Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioorg Med Chem ; 31: 115969, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33422910

RESUMEN

P38α/MAPK14 is intracellular signalling regulator involved in biosynthesis of inflammatory mediator cytokines (TNF-α, IL-1, IL-6, and IL-1b), which induce the production of inflammatory proteins (iNOS, NF-kB, and COX-2). In this study, drug repurposing strategies were followed to repositioning of a series of B-RAF V600E imidazol-5-yl pyridine inhibitors to inhibit P38α kinase. A group 25 reported P38α kinase inhibitors were used to build a pharmacophore model for mapping the target compounds and proving their affinity for binding in P38α active site. Target compounds were evaluated for their potency against P38α kinase, compounds 11a and 11d were the most potent inhibitors (IC50 = 47 nM and 45 nM, respectively). In addition, compound 11d effectively inhibited the production of proinflammatory cytokinesTNF-α, 1L-6, and 1L-1ß in LPS-induced RAW 264.7 macrophages with IC50 values of 78.03 nM, 17.6 µM and 82.15 nM, respectively. The target compounds were tested for their anti-inflammatory activity by detecting the reduction of Nitric oxide (NO) and prostaglandin (PGE2) production in LPS-stimulated RAW 264.7 macrophages. Compound 11d exhibited satisfied inhibitory activity of the production of PGE2 and NO with IC50 values of 0.29 µM and 0.61 µM, respectively. Molecular dynamics simulations of the most potent inhibitor 11d were carried out to illustrate its conformational stability in the binding site of P38α kinase.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Diseño de Fármacos , Imidazoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/síntesis química , Imidazoles/química , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad , Células THP-1 , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Bioorg Chem ; 106: 104508, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33280830

RESUMEN

BRAFV600E mutation has been detected in various malignant tumours. Developing of potent BRAFV600E inhibitors is considered a leading step in the way to cure different cancer types. In the current work, a series of 38 4-(1H-imidazol-5-yl)pyridin-2-amine derivatives was designed and synthesized using Dabrafenib as a lead compound for structural-guided optimization. The target compounds were evaluated as potential anticancer agents against NCI 60 human cancer cell lines. In 5-dose testing mode, two compounds 14h and 16e were tested to determine their IC50 values over each of the 60 cell lines. The selected candidates exhibited promising activity with mean IC50 values of 2.4 µM and 3.6 µM, respectively. Melanoma cancer cell lines exhibited the highest sensitivity after the treatment with the tested compounds 14h and 16e. The mean IC50 values of compounds 14h and 16e against Melanoma cancer cell lines are 1.8 µM and 1.88 µM, respectively. In addition, BRAFV600E kinase inhibitory activity was determined for each derivative. Compounds 15i, 15j, 16a, and 16d were the most potent inhibitors against BRAFV600E with IC50 76 nM, 32 nM, 35 nM, and 68 nM. The newly developed compounds represent a therapeutically promising approach for the treating various cancer types.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Imidazoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Sulfonamidas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Imidazoles/síntesis química , Imidazoles/química , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas B-raf/metabolismo , Relación Estructura-Actividad , Sulfonamidas/química
3.
Bioorg Med Chem Lett ; 30(20): 127478, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32781217

RESUMEN

B-Raf mutation was identified as a key target in cancer treatment. Based on structural features of dabrafenib (potent FDA approved B-Raf inhibitor), the design of new NH2-based imidazothiazole derivatives was carried out affording new highly potent derivatives of imidazothiazole-based scaffold with amino substitution on the terminal phenyl ring as well as side chain with sulfonamide group and terminal substituted phenyl ring. In vitro enzyme assay was investigated against V600E B-Raf kinase. Compounds 10l, 10n and 10o showed higher inhibitory activities (IC50 = 1.20, 4.31 and 6.21 nM, respectively). In vitro cytotoxicity evaluation was assessed against NCI-60 cell lines. Most of tested derivatives showed cytotoxic activities against melanoma cell line. Compound 10k exhibited most potent activity (IC50 = 2.68 µM). Molecular docking study revealed that the new designed derivatives preserved the same binding mode of dabrafenib with V600E B-Raf active site. It was investigated that the new modification in the synthesized derivatives (substituted with NH2) had a significant inhibitory activity towards V600E B-Raf. This core scaffold is considered a key compound for further structural and molecular optimization.


Asunto(s)
Antineoplásicos/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Tiazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas B-raf/metabolismo , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
4.
Bioorg Med Chem ; 28(11): 115493, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32340792

RESUMEN

Several pyrrolo[2,3-b]pyridine-based B-RAF inhibitors are well known and some of them are currently FDA approved as anticancer agents. Based on the structure of these FDA approved V600EB-RAF inhibitors, two series of pyrrolo[2,3-b]pyridine scaffold were designed and synthesized in attempt to develop new potent V600EB-RAF inhibitors. The 38 synthesized compounds were biologically evaluated for their V600EB-RAF inhibitory effect at single dose (10 µM). Compounds with high percent inhibition were tested to determine their IC50 over V600EB-RAF. Compounds 34e and 35 showed the highest inhibitory effect with IC50 values of 0.085 µM and 0.080 µM, respectively. Headed for excessive biological evaluation, the synthesized derivatives were tested over sixty diverse human cancer cell lines. Only compound 35 emerged as a potent cytotoxic agent against different panel of human cancer cell lines.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Piridinas/farmacología , Pirroles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas B-raf/metabolismo , Piridinas/síntesis química , Piridinas/química , Pirroles/síntesis química , Pirroles/química , Relación Estructura-Actividad
5.
Bioorg Chem ; 100: 103967, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32470760

RESUMEN

BRAF mutation is commonly known in a number of human cancer types. It is counted as a potential component in treating cancer. In this study, based on structural optimization of previously reported inhibitors (3-fluro substituted derivatives of imidazo[2,1-b]thiazole-based scaffold), we designed and synthesized sixteen new imidazo[2,1-b]thiazole derivatives with m-nitrophenyl group at position 6. The electron withdrawing properties was reserved while the polarity was modified compared to previously synthesized compounds (-F). Furthermore, the new substituted group (-NO2) provided an additional H-bond acceptor(s) which may bind with the target enzyme through additional interaction(s). In vitro cytotoxicity evaluation was performed against human cancer cell line (A375). In addition, in vitro enzyme assay was performed against mutated B-Raf (B-Raf V600E). Compounds 13a, 13g and 13f showed highest activity on mutated B-Raf with IC50 0.021, 0.035 and 0.020 µM. All target compounds were tested for in vitro cytotoxicity against NCI 60 cell lines. Compounds 13a and 13g were selected for 5 doses test mode. Moreover, in silico molecular simulation was explored in order to explore the possible interactions between the designed compounds and the B-Raf V600E active site.


Asunto(s)
Imidazoles/química , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Tiazoles/química , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Imidazoles/metabolismo , Imidazoles/farmacología , Simulación del Acoplamiento Molecular , Mutación , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Relación Estructura-Actividad , Tiazoles/metabolismo , Tiazoles/farmacología , Vemurafenib/farmacología
6.
Bioorg Chem ; 93: 103349, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31627060

RESUMEN

In the present work, a novel series of B-RAF kinase inhibitors having imidazo[2,1-b]oxazole scaffold was designed and synthesized based on the structures of the well-known B-RAF inhibitors. The twenty two final compounds were tested over A375 and SKMEL28 cell lines to determine the primary cytotoxic activity of these compounds, and their activities were compared with that of sorafenib as a standard. Compounds 11c, 11e, 11o, 11q, 11r, and 11u exhibited higher cellular activity compared to sorafenib with IC50 values of 7.25, 8.03, 9.81, 8.47, 4.70, and 9.04 µM, respectively and 10.38 µM for sorafenib. In addition, the target compounds were screened for their anticancer activity by the NCI-60 cell line assay. Compounds 11v and 11u were the most active compounds with percent inhibition reached 95.99% for 11v and 87.03% for 11u over K562 cell line at 10 µM concentration. Compound 11v was selected for 5-dose test mode. Furthermore, the kinase inhibitory activities of 11a, 11c, 11e, 11i, 11o, 11q, 11r, 11u, and 11v were determined against wild-type B-RAF, V600E-B-RAF, and RAF1. Compound 11o was the most potent against V600E-B-RAF with IC50 34 nM followed by 11q and 11u with IC50 92 and 93 nM, respectively.


Asunto(s)
Diseño de Fármacos , Imidazoles/química , Oxazoles/química , Oxazoles/farmacología , Quinasas raf/antagonistas & inhibidores , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Oxazoles/síntesis química
7.
Eur J Med Chem ; 261: 115779, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37776574

RESUMEN

A series of 36 pyrazol-4-yl pyridine derivatives (8a-i, 9a-i, 10a-i, and 11a-i) was designed, synthesized, and evaluated for its antiproliferative activity over NCI-60 cancer cell line panel and inhibitory effect against JNK isoforms (JNK1, JNK2, and JNK3). All the synthesized compounds were tested against the NCI-60 cancer cell line panel. Compounds 11b, 11c, 11g, and 11i were selected to determine their GI50s and exerted a superior potency over the reference standard SP600125 against the tested cell lines. 11c showed a GI50 of 1.28 µM against K562 leukemic cells. Vero cells were used to assess 11c cytotoxicity compared to the tested cancer cells. The target compounds were tested against hJNK isoforms in which compound 11e exhibited the highest potency against JNK isoforms with IC50 values of 1.81, 12.7, and 10.5 nM against JNK1, JNK2, and JNK3, respectively. Kinase profiling of 11e showed higher JNK selectivity in 50 kinase panels. Compounds 11c and 11e showed cell population arrest at the G2/M phase, induced early apoptosis, and slightly inhibited beclin-1 production at higher concentrations in K562 leukemia cells relative to SP600125. NanoBRET assay of 11e showed intracellular JNK1 inhibition with an IC50 of 2.81 µM. Also, it inhibited CYP2D6 and 3A4 with different extent and its hERG activity showed little cardiac toxicity with an IC50 of 4.82 µM. hJNK3 was used as a template to generate the hJNK1 crystal structure to explore the binding mode of 11e (PDB ID: 8ENJ) with a resolution of 2.8 °A and showed a typical type I kinase inhibition against hJNK1. Binding energy scores showed that selectivity of 11e towards JNK1 could be attributed to additional hydrophobic interactions relative to JNK3.


Asunto(s)
Azoles , Proteínas Quinasas JNK Activadas por Mitógenos , Animales , Chlorocebus aethiops , Células Vero , Azoles/farmacología , Isoformas de Proteínas , Piridinas/farmacología , Proliferación Celular
8.
Eur J Pharm Sci ; 171: 106115, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995782

RESUMEN

In the current article, we introduce design of a new series of 4-(imidazol-5-yl)pyridines with improved anticancer activity and selective B-RAFV600E/p38α kinase inhibitory activity. Based on a previous work, a group of structural modifications were applied affording the new potential antiproliferative agents. Towards extensive biological assessment of the target compounds, an in vitro anticancer assay was conducted over NCI 60-cancer cell lines panel representing blood, lung, colon, CNS, skin, ovary, renal, prostate, and breast cancers. Compounds 7c, 7d, 8b, 9b, 9c, 10c, 10d, and 11b exhibited the highest potency among the tested compounds and demonstrated sub-micromolar or one-digit micromolar GI50 values against the majority of the employed cell lines. Compound 10c emerged as the most potent agent with nano-molar activity over most of the cells and incredible activity against melanoma (MDA-MB-435) cell line (GI50 70 nM). It is much more potent than sorafenib, the clinically used anticancer drug, against almost all the NCI-60 cell lines. Further cell-based mechanistic assays showed that compound 10c induced cell cycle arrest and promoted apoptosis in K562, MCF-7 and HT29 cancer cell lines. In addition, compound 10c induced autophagy in the three cancer cell lines. Kinase profiling of 10c showed its inhibitory effects and selectivity towards B-RAFV600E and p38α kinases with IC50 values of 1.84 and 0.726 µM, respectively. Docking of compound 10c disclosed its high affinity in the kinases pockets. Compound 10c represent a promising anticancer agent, that could be optimized in order to improve its kinase activity aiming at developing potential anticancer agents. The conformational stability of compound 10c in the active site of B-RAFV600E and p38α kinases was studied by applying molecular dynamic simulation of the compound in the two kinases for 600 ns in comparison to the native ligands.


Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Piridinas/farmacología , Relación Estructura-Actividad
9.
Eur J Med Chem ; 215: 113277, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33601311

RESUMEN

The synergistic effect of dual inhibition of serine/threonine protein kinases that are involved in the same signalling pathway of the diseases can exert superior biological benefits for treatment of these diseases. In the present work, a new series of (imidazol-5-yl)pyrimidine was designed and synthesized as dual inhibitors of BRAFV600E and p38α kinases which are considered as key regulators in mitogen-activated protein kinase (MAPK) signalling pathway. The target compounds were evaluated for dual kinase inhibitory activity. The tested compounds exhibited nanomolar scale IC50 values against BRAFV600E and low to sub-micromolar IC50 range against p38α. Compound 20h was identified as the most potent dual BRAFV600E/p38α inhibitor with IC50 values of 2.49 and 85 nM, respectively. Further deep investigation revealed that compound 20h possesses inhibitory activity of TNF-α production in lipopolysaccharide-induced RAW 264.7 macrophages with IC50 value of 96.3 nM. Additionally, the target compounds efficiently frustrated the proliferation of LOX-IMVI melanoma cell line. Compound 20h showed a satisfactory antiproliferative activity with IC50 value of 13 µM, while, compound 18f exhibited the highest cytotoxicity potency with IC50 value of 0.9 µM. Compound 18f is 11.11-fold more selective toward LOX-IMVI melanoma cells than IOSE-80PC normal cells. The newly reported compounds represent therapeutically promising candidates for further development of BRAFV600E/p38α inhibitors in an attempt to overcome the acquired resistance of BRAF mutant melanoma.


Asunto(s)
Imidazoles/farmacología , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Pirimidinas/farmacología , Animales , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Imidazoles/síntesis química , Imidazoles/metabolismo , Ratones , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Mutación , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Pirimidinas/síntesis química , Pirimidinas/metabolismo , Relación Estructura-Actividad
10.
J Med Chem ; 64(10): 6877-6901, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33999621

RESUMEN

BRAF is an important component of MAPK cascade. Mutation of BRAF, in particular V600E, leads to hyperactivation of the MAPK pathway and uncontrolled cellular growth. Resistance to selective inhibitors of mutated BRAF is a major obstacle against treatment of many cancer types. In this work, a series of new (imidazo[2,1-b]thiazol-5-yl)pyrimidine derivatives possessing a terminal sulfonamide moiety were synthesized. Pan-RAF inhibitory effect of the new series was investigated, and structure-activity relationship is discussed. Antiproliferative activity of the target compounds was tested against the NCI-60 cell line panel. The most active compounds were further tested to obtain their IC50 values against cancer cells. Compound 27c with terminal open chain sulfonamide and 38a with a cyclic sulfamide moiety showed the highest activity in enzymatic and cellular assay, and both compounds were able to inhibit phosphorylation of MEK and ERK. Compound 38a was selected for testing its in vivo activity against melanoma. Cellular and animal activities are reported.


Asunto(s)
Imidazoles/química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Tiazoles/química , Animales , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Estabilidad de Medicamentos , Semivida , Humanos , Imidazoles/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/patología , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/metabolismo , Relación Estructura-Actividad , Sulfonamidas/química , Tiazoles/metabolismo , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA