysis of 9a' and 10a' showed moderate tumor uptake in a B16F10 melanoma xenograft mouse model with enhanced renal uptake and surprising intestinal uptake for 10a' compared to predominantly hepatic accumulation for 9a'. These results, coupled with the versatility of CuAAC, suggests this novel, hydrophilic chelate can be incorporated into numerous biomolecules containing azides for generating targeted fac-[M(I)(CO)3](+) complexes in future studies.
Asunto(s)
Aminas/química , Monóxido de Carbono/química , Complejos de Coordinación/farmacocinética , Melanoma Experimental/diagnóstico , Ácidos Picolínicos/química , Radiofármacos/farmacocinética , Renio/química , Tecnecio/química , alfa-MSH/química , Animales , Química Clic , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Ratones , Ratones Endogámicos C57BL , Radiofármacos/síntesis química , Radiofármacos/química , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Células Tumorales CultivadasRESUMEN
Integrin αvß6 is overexpressed in a variety of cancers, and its expression is often associated with poor prognosis. Therefore, there is a need to develop affinity reagents for noninvasive imaging of integrin αvß6 expression since it may provide early cancer diagnosis, more accurate prognosis, and better treatment planning. We recently engineered and validated highly stable cystine knot peptides that selectively bind integrin αvß6 with no cross-reactivity to integrins αvß5, α5ß1, or αvß3, also known to be overexpressed in many cancers. Here, we developed a single photon emission computed tomography (SPECT) probe for imaging integrin αvß6 positive tumors. Cystine knot peptide, S02, was first conjugated with a single amino acid chelate (SAAC) and labeled with [(99m)Tc(H2O)3(CO)3](+). The resulting probe, (99m)Tc-SAAC-S02, was then evaluated by in vitro cell uptake studies using two αvß6 positive cell lines (human lung adenocarcinoma cell line HCC4006 and pancreatic cancer cell line BxPC-3) and two αvß6 negative cell lines (human lung adenocarcinoma cell line H838 and human embryonic kidney cell line 293T). Next, SPECT/CT and biodistribution studies were performed in nude mice bearing HCC4006 and H838 tumor xenografts to evaluate the in vivo performance of (99m)Tc-SAAC-S02. Significant differences in the uptake of (99m)Tc-SAAC-S02 were observed in αvß6 positive vs negative cells (P < 0.05). Biodistribution and small animal SPECT/CT studies revealed that (99m)Tc-SAAC-S02 accumulated to moderate levels in antigen positive tumors (â¼2% ID/g at 1 and 6 h postinjection, n = 3 or 4/group). Moreover, the probe demonstrated tumor-to-background tissue ratios of 6.81 ± 2.32 (tumor-to-muscle) and 1.63 ± 0.18 (tumor-to-blood) at 6 h postinjection in αvß6 positive tumor xenografts. Co-incubation of the probe with excess amount of unlabeled S02 as a blocking agent demonstrated significantly reduced tumor uptake, which is consistent with specific binding to the target. Renal filtration was the main route of clearance. In conclusion, knottin peptides are excellent scaffolds for which to develop highly stable imaging probes for a variety of oncological targets. (99m)Tc-SAAC-S02 demonstrates promise for use as a SPECT agent to image integrin αvß6 expression in living systems.
Asunto(s)
Antígenos de Neoplasias/análisis , Motivos Nodales de Cisteina , Integrinas/análisis , Neoplasias Experimentales/diagnóstico por imagen , Compuestos de Organotecnecio , Péptidos , Radiofármacos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Datos de Secuencia Molecular , Distribución TisularRESUMEN
Click reactions offer a rapid technique to covalently assemble two molecules. In radiopharmaceutical construction, these reactions can be utilized to combine a radioactive metal complex with a biological targeting molecule to yield a potent tool for imaging or therapy applications. The photo-initiated radical thiol-ene click reaction between a thiol and an alkene was examined for the incorporation of [M(I)(CO)3](+) (M = Re, (99m)Tc) systems for conjugating biologically active targeting molecules containing a thiol. In this strategy, a potent chelate system, 2,2'-dipicolylamine (DPA), for [M(I)(CO)3](+) was functionalized at the central amine with a terminal alkene linker that was explored with two synthetic approaches, click then chelate and chelate then click, to determine the flexibility and applicability of the thiol-ene click reaction to specifically incorporate ligand systems and metal complexes with a thiol containing molecule. In the click then chelate approach, the thiol-ene click reaction was carried out with the DPA chelate followed by complexation with [M(I)(CO)3](+). In the chelate then click approach, the alkene functionalized DPA chelate was first complexed with [M(I)(CO)3](+) followed by the conduction of the thiol-ene click reaction. Initial studies utilized benzyl mercaptan as a model thiol for both strategies to generate the identical product from either route to provide information on reactivity and product formation. DPA ligands functionalized with two unique linker systems (allyl and propyl allyl ether) were prepared to examine the effect of the proximity of the chelate or complex on the thiol-ene click reaction. Both the thiol-ene click and coordination reactions with Re, (99m)Tc were performed in moderate to high yields demonstrating the potential of the thiol-ene click reaction for [M(I)(CO)3](+) incorporation into thiol containing biomolecules.
Asunto(s)
Química Clic , Compuestos de Organotecnecio/química , Procesos Fotoquímicos , Renio/química , Compuestos de Sulfhidrilo/química , Modelos Moleculares , Conformación Molecular , Compuestos de Organotecnecio/síntesis químicaRESUMEN
Oxime antidotes regenerate organophosphate-inhibited acetylcholinesterase (AChE). Although they share a common mechanism of AChE reactivation, the rate and amount of oxime that enters the brain are critical to the efficacy, a process linked to the oxime structure and charge. Using a platform based on the organophosphate [18 F]-VXS as a positron emission tomography tracer for active AChE, the in vivo distribution of [18 F]-VXS was evaluated after an LD50 dose (250 µg/kg) of the organophosphate paraoxon (POX) and following oximes as antidotes. Rats given [18 F]-VXS tracer alone had significantly higher radioactivity (two- to threefold) in the heart and lung than rats given LD50 POX at 20 or 60 min prior to [18 F]-VXS. When rats were given LD50 POX followed by 2-PAM (cationic), RS194b (ionizable), or monoisonitrosoacetone (MINA) (neutral), central nervous system (CNS) radioactivity returned to levels at or above untreated naive rats (no POX), whereas CNS radioactivity did not increase in rats given the dication oximes HI-6 or MMB-4. MINA showed a significant, pairwise increase in CNS brain radioactivity compared with POX-treated rats. This new in vivo dynamic platform using [18 F]-VXS tracer measures and quantifies peripheral and CNS relative changes in AChE availability after POX exposure and is suitable for comparing oxime delivery and AChE reactivation in rats.
Asunto(s)
Acetilcolinesterasa , Antídotos/farmacología , Medios de Contraste/farmacología , Corazón , Pulmón , Oximas/farmacología , Paraoxon/toxicidad , Tomografía de Emisión de Positrones , Acetilcolinesterasa/metabolismo , Animales , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/metabolismo , Corazón/diagnóstico por imagen , Corazón/fisiopatología , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Compuestos Organofosforados/farmacología , Trazadores Radiactivos , Ratas , Ratas Sprague-DawleyRESUMEN
Radiolabeled 1-[11C]ethyl, 4-nitrophenyl methylphosphonate (VX surrogate) and 2-[11C]-propanyl, 4-nitrophenyl methylphosphonate (sarin surrogate) were developed as organophosphate (OP) tracers. The [11C]ethyl- and [11C]isopropyl-iodide radiolabeled synthons were obtained by temperature controlled, in loop reactions of [11C]CO2 with MeMgBr followed by reduction with LiAlH4, then reaction with HI. Distillation of the [11C]alkyl iodides into a solution of hydrogen (4-nitrophenyl)methylphosphonate and cesium carbonate afforded the desired tracers in >95% radiochemical purity, yields from [11C]CO2 of 1-3% and 1.7-15.1 GBq/mmol molar activities.
RESUMEN
2-Pyridinealdoxime methiodide (2-PAM) is a widely used antidote for the treatment of organophosphorus (OP) exposure that reactivates the target protein acetylcholinesterase. Carbon-11 2-PAM was prepared to more fully understand the in vivo mode of action, distribution, and dynamic qualities of this important countermeasure. Alkylation of 2-pyridinealdoxime with [11C]CH3I provided the first-in-class [11C]2-PAM tracer in 3.5% decay corrected radiochemical yield from [11C]CH3I, >99% radiochemical purity, and 4831 Ci/mmol molar activity. [11C]2-PAM tracer distribution was evaluated by ex vivo biodistribution and in vivo dynamic positron emission tomography (PET) imaging in naïve (OP exposure deficient) rats. Tracer alone and tracer coinjected with a body mass-scaled human therapeutic dose of 30 mg/kg nonradioactive 2-PAM demonstrated statistically similar tissue and blood distribution profiles with the greatest uptake in kidney and significantly lower levels in liver, heart, and lung with lesser amounts in blood and brain. The imaging and biodistribution data show that radioactivity uptake in brain and peripheral organs is rapid and characterized by differential tissue radioactivity washout profiles. Analysis of arterial blood samples taken 5 min after injection showed â¼82% parent [11C]2-PAM tracer. The imaging and biodistribution data are now established, enabling future comparisons to outcomes acquired in OP intoxicated rodent models.
Asunto(s)
Antídotos/farmacocinética , Radioisótopos de Carbono/farmacocinética , Intoxicación por Organofosfatos , Compuestos de Pralidoxima/farmacocinética , Radiofármacos/farmacocinética , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Corazón/diagnóstico por imagen , Riñón/diagnóstico por imagen , Riñón/metabolismo , Hígado/diagnóstico por imagen , Hígado/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Miocardio/metabolismo , Tomografía de Emisión de Positrones , Compuestos de Pralidoxima/síntesis química , Trazadores Radiactivos , Radiofármacos/síntesis química , Ratas , Distribución TisularRESUMEN
In the last two decades, a number of chelate strategies have been proposed for the fac-[MI(CO)3]+ (M = Re, 99mTc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2 + 1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2 + 1 complexes with Re and 99mTc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2 + 1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99mTc studies, anionic bidentate ligands had significantly higher formation yields of the 2 + 1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands.
RESUMEN
A versatile strategy to prepare fac-[M(I)(CO)3](+) and cis-[M(I)(CO)2](+) (M = Re, (99m)Tc) complexes was developed using Huisgen click chemistry and monodentate phosphine ligands to readily incorporate biomolecules and tailor the chemical properties.