Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Langmuir ; 40(11): 5945-5958, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456424

RESUMEN

Amphiphilic diblock copolymers containing a block of 2-methacryloyloxyethyl phosphorylcholine (MPC) with unique properties to prevent nonspecific protein adsorption and enhance lubrication in aqueous media and a block of dopamine methacrylamide (DOPMA) distinguished by excellent adhesion performance were synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization for the first time. The DOPMA monomer with an acetonide-protected catechol group (acetonide-protected dopamine methacrylamide (ADOPMA)) was used, allowing the prevention of undesirable side reactions during polymerization and oxidation during storage. The adsorption behavior of the diblock copolymers with protected and unprotected catechol groups on gold surfaces was probed using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy, surface-enhanced infrared absorption spectroscopy (SEIRAS), and reflection-absorption infrared spectroscopy (RAIRS). The copolymers pMPC-b-pADOPMA demonstrated physisorption with rapid adsorption and ultrasound-assisted desorption, while the copolymers pMPC-b-DOPMA exhibited chemical adsorption with slower dynamics but a stronger interaction with the gold surface. SEIRAS and RAIRS allowed proving the reorientation of the diblock copolymers during adsorption, demonstrating the exposure of the pMPC block toward the aqueous phase.

2.
Molecules ; 29(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38792100

RESUMEN

Carbonization of biomass residues followed by activation has great potential to become a safe process for the production of various carbon materials for various applications. Demand for commercial use of biomass-based carbon materials is growing rapidly in advanced technologies, including in the energy sector, as catalysts, batteries and capacitor electrodes. In this study, carbon materials were synthesized from hardwood using two carbonization methods, followed by activation with H3PO4, KOH and NaOH and doping with nitrogen. Their chemical composition, porous structure, thermal stability and structural order of samples were studied. It was shown that, despite the differences, the synthesized carbon materials are active catalysts for oxygen reduction reactions. Among the investigated carbon materials, NaOH-activated samples exhibited the lowest Tafel slope values, of -90.6 and -88.0 mV dec-1, which are very close to the values of commercial Pt/C at -86.6 mV dec-1.

3.
Molecules ; 27(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36235068

RESUMEN

The imidazole ring (Im) of histidine side chains plays a unique role in the function of proteins through covalent bonding with metal ions and hydrogen bonding interactions with adjusted biomolecules and water. At biological interfaces, these interactions are modified because of the presence of an electric field. Self-assembled monolayers (SAMs) with the functional Im group mimic the histidine side chain at electrified interfaces. In this study, we applied in-situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) to probe the structure and hydrogen bonding of Im-functionalized SAM on smooth Au at the electrochemical interface. The self-assembly of molecules on the Au induced the proton shift from N1 atom (Tautomer-I), which is the dominant form of Im in the bulk sample, to N3 atom (Tautomer-II). The impact of electrode potential on the hydrogen bonding interaction strength of the Im ring was identified by SHINERS. Temperature-Raman measurements and density functional theory (DFT) analysis revealed the spectral marker for Im ring packing (mode near 1496-1480 cm-1) that allowed us to associate the confined and strongly hydrogen bonded interfacial Im groups with electrode polarization at -0.8 V. Reflection adsorption IR (RAIR) spectra of SAMs with and without Im revealed that the bulky ring prevented the formation of a strongly hydrogen bonded amide group network.


Asunto(s)
Oro , Nanopartículas , Amidas , Electrodos , Oro/química , Histidina/química , Hidrógeno , Imidazoles , Protones , Espectrometría Raman/métodos , Agua
4.
Molecules ; 25(15)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759766

RESUMEN

Several neurodegenerative diseases, like Alzheimer's and Parkinson's are linked with protein aggregation into amyloid fibrils. Conformational changes of native protein into the ß-sheet structure are associated with a significant change in the vibrational spectrum. This is especially true for amide bands which are inherently sensitive to the secondary structure of a protein. Raman amide bands are greatly intensified under resonance conditions, in the UV spectral range, allowing for the selective probing of the peptide backbone. In this work, we examine parallel ß-sheet forming GGVVIA, the C-terminus segment of amyloid-ß peptide, using UV-Vis, FTIR, and multiwavelength Raman spectroscopy. We find that amide bands are enhanced far from the expected UV range, i.e., at 442 nm. A reasonable two-fold relative intensity increase is observed for amide II mode (normalized according to the δCH2/δCH3 vibration) while comparing 442 and 633 nm excitations; an increase in relative intensity of other amide bands was also visible. The observed relative intensification of amide II, amide S, and amide III modes in the Raman spectrum recorded at 442 nm comparing with longer wavelength (633/785/830 nm) excited spectra allows unambiguous identification of amide bands in the complex Raman spectra of peptides and proteins containing the ß-sheet structure.


Asunto(s)
Amidas/química , Péptidos beta-Amiloides/análisis , Péptidos beta-Amiloides/química , Espectrometría Raman/métodos , Secuencia de Aminoácidos , Amiloide/química , Humanos , Microscopía de Fuerza Atómica/métodos , Estructura Molecular , Agregado de Proteínas , Agregación Patológica de Proteínas/diagnóstico , Estructura Secundaria de Proteína
5.
Molecules ; 25(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33265984

RESUMEN

Multifunctional amide-containing self-assembled monolayers (SAMs) provide prospects for the construction of interfaces with required physicochemical properties and distinctive stability. In this study, we report the synthesis of amide-containing thiols with terminal phenylalanine (Phe) ring functionality (HS(CH2)7CONH(CH2)2C6H5) and the characterization of the formation of SAMs from these thiols on gold by reflection absorption infrared spectroscopy (RAIRS). For reliable assignments of vibrational bands, ring deuterated analogs were synthesized and studied as well. Adsorption time induced changes in Amide-II band frequency and relative intensity of Amide-II/Amide-I bands revealed two-state sigmoidal form dependence with a transition inflection points at 2.2 ± 0.5 and 4.7 ± 0.5 min, respectively. The transition from initial (disordered) to final (hydrogen-bonded, ordered) structure resulted in increased Amide-II frequency from 1548 to 1557 cm-1, which is diagnostic for a strongly hydrogen-bonded amide network in trans conformation. However, the lateral interactions between the alkyl chains were found to be somewhat reduced when compared with well-ordered alkane thiol monolayers.


Asunto(s)
Amidas/química , Fenilalanina/química , Espectrofotometría Infrarroja/métodos , Compuestos de Sulfhidrilo/química , Estructura Molecular
6.
Biophys J ; 117(5): 829-843, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31422820

RESUMEN

Encapsulation of proteins within lipid inverse bicontinuous cubic phases (Q2) has been widely studied for many applications, such as protein crystallization or drug delivery of proteins for food and pharmaceutical purposes. However, the use of the lipid sponge (L3) phase for encapsulation of proteins has not yet been well explored. Here, we have employed a lipid system that forms highly swollen sponge phases to entrap aspartic protease (34 kDa), an enzyme used for food processing, e.g., to control the cheese-ripening process. Small-angle x-ray scattering showed that although the L3 phase was maintained at low enzyme concentrations (≤15 mg/mL), higher concentration induces a transition to more curved structures, i.e., transition from L3 to inverse bicontinuous cubic (Q2) phase. The Raman spectroscopy data showed minor conformational changes assigned to the lipid molecules that confirm the lipid-protein interactions. However, the peaks assigned to the protein showed that the structure was not significantly affected. This was consistent with the higher activity presented by the encapsulated aspartic protease compared to the free enzyme stored at the same temperature. Finally, the encapsulation efficiency of aspartic protease in lipid sponge-like nanoparticles was 81% as examined by size-exclusion chromatography. Based on these results, we discuss the large potential of lipid sponge phases as carriers for proteins.


Asunto(s)
Proteasas de Ácido Aspártico/metabolismo , Enzimas Inmovilizadas/metabolismo , Lípidos/química , Cristales Líquidos/química , Área Bajo la Curva , Liofilización , Glicerol/farmacología , Nanopartículas/química , Tamaño de la Partícula , Dispersión de Radiación , Espectrometría Raman
7.
Nanotechnology ; 29(44): 445704, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30136658

RESUMEN

The nanocomposite coatings made using graphene oxide (GO) and six different organic dyes were used to produce the laser-induced graphene (LIG) coatings by means of near infrared picosecond laser irradiation. The coatings were investigated by means of contact angle measurement with three liquids (1-bromonaphtalene, glycerol and water), Raman spectroscopy, scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis. It was found that the more hydrophilic is the precursor surface the more hydrophobic LIG surface is produced after the laser treatment. Contact angle values obtained on LIG produced from pure GO reached 143°. FTIR spectra have shown that the interaction between GO and dye molecules is realized through the nitrogen atoms. Raman spectra have shown that the best quality LIG coating is obtained using a GO-neutral red nanocomposite precursor. A correlation among contact angle, Raman spectra and topological indices of dye molecules was found, and will serve for the further investigation of the mechanism of LIG production and development of low-defect coatings.

8.
Langmuir ; 31(2): 846-57, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25525904

RESUMEN

Structure of the self-assembled monolayers (SAMs) used to anchor phospholipid bilayers to surfaces affects the functional properties of the tethered bilayer membranes (tBLMs). SAMs of the same surface composition differing in the lateral distribution of the anchor molecule give rise to tBLMs of profoundly different defectiveness with residual conductance spanning 3 orders of magnitude. SAMs composed of anchors containing saturated alkyl chains, upon exposure to water (72 h), reconstruct to tightly packed clusters as deduced from reflection absorption infrared spectroscopy data and directly visualized by atomic force microscopy. The rearrangement into clusters results in an inability to establish highly insulating tBLMs on the same anchor layer. Unexpectedly, we also found that nanometer scale smooth gold film surfaces, populated predominantly with (111) facets, exhibit poor performance from the standpoint of the defectiveness of the anchored phospholipid bilayers, while corrugated (110) dominant surfaces produced SAMs with superior tethering quality. Although the detailed mechanism of cluster formation remains to be clarified, it appears that smooth surfaces favor lateral translocation of the molecular anchors, resulting in changes in functional properties of the SAMs. This work unequivocally establishes that conditions that favor cluster formation of the anchoring molecules in tBLM formation must be identified and avoided for the functional use of tBLMs in biomedical and diagnostic applications.


Asunto(s)
Membranas Artificiales , Membrana Dobles de Lípidos/química , Estructura Molecular
9.
Phys Chem Chem Phys ; 17(25): 16483-93, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26050758

RESUMEN

Adsorption of 4-imidazolemethanol (ImMeOH) on a copper electrode has been investigated by in situ isotope-edited (H/D and (63)Cu/(65)Cu) surface enhanced Raman spectroscopy (SERS) in aqueous solutions at physiological pH (7.0) in a potential window from -0.500 to -1.100 V. Theoretical modeling by DFT calculations at the B3LYP/6-311++G(d,p) level for light atoms and LANL2DZ with ECP for copper atoms have been employed for the interpretation of experimental data. The copper surface was modeled by a cluster of 6 atoms. It was found that the imidazole ring adopts Tautomer-I form in the adsorbed state and coordinates with the Cu surface through the N3 atom. Linear potential-dependence of ν(C4=C5) mode with the slope of (15 ± 1) cm(-1) V(-1) was experimentally observed. The imidazole ring mode near 1492 cm(-1) primarily due to ν(C2-N3) + ß(C2H) vibration has also showed a considerable decrease in frequency at more negative electrode potentials with the slope of (9 ± 2) cm(-1) V(-1). Both modes can be used as sensitive probes for analysis of interaction of the imidazole ring with the metal surface. In agreement with experimental data theoretical modeling has predicted higher stability of surface bound Tautomer-I compared with Tautomer-II. The formation of a covalent bond between the metal and adsorbate was experimentally evidenced by metal isotopic ((63)Cu/(65)Cu) frequency shift of ν(Cu-N) mode at 222 cm(-1), combined with theoretical modeling of the surface complex.


Asunto(s)
Cobre/química , Imidazoles/química , Metanol/análogos & derivados , Adsorción , Deuterio , Electrodos , Isomerismo , Isótopos , Metanol/química , Modelos Químicos , Modelos Moleculares , Espectrometría Raman , Vibración , Agua/química
10.
Langmuir ; 29(27): 8645-56, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23745652

RESUMEN

The self-assembled monolayers (SAMs) of new lipidic anchor molecule HC18 [Z-20-(Z-octadec-9-enyloxy)-3,6,9,12,15,18,22-heptaoxatetracont-31-ene-1-thiol] and mixed HC18/ß-mercaptoethanol (ßME) SAMs were studied by spectroscopic ellipsometry, contact angle measurements, reflection-absorption infrared spectroscopy, and electrochemical impedance spectroscopy (EIS) and were evaluated in tethered bilayer lipid membranes (tBLMs). Our data indicate that HC18, containing a double bond in the alkyl segments, forms highly disordered SAMs up to anchor/ßME molar fraction ratios of 80/20 and result in tBLMs that exhibit higher lipid diffusion coefficients relative to those of previous anchor compounds with saturated alkyl chains, as determined by fluorescence correlation spectroscopy. EIS data shows the HC18 tBLMs, completed by rapid solvent exchange or vesicle fusion, form more easily than with saturated lipidic anchors, exhibit excellent electrical insulating properties indicating low defect densities, and readily incorporate the pore-forming toxin α-hemolysin. Neutron reflectivity measurements on HC18 tBLMs confirm the formation of complete tBLMs, even at low tether compositions and high ionic lipid compositions. Our data indicate that HC18 results in tBLMs with improved physical properties for the incorporation of integral membrane proteins (IMPs) and that 80% HC18 tBLMs appear to be optimal for practical applications such as biosensors where high electrical insulation and IMP/peptide reconstitution are imperative.


Asunto(s)
Membrana Dobles de Lípidos/química , Lípidos/química , Lípidos/síntesis química , Mercaptoetanol/química , Modelos Moleculares , Estructura Molecular
11.
Phys Chem Chem Phys ; 15(3): 807-15, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23202809

RESUMEN

Adsorption of decapeptide neuromedin B (NMB) on copper electrode has been investigated by in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry in the temperature interval from 12 to 72 °C at -0.600 and -1.000 V potentials. It was found that intensities of peptide bands decrease at temperatures above 30 °C with higher decrease slope at -1.000 V. Frequency of F12 mode (1004 cm(-1)) of non-surface-interactive phenylalanine residue was found to be insensitive to temperature variation at both studied electrode potentials, while frequency-temperature curves for surface-interactive groups (Amide-III, methylene) were found to be controlled by the potential. In particular, opposite frequency-temperature trends were detected for Amide-III (Am-III) mode indicating decrease in H-bonding interaction strength of amide C[double bond, length as m-dash]O and N-H groups above 38 °C for -0.600 V, and increase in H-bonding interaction strength between 12 and 72 °C for -1.000 V. Anomalous Am-III temperature-dependence of the frequency at -1.000 V was explained by temperature-induced transformation of a disordered secondary structure to a helix-like conformation. The potential-difference spectrum revealed interaction of methylene groups with Cu surface at sufficiently negative potential values because of the appearance of a soft C-H stretching band near 2825 cm(-1) and a broad band near 2904 cm(-1) assigned to vibration of a distal C-H bond of the surface-confined methylene group. Consequently, a rapid decrease in frequency of CH(2)-stretching band with temperature was observed at -1.000 V, while no essential frequency changes were detected for this mode at -0.600 V. The results show that electrode potential controls the temperature-dependence of the frequency for vibrations associated with surface-interactive molecular groups.


Asunto(s)
Cobre/química , Neuroquinina B/análogos & derivados , Espectrometría Raman , Electrodos , Enlace de Hidrógeno , Neuroquinina B/química , Temperatura
12.
Front Bioeng Biotechnol ; 11: 1167753, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122855

RESUMEN

Providing a 3D environment that mimics the native extracellular matrix is becoming increasingly important for various applications such as cell function studies, regenerative medicine, and drug discovery. Among the most critical parameters to consider are the scaffold's complicated micro-scale geometry and material properties. Therefore, stereolithography based on photopolymerization is an emerging technique because of its ability to selectively form volumetric structures from liquid resin through localized polymerization reactions. However, one of the most important parameters of the scaffold is biocompatibility, which depends not only on the material but also on the exposure conditions and post-processing, which is currently underestimated. To investigate this systematically, microporous scaffolds with pore sizes of 0.05 mm3 corresponding to a porosity of 16,4% were fabricated using the stereolithography printer Asiga PICO2 39 UV from the widely used resins FormLabs Clear and Flexible. The use of various polymers is usually limited for cells because, after wet chemical development, the non-negligible amount of remaining monomers intertwined in the photopolymerized structures is significantly toxic to cells. Therefore, the aim of this research was to find the best method to remove monomers from the 3D scaffold by additional UV exposure. For this purpose, a Soxhlet extractor was used for the first time, and the monomers were immersed in different alcohols. A Raman microspectroscopy was also used to investigate whether different post-processing methods affect DC (cross-linking) to find out if this specifically affects the biocompatibility of the scaffolds. Finally, mesenchymal stem cells from rat dental pulp were examined to confirm the increased biocompatibility of the scaffolds and their ability to support cell differentiation into bone tissue cells.

13.
Materials (Basel) ; 16(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687616

RESUMEN

This study focuses on fabricating cobalt particles deposited on graphitic carbon nitride (Co/gCN) using annealing, microwave-assisted and hydrothermal syntheses, and their employment in hydrogen and oxygen evolution (HER and OER) reactions. Composition, surface morphology, and structure were examined using inductively coupled plasma optical emission spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The performance of Co-modified gCN composites for the HER and OER were investigated in an alkaline media (1 M KOH). Compared to the metal-free gCN, the modification of gCN with Co enhances the electrocatalytic activity towards the HER and OER. Additionally, thermal annealing of both Co(NO3)2 and melamine at 520 °C for 4 h results in the preparation of an effective bifunctional Co3O4/gCN catalyst for the HER with the lower Eonset of -0.24 V, a small overpotential of -294.1 mV at 10 mA cm-2, and a low Tafel slope of -29.6 mV dec-1 in a 1.0 M KOH solution and for the OER with the onset overpotential of 286.2 mV and overpotential of 422.3 mV to achieve a current density of 10 mA cm-2 with the Tafel slope of 72.8 mV dec-1.

14.
ACS Omega ; 8(51): 49396-49405, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38162725

RESUMEN

The present study introduces a novel method for the synthesis of magneto-plasmonic nanoparticles (MPNPs) with enhanced functionality for surface-enhanced Raman scattering (SERS) applications. By employing pulsed laser ablation in liquid (PLAL) to synthesize plasmonic nanoparticles and wet chemistry to synthesize magnetic nanoparticles, we successfully fabricated chemically pure hybrid Fe3O4@Au and Fe3O4@Ag nanoparticles. We demonstrated a straightforward approach of an electrostatic attachment of the plasmonic and magnetic parts using positively charged polyethylenimine. The MPNPs displayed high SERS sensitivity and reproducibility, and the magnetic part allowed for the controlled separation of the nanoparticles from the reaction mixture, their subsequent concentration, and their precise deposition onto a specified surface area. Additionally, we fabricated alloy based MPNPs from AgxAu100-x (x = 50 and 80 wt %) targets with distinct localized surface plasmon resonance (LSPR) wavelengths. The compositions, morphologies, and optical properties of the nanoparticles were characterized by using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectroscopy, and multiwavelength Raman spectroscopy. A standard SERS marker, 4-mercaptobenzoic acid (4-MBA), validated the enhancement properties of the MPNPs and found an enhancement factor of 2 × 108 for the Fe3O4@Ag nanoparticles at 633 nm excitation. Lastly, we applied MPNP-enhanced Raman spectroscopy for the analysis of the biologically relevant molecule adenine and found a limit of detection of 10-7 M at 785 nm excitation. The integration of PLAL and wet chemical methods enabled the relatively fast and cost-effective production of MPNPs characterized by high SERS sensitivity and signal reproducibility that are required in various fields, including biomedicine, food safety, materials science, security, and defense.

15.
Materials (Basel) ; 16(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048845

RESUMEN

Herein, we present a synthesis route for high-efficiency nitrogen-doped carbon materials using kraft pulping residue, black liquor, and wood charcoal as carbon sources. The synthesized nitrogen-doped carbon materials, based on black liquor and its mixture with wood charcoal, exhibited high specific surface areas (SSAs) of 2481 and 2690 m2 g-1, respectively, as well as a high volume of mesopores with an average size of 2.9-4.6 nm. The nitrogen content was approximately 3-4 at% in the synthesized nitrogen-doped carbon materials. A specific capacitance of approximately 81-142 F g-1 was achieved in a 1 M Na2SO4 aqueous solution at a current density of 0.2 A g-1. In addition, the specific capacitance retention was 99% after 1000 cycles, indicating good electrochemical stability.

16.
Colloids Surf B Biointerfaces ; 225: 113275, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36965333

RESUMEN

In this research, Cu2ZnSnS4 (CZTS) particles were successfully fabricated via the molten salt approach from the copper, zinc and tin sulphides as raw precursors. SEM analysis revealed that CZTS particles are tetragonal-shaped with sharp edges, smooth flat plane morphology, and crystal size varying from 10.8 to 28.7 µm. The phase and crystalline structure of synthesized powders were investigated using XRD analysis, which confirms the presence of a tetragonal crystal structure kesterite phase. The chemical composition of CZTS particles was evaluated by EDX spectroscopy, which identified the nearly stoichiometric composition with an averaged formula of Cu1.88Zn1.04SnS3.97. The TG/DTA-MS and ICP-OES analysis showed the possible decomposition pathways and predicted their degradation rate in aqueous solutions. The CZTS particles possessed highly effective concentration and time-dependent antimicrobial properties against medically relevant bacteria and yeast strains. The CZTS particles (1 g L-1) exhibited over 95.7 ± 1.9% killing efficiency towards M. luteus. In contrast, higher dosages (3.5 and 5 g L-1) led to its complete inactivation and reduced the P. aeruginosa cell viability to 43.2 ± 3.2% and 4.1 ± 1.1%, respectively. Moreover, the CZTS particles (0.5 g L-1) are responsible for causing 54.8 ± 1.8% of C. krusei and 89.7 ± 2.1% of C. parapsilosis yeasts death within the 24 h of exposure, which expanded to almost 100% when yeasts were treated with two times higher CZTS concentration (1.0 g L-1). The mechanism of action has been proposed and evidenced by monitoring the 2',7'-dichlorofluorescein (DCF) fluorescence, which revealed that the overproduction of reactive oxygen species (ROS) is responsible for microorganism death.


Asunto(s)
Antiinfecciosos , Antiinfecciosos/farmacología , Candida parapsilosis , Supervivencia Celular , Cobre/farmacología , Pseudomonas aeruginosa , Saccharomyces cerevisiae
17.
Materials (Basel) ; 16(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687695

RESUMEN

Nitrogen-doped activated carbons with controlled micro- and mesoporosity were obtained from wood and wastes via chemical processing using pre-treatment (pyrolysis at 500 °C and hydrothermally carbonization at 250 °C) and evaluated as oxygen reduction catalysts for further application in fuel cells. The elemental and chemical composition, structure and porosity, and types of nitrogen bonds of obtained catalyst materials were studied. The catalytic activity was evaluated in an alkaline medium using the rotating disk electrode method. It was shown that an increase in the volume of mesopores in the porous structure of a carbon catalyst promotes the diffusion of reagents and the reactions proceed more efficiently. The competitiveness of the obtained carbon materials compared to Pt/C for the reaction of catalytic oxygen reduction is shown.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 274: 121109, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35286889

RESUMEN

A detailed study on Raman spectroelectrochemistry of poly(N-methylaniline) (PNMA) layer deposited at a gold electrode was performed. Raman spectra were excited by four different laser wavelengths: UV line at 325 nm, a blue line at 442 nm, a red line at 633 nm, and a NIR line at 785 nm in solutions of different pH ranging from 1 to 9, and at different electrode potentials ranging from -0.5 V to 0.8 V. UV excitation reveals features characteristic for the reduced form of PNMA, even within the electrochemical potential range where oxidized forms of this polymer prevail. At a blue laser excitation, again, features of the reduced form are revealed, along with indications on the appearance of some kind of intermediate redox state within a definite potential window. Both red and NIR laser line excitations result in rich Raman features, disclosing all major redox forms as well as their interconversions by changing of electrode potential. The presence of polaronic form of PNMA even in pH-neutral and alkaline solutions has been disclosed. A detailed analysis of Raman vibrational bands is presented for different excitation wavelengths, different electrode potentials, and different solution acidities.


Asunto(s)
Compuestos de Anilina , Espectrometría Raman , Concentración de Iones de Hidrógeno , Rayos Láser
19.
Colloids Surf B Biointerfaces ; 220: 112866, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36174490

RESUMEN

We used vibrational sum-frequency generation (VSFG) spectroscopy to elucidate the possible effect of various levels of isotopic substitution (H/D) on the properties of the DPPC monolayer by probing DPPC/D2O interface. We found that deuteration of the choline group has a great impact on monolayer properties, while monolayers with deuterated alkyl chains do not exhibit any differences under our experimental conditions. In addition, deuteration of the choline group strongly affected the hydration of the phosphate group. We showed by probing symmetric stretching vibration of phosphate group that denser packing only slightly reduced the hydration of DPPC-d13 and DPPC-d75 monolayers. Moreover, addition of calcium ions, which generally cause a marked dehydration of the lipid monolayer, had no effect on lipid monolayers with deuterated choline group. We proposed that one way to explain this experimental finding could be deuteration induced changes in the structure of lipid's choline group, resulting in a well-hydrated but Ca2+ ion blocking structure. These results have important implications for various spectroscopic techniques, which commonly use deuteration of phospholipids to circumvent overlapping between vibrational bands.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , Vibración , 1,2-Dipalmitoilfosfatidilcolina/química , Análisis Espectral/métodos , Lecitinas , Colina , Fosfatos , Agua/química , Propiedades de Superficie
20.
Materials (Basel) ; 15(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36295289

RESUMEN

An essential amino acid, histidine, has a vital role in the secondary structure and catalytic activity of proteins because of the diverse interactions its side chain imidazole (Im) ring can take part in. Among these interactions, hydrogen donating and accepting bonding are often found to operate at the charged interfaces. However, despite the great biological significance, hydrogen-bond interactions are difficult to investigate at electrochemical interfaces due to the lack of appropriate experimental methods. Here, we present a surface-enhanced infrared absorption spectroscopy (SEIRAS) and density functional theory (DFT) study addressing this issue. To probe the hydrogen-bond interactions of the Im at the electrified organic layer/water interface, we constructed Au-adsorbed self-assembled monolayers (SAMs) that are functionalized with the Im group. As the prerequisite for spectroelectrochemical investigations, we first analyzed the formation of the monolayer and the relationship between the chemical composition of SAM and its structure. Infrared absorption markers that are sensitive to hydrogen-bonding interactions were identified. We found that negative electrode polarization effectively reduced hydrogen-bonding strength at the Im ring at the organic layer-water interface. The possible mechanism governing such a decrease in hydrogen-bonding interaction strength is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA