Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 187(14): 3602-3618.e20, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38823389

RESUMEN

Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.


Asunto(s)
Neoplasias , Nucleótidos de Purina , Purinas , Animales , Ratones , Purinas/metabolismo , Purinas/biosíntesis , Neoplasias/metabolismo , Neoplasias/patología , Nucleótidos de Purina/metabolismo , Humanos , Inosina/metabolismo , Hipoxantina/metabolismo , Ratones Endogámicos C57BL , Adenina/metabolismo , Línea Celular Tumoral , Femenino
2.
Mol Cell ; 82(9): 1613-1615, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35523127

RESUMEN

Jouandin et al. (2022) show that lysosomal-derived cysteine serves as a signal to promote the tricarboxylic acid (TCA) cycle and suppress TORC1 signaling for Drosophila to endure starvation periods.


Asunto(s)
Proteínas de Drosophila , Inanición , Adaptación Psicológica , Animales , Cisteína , Drosophila , Proteínas de Drosophila/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética
3.
Mol Cell ; 82(17): 3299-3311.e8, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35868311

RESUMEN

NAD+ kinases (NADKs) are metabolite kinases that phosphorylate NAD+ molecules to make NADP+, a limiting substrate for the generation of reducing power NADPH. NADK2 sustains mitochondrial NADPH production that enables proline biosynthesis and antioxidant defense. However, its molecular architecture and mechanistic regulation remain undescribed. Here, we report the crystal structure of human NADK2, revealing a substrate-driven mode of activation. We find that NADK2 presents an unexpected dimeric organization instead of the typical tetrameric assemblage observed for other NADKs. A specific extended segment (aa 325-365) is crucial for NADK2 dimerization and activity. Moreover, we characterize numerous acetylation events, including those on Lys76 and Lys304, which reside near the active site and inhibit NADK2 activity without disrupting dimerization, thereby reducing mitochondrial NADP(H) production, proline synthesis, and cell growth. These findings reveal important molecular insight into the structure and regulation of a vital enzyme in mitochondrial NADPH and proline metabolism.


Asunto(s)
Lisina , NAD , Acetilación , Dominio Catalítico , Humanos , Lisina/metabolismo , Proteínas Mitocondriales/metabolismo , NAD/metabolismo , NADP/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Prolina/metabolismo
4.
Cell ; 156(4): 771-85, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24529379

RESUMEN

mTORC1 promotes cell growth in response to nutrients and growth factors. Insulin activates mTORC1 through the PI3K-Akt pathway, which inhibits the TSC1-TSC2-TBC1D7 complex (the TSC complex) to turn on Rheb, an essential activator of mTORC1. However, the mechanistic basis of how this pathway integrates with nutrient-sensing pathways is unknown. We demonstrate that insulin stimulates acute dissociation of the TSC complex from the lysosomal surface, where subpopulations of Rheb and mTORC1 reside. The TSC complex associates with the lysosome in a Rheb-dependent manner, and its dissociation in response to insulin requires Akt-mediated TSC2 phosphorylation. Loss of the PTEN tumor suppressor results in constitutive activation of mTORC1 through the Akt-dependent dissociation of the TSC complex from the lysosome. These findings provide a unifying mechanism by which independent pathways affecting the spatial recruitment of mTORC1 and the TSC complex to Rheb at the lysosomal surface serve to integrate diverse growth signals.


Asunto(s)
Insulina/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Aminoácidos/metabolismo , Animales , Línea Celular , GTP Fosfohidrolasas/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
6.
Nature ; 541(7635): 102-106, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27919065

RESUMEN

Ageing is driven by a loss of transcriptional and protein homeostasis and is the key risk factor for multiple chronic diseases. Interventions that attenuate or reverse systemic dysfunction associated with age therefore have the potential to reduce overall disease risk in the elderly. Precursor mRNA (pre-mRNA) splicing is a fundamental link between gene expression and the proteome, and deregulation of the splicing machinery is linked to several age-related chronic illnesses. However, the role of splicing homeostasis in healthy ageing remains unclear. Here we demonstrate that pre-mRNA splicing homeostasis is a biomarker and predictor of life expectancy in Caenorhabditis elegans. Using transcriptomics and in-depth splicing analysis in young and old animals fed ad libitum or subjected to dietary restriction, we find defects in global pre-mRNA splicing with age that are reduced by dietary restriction via splicing factor 1 (SFA-1; the C. elegans homologue of SF1, also known as branchpoint binding protein, BBP). We show that SFA-1 is specifically required for lifespan extension by dietary restriction and by modulation of the TORC1 pathway components AMPK, RAGA-1 and RSKS-1/S6 kinase. We also demonstrate that overexpression of SFA-1 is sufficient to extend lifespan. Together, these data demonstrate a role for RNA splicing homeostasis in dietary restriction longevity and suggest that modulation of specific spliceosome components may prolong healthy ageing.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Restricción Calórica , Longevidad/genética , Longevidad/fisiología , Complejos Multiproteicos/metabolismo , Factores de Empalme de ARN/metabolismo , Empalme del ARN , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Envejecimiento/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Genoma/genética , Homeostasis , Diana Mecanicista del Complejo 1 de la Rapamicina , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transcriptoma
8.
J Cell Sci ; 125(Pt 19): 4662-75, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22797923

RESUMEN

Here, we describe a phosphorylation-based reverse myristoyl switch for mammalian ZNRF2, and show that this E3 ubiquitin ligase and its sister protein ZNRF1 regulate the Na(+)/K(+) pump (Na(+)/K(+)ATPase). N-myristoylation localizes ZNRF1 and ZNRF2 to intracellular membranes and enhances their activity. However, when ZNRF2 is phosphorylated in response to agonists including insulin and growth factors, it binds to 14-3-3 and is released into the cytosol. On membranes, ZNRF1 and ZNRF2 interact with the Na(+)/K(+)ATPase α1 subunit via their UBZ domains, while their RING domains interact with E2 proteins, predominantly Ubc13 that, together with Uev1a, mediates formation of Lys63-ubiquitin linkages. ZNRF1 and ZNRF2 can ubiquitylate the cytoplasmic loop encompassing the nucleotide-binding and phosphorylation regions of the Na(+)/K(+)ATPase α1 subunit. Ouabain, a Na(+)/K(+)ATPase inhibitor and therapeutic cardiac glycoside, decreases ZNRF1 protein levels, whereas knockdown of ZNRF2 inhibits the ouabain-induced decrease of cell surface and total Na(+)/K(+)ATPase α1 levels. Thus, ZNRF1 and ZNRF2 are new players in regulation of the ubiquitous Na(+)/K(+)ATPase that is tuned to changing demands in many physiological contexts.


Asunto(s)
Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Membranas Intracelulares/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteínas 14-3-3/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Membranas Intracelulares/efectos de los fármacos , Marcaje Isotópico , Ratones , Datos de Secuencia Molecular , Mutación/genética , Ouabaína/farmacología , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Transporte de Proteínas/efectos de los fármacos , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas , Ubiquitinación/efectos de los fármacos
9.
Science ; 384(6701): eadj4301, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38870309

RESUMEN

Mitochondria are critical for proper organ function and mechanisms to promote mitochondrial health during regeneration would benefit tissue homeostasis. We report that during liver regeneration, proliferation is suppressed in electron transport chain (ETC)-dysfunctional hepatocytes due to an inability to generate acetyl-CoA from peripheral fatty acids through mitochondrial ß-oxidation. Alternative modes for acetyl-CoA production from pyruvate or acetate are suppressed in the setting of ETC dysfunction. This metabolic inflexibility forces a dependence on ETC-functional mitochondria and restoring acetyl-CoA production from pyruvate is sufficient to allow ETC-dysfunctional hepatocytes to proliferate. We propose that metabolic inflexibility within hepatocytes can be advantageous by limiting the expansion of ETC-dysfunctional cells.


Asunto(s)
Acetilcoenzima A , Hepatocitos , Regeneración Hepática , Mitocondrias Hepáticas , Ácido Pirúvico , Animales , Hepatocitos/metabolismo , Acetilcoenzima A/metabolismo , Ratones , Ácido Pirúvico/metabolismo , Mitocondrias Hepáticas/metabolismo , Oxidación-Reducción , Proliferación Celular , Ácidos Grasos/metabolismo , Hígado/metabolismo , Transporte de Electrón , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Masculino
10.
JCI Insight ; 8(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37707952

RESUMEN

Modulation of the immune response to initiate and halt the inflammatory process occurs both at the site of injury as well as systemically. Due to the evolving role of cellular metabolism in regulating cell fate and function, tendon injuries that undergo normal and aberrant repair were evaluated by metabolic profiling to determine its impact on healing outcomes. Metabolomics revealed an increasing abundance of the immunomodulatory metabolite itaconate within the injury site. Subsequent single-cell RNA-Seq and molecular and metabolomic validation identified a highly mature neutrophil subtype, not macrophages, as the primary producers of itaconate following trauma. These mature itaconate-producing neutrophils were highly inflammatory, producing cytokines that promote local injury fibrosis before cycling back to the bone marrow. In the bone marrow, itaconate was shown to alter hematopoiesis, skewing progenitor cells down myeloid lineages, thereby regulating systemic inflammation. Therapeutically, exogenous itaconate was found to reduce injury-site inflammation, promoting tenogenic differentiation and impairing aberrant vascularization with disease-ameliorating effects. These results present an intriguing role for cycling neutrophils as a sensor of inflammation induced by injury - potentially regulating immune cell production in the bone marrow through delivery of endogenously produced itaconate - and demonstrate a therapeutic potential for exogenous itaconate following tendon injury.


Asunto(s)
Neutrófilos , Succinatos , Humanos , Neutrófilos/metabolismo , Succinatos/farmacología , Succinatos/metabolismo , Succinatos/uso terapéutico , Macrófagos/metabolismo , Inflamación/metabolismo
11.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721853

RESUMEN

The facilitative GLUT1 and GLUT3 hexose transporters are expressed abundantly in macrophages, but whether they have distinct functions remains unclear. We confirmed that GLUT1 expression increased after M1 polarization stimuli and found that GLUT3 expression increased after M2 stimulation in macrophages. Conditional deletion of Glut3 (LysM-Cre Glut3fl/fl) impaired M2 polarization of bone marrow-derived macrophages. Alternatively activated macrophages from the skin of patients with atopic dermatitis showed increased GLUT3 expression, and a calcipotriol-induced model of atopic dermatitis was rescued in LysM-Cre Glut3fl/fl mice. M2-like macrophages expressed GLUT3 in human wound tissues as assessed by transcriptomics and costaining, and GLUT3 expression was significantly decreased in nonhealing, compared with healing, diabetic foot ulcers. In an excisional wound healing model, LysM-Cre Glut3fl/fl mice showed significantly impaired M2 macrophage polarization and delayed wound healing. GLUT3 promoted IL-4/STAT6 signaling, independently of its glucose transport activity. Unlike plasma membrane-localized GLUT1, GLUT3 was localized primarily to endosomes and was required for the efficient endocytosis of IL-4Rα subunits. GLUT3 interacted directly with GTP-bound RAS in vitro and in vivo through its intracytoplasmic loop domain, and this interaction was required for efficient STAT6 activation and M2 polarization. PAK activation and macropinocytosis were also impaired without GLUT3, suggesting broader roles for GLUT3 in the regulation of endocytosis. Thus, GLUT3 is required for efficient alternative macrophage polarization and function, through a glucose transport-independent, RAS-mediated role in the regulation of endocytosis and IL-4/STAT6 activation.


Asunto(s)
Dermatitis Atópica , Animales , Humanos , Ratones , Dermatitis Atópica/genética , Endocitosis , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 3/metabolismo , Interleucina-4/genética , Activación de Macrófagos/genética , Macrófagos/metabolismo , Cicatrización de Heridas/genética
12.
Cell Rep ; 39(7): 110824, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584673

RESUMEN

The tuberous sclerosis complex (TSC) 1 and 2 proteins associate with TBC1D7 to form the TSC complex, which is an essential suppressor of mTOR complex 1 (mTORC1), a ubiquitous driver of cell and tissue growth. Loss-of-function mutations in TSC1 or TSC2, but not TBC1D7, give rise to TSC, a pleiotropic disorder with aberrant activation of mTORC1 in various tissues. Here, we characterize mice with genetic deletion of Tbc1d7, which are viable with normal growth and development. Consistent with partial loss of function of the TSC complex, Tbc1d7 knockout (KO) mice display variable increases in tissue mTORC1 signaling with increased muscle fiber size but with strength and motor defects. Their most pronounced phenotype is brain overgrowth due to thickening of the cerebral cortex, with enhanced neuron-intrinsic mTORC1 signaling and growth. Thus, TBC1D7 is required for full TSC complex function in tissues, and the brain is particularly sensitive to its growth-suppressing activities.


Asunto(s)
Encéfalo , Péptidos y Proteínas de Señalización Intracelular , Diana Mecanicista del Complejo 1 de la Rapamicina , Neuronas , Proteína 1 del Complejo de la Esclerosis Tuberosa , Esclerosis Tuberosa , Proteínas Supresoras de Tumor , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
13.
Nat Commun ; 13(1): 2698, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577785

RESUMEN

Purine nucleotides are necessary for various biological processes related to cell proliferation. Despite their importance in DNA and RNA synthesis, cellular signaling, and energy-dependent reactions, the impact of changes in cellular purine levels on cell physiology remains poorly understood. Here, we find that purine depletion stimulates cell migration, despite effective reduction in cell proliferation. Blocking purine synthesis triggers a shunt of glycolytic carbon into the serine synthesis pathway, which is required for the induction of cell migration upon purine depletion. The stimulation of cell migration upon a reduction in intracellular purines required one-carbon metabolism downstream of de novo serine synthesis. Decreased purine abundance and the subsequent increase in serine synthesis triggers an epithelial-mesenchymal transition (EMT) and, in cancer models, promotes metastatic colonization. Thus, reducing the available pool of intracellular purines re-routes metabolic flux from glycolysis into de novo serine synthesis, a metabolic change that stimulates a program of cell migration.


Asunto(s)
Nucleótidos de Purina , Serina , Carbono , Movimiento Celular , Purinas , Serina/metabolismo
14.
Trends Cancer ; 7(3): 177-179, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33500224

RESUMEN

The molecular elements that govern cellular transformation and tumorigenic competence remain poorly understood. Metabolic reprogramming has emerged as a hallmark of malignant transformation. Recently in Cell Metabolism, Zhang et al. showed that an increase of cellular antioxidant capacity and nucleotide availability is sufficient to induce oncogenic transformation and tumorigenesis.


Asunto(s)
Antioxidantes , Nucleótidos , Carcinogénesis , Transformación Celular Neoplásica , Humanos
15.
Nat Metab ; 3(4): 571-585, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33833463

RESUMEN

Nicotinamide adenine dinucleotide phosphate (NADP+) is vital to produce NADPH, a principal supplier of reducing power for biosynthesis of macromolecules and protection against oxidative stress. NADPH exists in separate pools, in both the cytosol and mitochondria; however, the cellular functions of mitochondrial NADPH are incompletely described. Here, we find that decreasing mitochondrial NADP(H) levels through depletion of NAD kinase 2 (NADK2), an enzyme responsible for production of mitochondrial NADP+, renders cells uniquely proline auxotrophic. Cells with NADK2 deletion fail to synthesize proline, due to mitochondrial NADPH deficiency. We uncover the requirement of mitochondrial NADPH and NADK2 activity for the generation of the pyrroline-5-carboxylate metabolite intermediate as the bottleneck step in the proline biosynthesis pathway. Notably, after NADK2 deletion, proline is required to support nucleotide and protein synthesis, making proline essential for the growth and proliferation of NADK2-deficient cells. Thus, we highlight proline auxotrophy in mammalian cells and discover that mitochondrial NADPH is essential to enable proline biosynthesis.


Asunto(s)
Proliferación Celular , Mitocondrias/metabolismo , NADP/metabolismo , Prolina/biosíntesis , Animales , Ciclo Celular/genética , Humanos , Ratones , Ratones Noqueados , Consumo de Oxígeno , Páncreas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Mol Metab ; 53: 101309, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34303878

RESUMEN

OBJECTIVE: The mechanistic target of rapamycin complex 1 (mTORC1) is dynamically regulated by fasting and feeding cycles in the liver to promote protein and lipid synthesis while suppressing autophagy. However, beyond these functions, the metabolic response of the liver to feeding and insulin signaling orchestrated by mTORC1 remains poorly defined. Here, we determine whether ATF4, a stress responsive transcription factor recently found to be independently regulated by mTORC1 signaling in proliferating cells, is responsive to hepatic mTORC1 signaling to alter hepatocyte metabolism. METHODS: ATF4 protein levels and expression of canonical gene targets were analyzed in the liver following fasting and physiological feeding in the presence or absence of the mTORC1 inhibitor, rapamycin. Primary hepatocytes from wild-type or liver-specific Atf4 knockout (LAtf4KO) mice were used to characterize the effects of insulin-stimulated mTORC1-ATF4 function on hepatocyte gene expression and metabolism. Both unbiased steady-state metabolomics and stable-isotope tracing methods were employed to define mTORC1 and ATF4-dependent metabolic changes. RNA-sequencing was used to determine global changes in feeding-induced transcripts in the livers of wild-type versus LAtf4KO mice. RESULTS: We demonstrate that ATF4 and its metabolic gene targets are stimulated by mTORC1 signaling in the liver, in a hepatocyte-intrinsic manner by insulin in response to feeding. While we demonstrate that de novo purine and pyrimidine synthesis is stimulated by insulin through mTORC1 signaling in primary hepatocytes, this regulation was independent of ATF4. Metabolomics and metabolite tracing studies revealed that insulin-mTORC1-ATF4 signaling stimulates pathways of nonessential amino acid synthesis in primary hepatocytes, including those of alanine, aspartate, methionine, and cysteine, but not serine. CONCLUSIONS: The results demonstrate that ATF4 is a novel metabolic effector of mTORC1 in the liver, extending the molecular consequences of feeding and insulin-induced mTORC1 signaling in this key metabolic tissue to the control of amino acid metabolism.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Hígado/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Factor de Transcripción Activador 4/deficiencia , Alimentación Animal , Animales , Conducta Alimentaria , Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal
17.
Nat Rev Cancer ; 20(2): 74-88, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31686003

RESUMEN

The altered metabolic programme of cancer cells facilitates their cell-autonomous proliferation and survival. In normal cells, signal transduction pathways control core cellular functions, including metabolism, to couple the signals from exogenous growth factors, cytokines or hormones to adaptive changes in cell physiology. The ubiquitous, growth factor-regulated phosphoinositide 3-kinase (PI3K)-AKT signalling network has diverse downstream effects on cellular metabolism, through either direct regulation of nutrient transporters and metabolic enzymes or the control of transcription factors that regulate the expression of key components of metabolic pathways. Aberrant activation of this signalling network is one of the most frequent events in human cancer and serves to disconnect the control of cell growth, survival and metabolism from exogenous growth stimuli. Here we discuss our current understanding of the molecular events controlling cellular metabolism downstream of PI3K and AKT and of how these events couple two major hallmarks of cancer: growth factor independence through oncogenic signalling and metabolic reprogramming to support cell survival and proliferation.


Asunto(s)
Metabolismo Energético , Neoplasias/etiología , Neoplasias/metabolismo , Proteínas Oncogénicas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Susceptibilidad a Enfermedades , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Humanos , Neoplasias/patología , Oxidación-Reducción
18.
Science ; 363(6431): 1088-1092, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30846598

RESUMEN

Nicotinamide adenine dinucleotide phosphate (NADP+) is essential for producing NADPH, the primary cofactor for reductive metabolism. We find that growth factor signaling through the phosphoinositide 3-kinase (PI3K)-Akt pathway induces acute synthesis of NADP+ and NADPH. Akt phosphorylates NAD kinase (NADK), the sole cytosolic enzyme that catalyzes the synthesis of NADP+ from NAD+ (the oxidized form of NADH), on three serine residues (Ser44, Ser46, and Ser48) within an amino-terminal domain. This phosphorylation stimulates NADK activity both in cells and directly in vitro, thereby increasing NADP+ production. A rare isoform of NADK (isoform 3) lacking this regulatory region exhibits constitutively increased activity. These data indicate that Akt-mediated phosphorylation of NADK stimulates its activity to increase NADP+ production through relief of an autoinhibitory function inherent to its amino terminus.


Asunto(s)
NADP/biosíntesis , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina/metabolismo , Animales , Cromatografía Liquida , Citosol/enzimología , Células HEK293 , Humanos , Factor I del Crecimiento Similar a la Insulina/farmacología , Ratones , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Dominios Proteicos , Serina/genética , Transducción de Señal/efectos de los fármacos , Espectrometría de Masas en Tándem
19.
Nat Metab ; 5(5): 716-719, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37142788
20.
Cell Metab ; 25(2): 463-471, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28089566

RESUMEN

Metformin is the most widely prescribed drug for the treatment of type 2 diabetes. However, knowledge of the full effects of metformin on biochemical pathways and processes in its primary target tissue, the liver, is limited. One established effect of metformin is to decrease cellular energy levels. The AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) are key regulators of metabolism that are respectively activated and inhibited in acute response to cellular energy depletion. Here we show that metformin robustly inhibits mTORC1 in mouse liver tissue and primary hepatocytes. Using mouse genetics, we find that at the lowest concentrations of metformin that inhibit hepatic mTORC1 signaling, this inhibition is dependent on AMPK and the tuberous sclerosis complex (TSC) protein complex (TSC complex). Finally, we show that metformin profoundly inhibits hepatocyte protein synthesis in a manner that is largely dependent on its ability to suppress mTORC1 signaling.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hígado/metabolismo , Metformina/farmacología , Complejos Multiproteicos/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Esclerosis Tuberosa/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA