Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Genet ; 8(5): e1002647, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22570628

RESUMEN

Epigenetic modifications influence gene expression and provide a unique mechanism for fine-tuning cellular differentiation and development in multicellular organisms. Here we report on the biological functions of UTX-1, the Caenorhabditis elegans homologue of mammalian UTX, a histone demethylase specific for H3K27me2/3. We demonstrate that utx-1 is an essential gene that is required for correct embryonic and postembryonic development. Consistent with its homology to UTX, UTX-1 regulates global levels of H3K27me2/3 in C. elegans. Surprisingly, we found that the catalytic activity is not required for the developmental function of this protein. Biochemical analysis identified UTX-1 as a component of a complex that includes SET-16(MLL), and genetic analysis indicates that the defects associated with loss of UTX-1 are likely mediated by compromised SET-16/UTX-1 complex activity. Taken together, these results demonstrate that UTX-1 is required for many aspects of nematode development; but, unexpectedly, this function is independent of its enzymatic activity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Desarrollo Embrionario/genética , Histonas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular , Epigénesis Genética , Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metilación , Interferencia de ARN
2.
PLoS Genet ; 2(11): e194, 2006 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-17096599

RESUMEN

Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most spontaneous mitotic HR in Saccharomyces cerevisiae is initiated by DNA lesions other than DSBs. Specifically, we describe a class of rad52 mutants that are fully proficient in inter- and intra-chromosomal mitotic HR, yet at the same time fail to repair DNA DSBs. The conclusions are drawn from genetic analyses, evaluation of the consequences of DSB repair failure at the DNA level, and examination of the cellular re-localization of Rad51 and mutant Rad52 proteins after introduction of specific DSBs. In further support of our conclusions, we show that, as in wild-type strains, UV-irradiation induces HR in these rad52 mutants, supporting the view that DNA nicks and single-stranded gaps, rather than DSBs, are major sources of spontaneous HR in mitotic yeast cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Recombinación Genética/genética , Saccharomyces cerevisiae/genética , Alelos , Camptotecina/farmacología , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN-Topoisomerasas/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Rayos gamma , Cinética , Pruebas de Sensibilidad Microbiana , Mitosis/efectos de los fármacos , Mitosis/fisiología , Proteínas Mutantes/metabolismo , Mutación/genética , Fenotipo , Transporte de Proteínas/efectos de los fármacos , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética/efectos de la radiación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/metabolismo , Rayos Ultravioleta
3.
DNA Repair (Amst) ; 6(1): 27-37, 2007 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-16987715

RESUMEN

Homologous recombination is an important pathway for the repair of DNA double-strand breaks (DSBs). In the yeast Saccharomyces cerevisiae, Rad52 is a central recombination protein, whereas its paralogue, Rad59, plays a more subtle role in homologous recombination. Both proteins can mediate annealing of complementary single-stranded DNA in vitro, but only Rad52 interacts with replication protein A and the Rad51 recombinase. We have studied the functional overlap between Rad52 and Rad59 in living cells using chimeras of the two proteins and site-directed mutagenesis. We find that Rad52 and Rad59 have both overlapping as well as separate functions in DSB repair. Importantly, the N-terminus of Rad52 possesses functions not supplied by Rad59, which may account for its central role in homologous recombination.


Asunto(s)
Reparación del ADN , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Roturas del ADN de Doble Cadena , Replicación del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Recombinación Genética , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
4.
Fungal Genet Biol ; 43(1): 54-64, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16289954

RESUMEN

The rapid accumulation of genomic sequences from a large number of eukaryotes, including numerous filamentous fungi, has created a tremendous scientific potential, which can only be realized if precise site-directed genome modifications, like gene deletions, promoter replacements, in-frame GFP fusions and specific point mutations can be made rapidly and reliably. The development of gene-targeting techniques in filamentous fungi and other higher eukaryotes has been hampered because foreign DNA is predominantly integrated randomly into the genome. For Aspergillus nidulans, we have developed a flexible method for gene-targeting employing a bipartite gene-targeting substrate. This substrate is made solely by PCR, which obviates the need for bacterial subcloning steps. The method reduces the number of false positives and can be used to produce virtually any genome alteration. A major advance of the method is that it allows multiple subsequent genome manipulations to be performed as the selectable marker is recycled.


Asunto(s)
Aspergillus nidulans/genética , Marcación de Gen/métodos , Genes Fúngicos/genética , Eliminación de Gen , Mutación Puntual , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA