RESUMEN
Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.
Asunto(s)
Hematopoyesis Clonal , Células Madre Hematopoyéticas , Animales , Humanos , Ratones , Alelos , Hematopoyesis Clonal/genética , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mutación , Regiones Promotoras GenéticasRESUMEN
Venous thromboembolism (VTE) is a significant contributor to morbidity and mortality, with large disparities in incidence rates between Black and White Americans. Polygenic risk scores (PRSs) limited to variants discovered in genome-wide association studies in European-ancestry samples can identify European-ancestry individuals at high risk of VTE. However, there is limited evidence on whether high-dimensional PRS constructed using more sophisticated methods and more diverse training data can enhance the predictive ability and their utility across diverse populations. We developed PRSs for VTE using summary statistics from the International Network against Venous Thrombosis (INVENT) consortium genome-wide association studies meta-analyses of European- (71 771 cases and 1 059 740 controls) and African-ancestry samples (7482 cases and 129 975 controls). We used LDpred2 and PRS-CSx to construct ancestry-specific and multi-ancestry PRSs and evaluated their performance in an independent European- (6781 cases and 103 016 controls) and African-ancestry sample (1385 cases and 12 569 controls). Multi-ancestry PRSs with weights tuned in European-ancestry samples slightly outperformed ancestry-specific PRSs in European-ancestry test samples (e.g. the area under the receiver operating curve [AUC] was 0.609 for PRS-CSx_combinedEUR and 0.608 for PRS-CSxEUR [P = 0.00029]). Multi-ancestry PRSs with weights tuned in African-ancestry samples also outperformed ancestry-specific PRSs in African-ancestry test samples (PRS-CSxAFR: AUC = 0.58, PRS-CSx_combined AFR: AUC = 0.59), although this difference was not statistically significant (P = 0.34). The highest fifth percentile of the best-performing PRS was associated with 1.9-fold and 1.68-fold increased risk for VTE among European- and African-ancestry subjects, respectively, relative to those in the middle stratum. These findings suggest that the multi-ancestry PRS might be used to improve performance across diverse populations to identify individuals at highest risk for VTE.
Asunto(s)
Puntuación de Riesgo Genético , Tromboembolia Venosa , Femenino , Humanos , Masculino , Negro o Afroamericano/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Tromboembolia Venosa/genética , Tromboembolia Venosa/epidemiología , Blanco/genéticaRESUMEN
Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38 465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program (with varying sample size by trait, where the minimum sample size was n = 737 for MMP-1). We identified 22 distinct single-variant associations across 6 traits-E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin-that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.
Asunto(s)
Biomarcadores , Estudio de Asociación del Genoma Completo , Inflamación , Medicina de Precisión , Secuenciación Completa del Genoma , Humanos , Medicina de Precisión/métodos , Inflamación/genética , Estudio de Asociación del Genoma Completo/métodos , Secuenciación Completa del Genoma/métodos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Predisposición Genética a la Enfermedad , Femenino , Interleucina-6/genéticaRESUMEN
Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2-4 and coronary heart disease5-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.
Asunto(s)
Hematopoyesis Clonal/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Secuenciación Completa del Genoma , Adulto , África/etnología , Anciano , Anciano de 80 o más Años , Población Negra/genética , Autorrenovación de las Células/genética , Proteínas de Unión al ADN/genética , Dioxigenasas , Femenino , Mutación de Línea Germinal/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Persona de Mediana Edad , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Medicina de Precisión , Proteínas Proto-Oncogénicas/genética , Proteínas de Motivos Tripartitos/genética , Estados Unidos , alfa Carioferinas/genéticaRESUMEN
BACKGROUND: It is unknown whether dietary intake of polyunsaturated fatty acids (PUFA) modifies the cardiovascular disease (CVD) risk associated with a family history of CVD. We assessed interactions between biomarkers of low PUFA intake and a family history in relation to long-term CVD risk in a large consortium. METHODS: Blood and tissue PUFA data from 40â 885 CVD-free adults were assessed. PUFA levels ≤25th percentile were considered to reflect low intake of linoleic, alpha-linolenic, and eicosapentaenoic/docosahexaenoic acids (EPA/DHA). Family history was defined as having ≥1 first-degree relative who experienced a CVD event. Relative risks with 95% CI of CVD were estimated using Cox regression and meta-analyzed. Interactions were assessed by analyzing product terms and calculating relative excess risk due to interaction. RESULTS: After multivariable adjustments, a significant interaction between low EPA/DHA and family history was observed (product term pooled RR, 1.09 [95% CI, 1.02-1.16]; P=0.01). The pooled relative risk of CVD associated with the combined exposure to low EPA/DHA, and family history was 1.41 (95% CI, 1.30-1.54), whereas it was 1.25 (95% CI, 1.16-1.33) for family history alone and 1.06 (95% CI, 0.98-1.14) for EPA/DHA alone, compared with those with neither exposure. The relative excess risk due to interaction results indicated no interactions. CONCLUSIONS: A significant interaction between biomarkers of low EPA/DHA intake, but not the other PUFA, and a family history was observed. This novel finding might suggest a need to emphasize the benefit of consuming oily fish for individuals with a family history of CVD.
Asunto(s)
Enfermedades Cardiovasculares , Ácidos Grasos Omega-3 , Animales , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Factores de Riesgo , Ácidos Docosahexaenoicos , BiomarcadoresRESUMEN
Diabetic kidney disease (DKD) is recognized as an important public health challenge. However, its genomic mechanisms are poorly understood. To identify rare variants for DKD, we conducted a whole-exome sequencing (WES) study leveraging large cohorts well-phenotyped for chronic kidney disease and diabetes. Our two-stage WES study included 4372 European and African ancestry participants from the Chronic Renal Insufficiency Cohort and Atherosclerosis Risk in Communities studies (stage 1) and 11 487 multi-ancestry Trans-Omics for Precision Medicine participants (stage 2). Generalized linear mixed models, which accounted for genetic relatedness and adjusted for age, sex and ancestry, were used to test associations between single variants and DKD. Gene-based aggregate rare variant analyses were conducted using an optimized sequence kernel association test implemented within our mixed model framework. We identified four novel exome-wide significant DKD-related loci through initiating diabetes. In single-variant analyses, participants carrying a rare, in-frame insertion in the DIS3L2 gene (rs141560952) exhibited a 193-fold increased odds [95% confidence interval (CI): 33.6, 1105] of DKD compared with noncarriers (P = 3.59 × 10-9). Likewise, each copy of a low-frequency KRT6B splice-site variant (rs425827) conferred a 5.31-fold higher odds (95% CI: 3.06, 9.21) of DKD (P = 2.72 × 10-9). Aggregate gene-based analyses further identified ERAP2 (P = 4.03 × 10-8) and NPEPPS (P = 1.51 × 10-7), which are both expressed in the kidney and implicated in renin-angiotensin-aldosterone system modulated immune response. In the largest WES study of DKD, we identified novel rare variant loci attaining exome-wide significance. These findings provide new insights into the molecular mechanisms underlying DKD.
Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Insuficiencia Renal Crónica , Humanos , Aminopeptidasas , Nefropatías Diabéticas/genética , Secuenciación del Exoma , Riñón , Insuficiencia Renal Crónica/genéticaRESUMEN
While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10-16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.
Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Transcriptoma , Humanos , Pulmón , National Heart, Lung, and Blood Institute (U.S.) , Enfermedad Pulmonar Obstructiva Crónica/genética , Factores de Riesgo , Estados Unidos/epidemiologíaRESUMEN
Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.
Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Humanos , Estudio de Asociación del Genoma Completo/métodos , Secuenciación Completa del Genoma/métodos , Fenotipo , Variación GenéticaRESUMEN
BACKGROUND: Heart failure (HF) is a complex clinical syndrome with high mortality. Current risk stratification approaches lack precision. High-throughput proteomics could improve risk prediction. Its use in clinical practice to guide the management of patients with HF depends on validation and evidence of clinical benefit. OBJECTIVE: To develop and validate a protein risk score for mortality in patients with HF. DESIGN: Community-based cohort. SETTING: Southeast Minnesota. PARTICIPANTS: Patients with HF enrolled between 2003 and 2012 and followed through 2021. MEASUREMENTS: A total of 7289 plasma proteins in 1351 patients with HF were measured using the SomaScan Assay (SomaLogic). A protein risk score was derived using least absolute shrinkage and selection operator regression and temporal validation in patients enrolled between 2003 and 2007 (development cohort) and 2008 and 2012 (validation cohort). Multivariable Cox regression was used to examine the association between the protein risk score and mortality. The performance of the protein risk score to predict 5-year mortality risk was assessed using calibration plots, decision curves, and relative utility analyses and compared with a clinical model, including the Meta-Analysis Global Group in Chronic Heart Failure mortality risk score and N-terminal pro-B-type natriuretic peptide. RESULTS: The development (n = 855; median age, 78 years; 50% women; 29% with ejection fraction <40%) and validation cohorts (n = 496; median age, 76 years; 45% women; 33% with ejection fraction <40%) were mostly similar. In the development cohort, 38 unique proteins were selected for the protein risk score. Independent of ejection fraction, the protein risk score demonstrated good calibration, reclassified mortality risk particularly at the extremes of the risk distribution, and showed greater clinical utility compared with the clinical model. LIMITATION: Participants were predominantly of European ancestry, potentially limiting the generalizability of the findings to different patient populations. CONCLUSION: Validation of the protein risk score demonstrated good calibration and evidence of predicted benefits to stratify the risk for death in HF superior to that of clinical methods. Further studies are needed to prospectively evaluate the score's performance in diverse populations and determine risk thresholds for interventions. PRIMARY FUNDING SOURCE: Division of Intramural Research at the National Heart, Lung, and Blood Institute of the National Institutes of Health.
Asunto(s)
Insuficiencia Cardíaca , Humanos , Femenino , Anciano , Masculino , Estudios de Cohortes , Medición de Riesgo/métodos , Factores de Riesgo , Enfermedad Crónica , PronósticoRESUMEN
RATIONALE: Genetic variation has a substantial contribution to chronic obstructive pulmonary disease (COPD) and lung function measurements. Heritability estimates using genome-wide genotyping data can be biased if analyses do not appropriately account for the nonuniform distribution of genetic effects across the allele frequency and linkage disequilibrium (LD) spectrum. In addition, the contribution of rare variants has been unclear. OBJECTIVES: We sought to assess the heritability of COPD and lung function using whole-genome sequence data from the Trans-Omics for Precision Medicine program. METHODS: Using the genome-based restricted maximum likelihood method, we partitioned the genome into bins based on minor allele frequency and LD scores and estimated heritability of COPD, FEV1% predicted and FEV1/FVC ratio in 11 051 European ancestry and 5853 African-American participants. MEASUREMENTS AND MAIN RESULTS: In European ancestry participants, the estimated heritability of COPD, FEV1% predicted and FEV1/FVC ratio were 35.5%, 55.6% and 32.5%, of which 18.8%, 19.7%, 17.8% were from common variants, and 16.6%, 35.8%, and 14.6% were from rare variants. These estimates had wide confidence intervals, with common variants and some sets of rare variants showing a statistically significant contribution (P-value < 0.05). In African-Americans, common variant heritability was similar to European ancestry participants, but lower sample size precluded calculation of rare variant heritability. CONCLUSIONS: Our study provides updated and unbiased estimates of heritability for COPD and lung function, and suggests an important contribution of rare variants. Larger studies of more diverse ancestry will improve accuracy of these estimates.
Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Polimorfismo de Nucleótido Simple/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Estudio de Asociación del Genoma Completo , FenotipoRESUMEN
Plasma levels of fibrinogen, coagulation factors VII and VIII and von Willebrand factor (vWF) are four intermediate phenotypes that are heritable and have been associated with the risk of clinical thrombotic events. To identify rare and low-frequency variants associated with these hemostatic factors, we conducted whole-exome sequencing in 10 860 individuals of European ancestry (EA) and 3529 African Americans (AAs) from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and the National Heart, Lung and Blood Institute's Exome Sequencing Project. Gene-based tests demonstrated significant associations with rare variation (minor allele frequency < 5%) in fibrinogen gamma chain (FGG) (with fibrinogen, P = 9.1 × 10-13), coagulation factor VII (F7) (with factor VII, P = 1.3 × 10-72; seven novel variants) and VWF (with factor VIII and vWF; P = 3.2 × 10-14; one novel variant). These eight novel rare variant associations were independent of the known common variants at these loci and tended to have much larger effect sizes. In addition, one of the rare novel variants in F7 was significantly associated with an increased risk of venous thromboembolism in AAs (Ile200Ser; rs141219108; P = 4.2 × 10-5). After restricting gene-based analyses to only loss-of-function variants, a novel significant association was detected and replicated between factor VIII levels and a stop-gain mutation exclusive to AAs (rs3211938) in CD36 molecule (CD36). This variant has previously been linked to dyslipidemia but not with the levels of a hemostatic factor. These efforts represent the largest integration of whole-exome sequence data from two national projects to identify genetic variation associated with plasma hemostatic factors.
Asunto(s)
Factor VIII , Hemostáticos , Factor VII/genética , Factor VIII/genética , Fibrinógeno/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Secuenciación del Exoma , Factor de von Willebrand/análisis , Factor de von Willebrand/genéticaRESUMEN
Progressive dilation of the infrarenal aortic diameter is a consequence of the ageing process and is considered the main determinant of abdominal aortic aneurysm (AAA). We aimed to investigate the genetic and clinical determinants of abdominal aortic diameter (AAD). We conducted a meta-analysis of genome-wide association studies in 10 cohorts (n = 13 542) imputed to the 1000 Genome Project reference panel including 12 815 subjects in the discovery phase and 727 subjects [Partners Biobank cohort 1 (PBIO)] as replication. Maximum anterior-posterior diameter of the infrarenal aorta was used as AAD. We also included exome array data (n = 14 480) from seven epidemiologic studies. Single-variant and gene-based associations were done using SeqMeta package. A Mendelian randomization analysis was applied to investigate the causal effect of a number of clinical risk factors on AAD. In genome-wide association study (GWAS) on AAD, rs74448815 in the intronic region of LDLRAD4 reached genome-wide significance (beta = -0.02, SE = 0.004, P-value = 2.10 × 10-8). The association replicated in the PBIO1 cohort (P-value = 8.19 × 10-4). In exome-array single-variant analysis (P-value threshold = 9 × 10-7), the lowest P-value was found for rs239259 located in SLC22A20 (beta = 0.007, P-value = 1.2 × 10-5). In the gene-based analysis (P-value threshold = 1.85 × 10-6), PCSK5 showed an association with AAD (P-value = 8.03 × 10-7). Furthermore, in Mendelian randomization analyses, we found evidence for genetic association of pulse pressure (beta = -0.003, P-value = 0.02), triglycerides (beta = -0.16, P-value = 0.008) and height (beta = 0.03, P-value < 0.0001), known risk factors for AAA, consistent with a causal association with AAD. Our findings point to new biology as well as highlighting gene regions in mechanisms that have previously been implicated in the genetics of other vascular diseases.
Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Exoma/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , TriglicéridosRESUMEN
BACKGROUND: Heart failure (HF) is a complex clinical syndrome with persistently high mortality. High-throughput proteomic technologies offer new opportunities to improve HF risk stratification, but their contribution remains to be clearly defined. We aimed to systematically review prognostic studies using high-throughput proteomics to identify protein signatures associated with HF mortality. METHODS: We searched four databases and two clinical trial registries for articles published from 2012 to 2023. HF proteomics studies measuring high numbers of proteins using aptamer or antibody-based affinity platforms on human plasma or serum with outcomes of all-cause or cardiovascular death were included. Two reviewers independently screened articles, extracted data, and assessed the risk of bias. A third reviewer resolved conflicts. We assessed the risk of bias using the Risk Of Bias In Non-randomized Studies-of Exposure tool. RESULTS: Out of 5131 unique articles identified, nine articles were included in the review. The nine studies were observational; three used the aptamer platform, and six used the antibody platform. We found considerable heterogeneity across studies in measurement panels, HF definitions, ejection fraction categorization, follow-up duration, and outcome definitions, and a lack of risk estimates for most protein associations. Hence, we proceeded with a systematic review rather than a meta-analysis. In two comparable aptamer studies in patients with HF with reduced ejection fraction, 21 proteins were identified in common for the association with all-cause death. Among these, one protein, WAP four-disulfide core domain protein 2 was also reported in an antibody study on HFrEF and for the association with CV death. We proposed standardized reporting criteria to facilitate the interpretation of future studies. CONCLUSIONS: In this systematic review of nine studies evaluating the association of proteomics with mortality in HF, we identified a limited number of proteins common across several studies. Heterogeneity across studies compromised drawing broad inferences, underscoring the importance of standardized approaches to reporting.
Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Humanos , Insuficiencia Cardíaca/diagnóstico , Proteómica , Volumen SistólicoRESUMEN
Cerebral white matter hyperintensities on MRI are markers of cerebral small vessel disease, a major risk factor for dementia and stroke. Despite the successful identification of multiple genetic variants associated with this highly heritable condition, its genetic architecture remains incompletely understood. More specifically, the role of DNA methylation has received little attention. We investigated the association between white matter hyperintensity burden and DNA methylation in blood at â¼450 000 cytosine-phosphate-guanine (CpG) sites in 9732 middle-aged to older adults from 14 community-based studies. Single CpG and region-based association analyses were carried out. Functional annotation and integrative cross-omics analyses were performed to identify novel genes underlying the relationship between DNA methylation and white matter hyperintensities. We identified 12 single CpG and 46 region-based DNA methylation associations with white matter hyperintensity burden. Our top discovery single CpG, cg24202936 (P = 7.6 × 10-8), was associated with F2 expression in blood (P = 6.4 × 10-5) and co-localized with FOLH1 expression in brain (posterior probability = 0.75). Our top differentially methylated regions were in PRMT1 and in CCDC144NL-AS1, which were also represented in single CpG associations (cg17417856 and cg06809326, respectively). Through Mendelian randomization analyses cg06809326 was putatively associated with white matter hyperintensity burden (P = 0.03) and expression of CCDC144NL-AS1 possibly mediated this association. Differentially methylated region analysis, joint epigenetic association analysis and multi-omics co-localization analysis consistently identified a role of DNA methylation near SH3PXD2A, a locus previously identified in genome-wide association studies of white matter hyperintensities. Gene set enrichment analyses revealed functions of the identified DNA methylation loci in the blood-brain barrier and in the immune response. Integrative cross-omics analysis identified 19 key regulatory genes in two networks related to extracellular matrix organization, and lipid and lipoprotein metabolism. A drug-repositioning analysis indicated antihyperlipidaemic agents, more specifically peroxisome proliferator-activated receptor-alpha, as possible target drugs for white matter hyperintensities. Our epigenome-wide association study and integrative cross-omics analyses implicate novel genes influencing white matter hyperintensity burden, which converged on pathways related to the immune response and to a compromised blood-brain barrier possibly due to disrupted cell-cell and cell-extracellular matrix interactions. The results also suggest that antihyperlipidaemic therapy may contribute to lowering risk for white matter hyperintensities possibly through protection against blood-brain barrier disruption.
Asunto(s)
Sustancia Blanca , Persona de Mediana Edad , Humanos , Anciano , Sustancia Blanca/diagnóstico por imagen , Estudio de Asociación del Genoma Completo/métodos , Encéfalo/diagnóstico por imagen , Metilación de ADN/genética , Imagen por Resonancia Magnética , Epigénesis Genética , Proteína-Arginina N-Metiltransferasas , Proteínas RepresorasRESUMEN
Rationale: Inflammation contributes to lung function decline and the development of chronic obstructive pulmonary disease. Omega-3 fatty acids have antiinflammatory properties and may benefit lung health. Objectives: To investigate associations of omega-3 fatty acids with lung function decline and incident airway obstruction in a diverse sample of adults from general-population cohorts. Methods: Complementary study designs: 1) longitudinal study of plasma phospholipid omega-3 fatty acids and repeated FEV1 and FVC measures in the NHLBI Pooled Cohorts Study and 2) two-sample Mendelian randomization (MR) study of genetically predicted omega-3 fatty acids and lung function parameters. Measurements and Main Results: The longitudinal study found that higher omega-3 fatty acid levels were associated with attenuated lung function decline in 15,063 participants, with the largest effect sizes for the most metabolically downstream omega-3 fatty acid, docosahexaenoic acid (DHA). An increase in DHA of 1% of total fatty acids was associated with attenuations of 1.4 ml/yr for FEV1 (95% confidence interval [CI], 1.1-1.8) and 2.0 ml/yr for FVC (95% CI, 1.6-2.4) and a 7% lower incidence of spirometry-defined airway obstruction (95% CI, 0.89-0.97). DHA associations persisted across sexes and smoking histories and in Black, White, and Hispanic participants, with associations of the largest magnitude in former smokers and Hispanic participants. The MR study showed similar trends toward positive associations of genetically predicted downstream omega-3 fatty acids with FEV1 and FVC. Conclusions: The longitudinal and MR studies provide evidence supporting beneficial effects of higher levels of downstream omega-3 fatty acids, especially DHA, on lung health.
Asunto(s)
Obstrucción de las Vías Aéreas , Ácidos Grasos Omega-3 , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Humanos , Estudios Longitudinales , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/genética , Ácidos DocosahexaenoicosRESUMEN
AIMS: Cardiac conduction disease can lead to syncope, heart failure, and death. The only available therapy is pacemaker implantation, with no established prevention strategies. Research to identify modifiable risk factors has been scant. METHODS AND RESULTS: Data from the Cardiovascular Health Study, a population-based cohort study of adults ≥ 65 years with annual 12-lead electrocardiograms obtained over 10 years, were utilized to examine relationships between baseline characteristics, including lifestyle habits, and conduction disease. Of 5050 participants (mean age 73 ± 6 years; 52% women), prevalent conduction disease included 257 with first-degree atrioventricular block, 99 with left anterior fascicular block, 9 with left posterior fascicular block, 193 with right bundle branch block (BBB), 76 with left BBB, and 102 with intraventricular block at baseline. After multivariable adjustment, older age, male sex, a larger body mass index, hypertension, and coronary heart disease were associated with a higher prevalence of conduction disease, whereas White race and more physical activity were associated with a lower prevalence. Over a median follow-up on 7 (interquartile range 1-9) years, 1036 developed incident conduction disease. Older age, male sex, a larger BMI, and diabetes were each associated with incident conduction disease. Of lifestyle habits, more physical activity (hazard ratio 0.91, 95% confidence interval 0.84-0.98, P = 0.017) was associated with a reduced risk, while smoking and alcohol did not exhibit a significant association. CONCLUSION: While some difficult to control comorbidities were associated with conduction disease as expected, a readily modifiable lifestyle factor, physical activity, was associated with a lower risk.
Asunto(s)
Bloqueo de Rama , Electrocardiografía , Adulto , Humanos , Masculino , Femenino , Anciano , Estudios de Cohortes , Trastorno del Sistema de Conducción Cardíaco , Bloqueo de Rama/epidemiología , Factores de Riesgo , HábitosRESUMEN
AIMS: Little is known about associations of trimethylamine N-oxide (TMAO), a novel gut microbiota-generated metabolite of dietary phosphatidylcholine and carnitine, and its changes over time with all-cause and cause-specific mortality in the general population or in different race/ethnicity groups. The study aimed to investigate associations of serially measured plasma TMAO levels and changes in TMAO over time with all-cause and cause-specific mortality in a multi-ethnic community-based cohort. METHODS AND RESULTS: The study included 6,785 adults from the Multi-Ethnic Study of Atherosclerosis. TMAO was measured at baseline and year 5 using mass spectrometry. Primary outcomes were adjudicated all-cause mortality and cardiovascular disease (CVD) mortality. Secondary outcomes were deaths due to kidney failure, cancer, or dementia obtained from death certificates. Cox proportional hazards models with time-varying TMAO and covariates assessed the associations with adjustment for sociodemographics, lifestyles, diet, metabolic factors, and comorbidities. During a median follow-up of 16.9 years, 1704 participants died and 411 from CVD. Higher TMAO levels associated with higher risk of all-cause mortality [hazard ratio (HR): 1.12, 95% confidence interval (CI): 1.08-1.17], CVD mortality (HR: 1.09, 95% CI: 1.00-1.09), and death due to kidney failure (HR: 1.44, 95% CI: 1.25-1.66) per inter-quintile range, but not deaths due to cancer or dementia. Annualized changes in TMAO levels associated with higher risk of all-cause mortality (HR: 1.10, 95% CI: 1.05-1.14) and death due to kidney failure (HR: 1.54, 95% CI: 1.26-1.89) but not other deaths. CONCLUSION: Plasma TMAO levels were positively associated with mortality, especially deaths due to cardiovascular and renal disease, in a multi-ethnic US cohort.
Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Demencia , Neoplasias , Insuficiencia Renal , Adulto , Humanos , Factores de Riesgo , Biomarcadores , Metilaminas/metabolismo , Insuficiencia Renal/etiología , Aterosclerosis/complicaciones , Neoplasias/complicacionesRESUMEN
BACKGROUND: Rare sequence variation in genes underlying cardiac repolarization and common polygenic variation influence QT interval duration. However, current clinical genetic testing of individuals with unexplained QT prolongation is restricted to examination of monogenic rare variants. The recent emergence of large-scale biorepositories with sequence data enables examination of the joint contribution of rare and common variations to the QT interval in the population. METHODS: We performed a genome-wide association study of the QTc in 84 630 UK Biobank participants and created a polygenic risk score (PRS). Among 26 976 participants with whole-genome sequencing and ECG data in the TOPMed (Trans-Omics for Precision Medicine) program, we identified 160 carriers of putative pathogenic rare variants in 10 genes known to be associated with the QT interval. We examined QTc associations with the PRS and with rare variants in TOPMed. RESULTS: Fifty-four independent loci were identified by genome-wide association study in the UK Biobank. Twenty-one loci were novel, of which 12 were replicated in TOPMed. The PRS composed of 1 110 494 common variants was significantly associated with the QTc in TOPMed (ΔQTc/decile of PRS=1.4 ms [95% CI, 1.3 to 1.5]; P=1.1×10-196). Carriers of putative pathogenic rare variants had longer QTc than noncarriers (ΔQTc=10.9 ms [95% CI, 7.4 to 14.4]). Of individuals with QTc>480 ms, 23.7% carried either a monogenic rare variant or had a PRS in the top decile (3.4% monogenic, 21% top decile of PRS). CONCLUSIONS: QTc duration in the population is influenced by both rare variants in genes underlying cardiac repolarization and polygenic risk, with a sizeable contribution from polygenic risk. Comprehensive assessment of the genetic determinants of QTc prolongation includes incorporation of both polygenic and monogenic risk.
Asunto(s)
Estudio de Asociación del Genoma Completo , Síndrome de QT Prolongado , Electrocardiografía , Heterocigoto , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética , Herencia Multifactorial , Secuenciación Completa del GenomaRESUMEN
RATIONALE & OBJECTIVE: Clonal hematopoiesis of indeterminate potential (CHIP), defined by the age-related ontogenesis of expanded leukemogenic variants indicative of a genetically distinct clonal leukocyte population, is associated with risk of hematologic malignancy and cardiovascular disease. In experimental models, recapitulation of CHIP promotes kidney interstitial fibrosis with direct tissue infiltration of donor macrophages. We tested the hypothesis that CHIP is associated with kidney function decline in the general population. STUDY DESIGN: Cohort study. SETTING & PARTICIPANTS: 12,004 individuals from 3 community-based cohorts in the TOPMed Consortium. EXPOSURE: CHIP status from whole-genome sequences obtained from DNA extracted from peripheral blood. OUTCOME: Risk of 30% decline in estimated glomerular filtration rate (eGFR) and percent eGFR decline per year during the follow-up period. ANALYTICAL APPROACH: Cox proportional hazards models for 30% eGFR decline end point and generalized estimating equations for annualized relative change in eGFR with meta-analysis. Study-specific estimates were combined using fixed-effect meta-analysis. RESULTS: The median baseline eGFR was 84mL/min/1.73m2. The prevalence of CHIP was 6.6%, 9.0%, and 12.2% in persons aged 50-60, 60-70, and>70 years, respectively. Over a median follow-up period of 8 years, for the 30% eGFR outcome 205 events occurred among 1,002 CHIP carriers (2.1 events per 100 person-years) and 2,041 events in persons without CHIP (1.7 events per 100 person-years). In meta-analysis, CHIP was associated with greater risk of a 30% eGFR decline (17% [95% CI, 1%-36%] higher; P=0.04). Differences were not observed between those with baseline eGFR above or below 60mL/min/1.73m2, of age above or below 60 years, or with or without diabetes. LIMITATIONS: Small number of participants with moderate-to-advanced kidney disease and restricted set of CHIP driver variants. CONCLUSIONS: We report an association between CHIP and eGFR decline in 3 general population cohorts without known kidney disease. Further studies are needed to investigate this novel condition and its potential impact among individuals with overt kidney disease.
Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Humanos , Estudios de Cohortes , Hematopoyesis Clonal , Riñón , Fallo Renal Crónico/epidemiología , Tasa de Filtración Glomerular , Insuficiencia Renal Crónica/epidemiología , Progresión de la EnfermedadRESUMEN
OBJECTIVE: Greater parity has been associated with cardiovascular disease risk. We sought to find whether the effects on cardiac remodeling and heart failure risk are clear. METHODS: We examined the association of number of live births with echocardiographic measures of cardiac structure and function in participants of the Framingham Heart Study (FHS) using multivariable linear regression. We next examined the association of parity with incident heart failure with preserved (HFpEF) or reduced (HFrEF) ejection fraction using a Fine-Gray subdistribution hazards model in a pooled analysis of nâ¯=â¯12,635 participants in the FHS, the Cardiovascular Health Study, the Multi-Ethnic Study of Atherosclerosis, and Prevention of Renal and Vascular Endstage Disease. Secondary analyses included major cardiovascular disease, myocardia infarction and stroke. RESULTS: Among nâ¯=â¯3931 FHS participants (mean age 48 ± 13 years), higher numbers of live births were associated with worse left ventricular fractional shortening (multivariable ß -1.11 (0.31); Pâ¯=â¯0.0005 in ≥ 5 live births vs nulliparous women) and worse cardiac mechanics, including global circumferential strain and longitudinal and radial dyssynchrony (P < 0.01 for all comparing ≥ 5 live births vs nulliparity). When examining HF subtypes, women with ≥ 5 live births were at higher risk of developing future HFrEF compared with nulliparous women (HR 1.93, 95% CI 1.19-3.12; Pâ¯=â¯0.008); by contrast, a lower risk of HFpEF was observed (HR 0.58, 95% CI 0.37-0.91; Pâ¯=â¯0.02). CONCLUSIONS: Greater numbers of live births are associated with worse cardiac structure and function. There was no association with overall HF, but a higher number of live births was associated with greater risk for incident HFrEF.