Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Angiogenesis ; 27(1): 37-49, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37493987

RESUMEN

Modern drug development increasingly requires comprehensive models that can be utilized in the earliest stages of compound and target discovery. Here we report a phenotypic screening exercise in a high-throughput Organ-on-a-Chip setup. We assessed the inhibitory effect of 1537 protein kinase inhibitors in an angiogenesis assay. Over 4000 micro-vessels were grown under perfusion flow in microfluidic chips, exposed to a cocktail of pro-angiogenic factors and subsequently exposed to the respective kinase inhibitors. Efficacy of compounds was evaluated by reduced angiogenic sprouting, whereas reduced integrity of the main micro-vessel was taken as a measure for toxicity. The screen yielded 53 hits with high anti-angiogenicity and low toxicity, of which 44 were previously unassociated with angiogenic pathways. This study demonstrates that Organ-on-a-Chip models can be screened in high numbers to identify novel compounds and targets. This will ultimately reduce bias in early-stage drug development and increases probability to identify first in class compounds and targets for today's intractable diseases.


Asunto(s)
Angiogénesis , Antineoplásicos , Humanos , Sistemas Microfisiológicos , Antineoplásicos/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología
2.
Angiogenesis ; 25(4): 455-470, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35704148

RESUMEN

With recent progress in modeling liver organogenesis and regeneration, the lack of vasculature is becoming the bottleneck in progressing our ability to model human hepatic tissues in vitro. Here, we introduce a platform for routine grafting of liver and other tissues on an in vitro grown microvascular bed. The platform consists of 64 microfluidic chips patterned underneath a 384-well microtiter plate. Each chip allows the formation of a microvascular bed between two main lateral vessels by inducing angiogenesis. Chips consist of an open-top microfluidic chamber, which enables addition of a target tissue by manual or robotic pipetting. Upon grafting a liver microtissue, the microvascular bed undergoes anastomosis, resulting in a stable, perfusable vascular network. Interactions with vasculature were found in spheroids and organoids upon 7 days of co-culture with space of Disse-like architecture in between hepatocytes and endothelium. Veno-occlusive disease was induced by azathioprine exposure, leading to impeded perfusion of the vascularized spheroid. The platform holds the potential to replace animals with an in vitro alternative for routine grafting of spheroids, organoids, or (patient-derived) explants.


Asunto(s)
Microfluídica , Organoides , Animales , Azatioprina , Técnicas de Cocultivo , Humanos , Hígado , Microfluídica/métodos
3.
Nature ; 520(7546): 192-197, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25830893

RESUMEN

The metabolism of endothelial cells during vessel sprouting remains poorly studied. Here we report that endothelial loss of CPT1A, a rate-limiting enzyme of fatty acid oxidation (FAO), causes vascular sprouting defects due to impaired proliferation, not migration, of human and murine endothelial cells. Reduction of FAO in endothelial cells did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labelling studies in control endothelial cells showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1A silencing reduced these processes and depleted endothelial cell stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1A-silenced endothelial cells. Finally, CPT1 blockade inhibited pathological ocular angiogenesis in mice, suggesting a novel strategy for blocking angiogenesis.


Asunto(s)
Carbono/metabolismo , Células Endoteliales/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Nucleótidos/biosíntesis , Ácido Acético/farmacología , Adenosina Trifosfato/metabolismo , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclo del Ácido Cítrico , ADN/biosíntesis , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Silenciador del Gen , Glucosa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Nucleótidos/química , Nucleótidos/farmacología , Oxidación-Reducción/efectos de los fármacos , Retinopatía de la Prematuridad/tratamiento farmacológico , Retinopatía de la Prematuridad/metabolismo , Retinopatía de la Prematuridad/patología
4.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34361000

RESUMEN

The recruitment of T cells is a crucial component in the inflammatory cascade of the body. The process involves the transport of T cells through the vascular system and their stable arrest to vessel walls at the site of inflammation, followed by extravasation and subsequent infiltration into tissue. Here, we describe an assay to study 3D T cell dynamics under flow in real time using a high-throughput, artificial membrane-free microfluidic platform that allows unimpeded extravasation of T cells. We show that primary human T cells adhere to endothelial vessel walls upon perfusion of microvessels and can be stimulated to undergo transendothelial migration (TEM) by TNFα-mediated vascular inflammation and the presence of CXCL12 gradients or ECM-embedded melanoma cells. Notably, migratory behavior was found to differ depending on T cell activation states. The assay is unique in its comprehensiveness for modelling T cell trafficking, arrest, extravasation and migration, all in one system, combined with its throughput, quality of imaging and ease of use. We envision routine use of this assay to study immunological processes and expect it to spur research in the fields of immunological disorders, immuno-oncology and the development of novel immunotherapeutics.


Asunto(s)
Microfluídica/métodos , Linfocitos T/fisiología , Migración Transendotelial y Transepitelial , Adhesión Celular , Línea Celular Tumoral , Células Cultivadas , Quimiocina CXCL12/metabolismo , Endotelio Vascular/fisiología , Matriz Extracelular/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/patología , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Mol Cell Biochem ; 466(1-2): 83-89, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32016696

RESUMEN

In the last decade, several reports highlight the importance of the low molecular weight protein tyrosine phosphatase (LMWPTP) in cancer aggressiveness and resistance. Specifically, in chronic myeloid leukemia, we have reported that high expression of the LMWPTP maintains Src and Bcr-Abl kinases in an activated status and the glucose metabolism is directed to lactate production and, in turn, favor the pentoses pathway (one of the key process for antioxidant and protective responses). In this present study, we investigated the possible correlation between the LMWPTP and autophagy. In resistant chronic myeloid leukemia cells, the antioxidant response is supported by the glycolytic metabolism and antioxidant enzymes such as SOD and catalase, both favored by the LMWPTP. Therefore, when the cells were challenged by hydrogen peroxide treatment, the LMWPTP level goes down as well as SOD, and in turn, autophagy process was stimulated. The findings presented here reveal a novel aspect by which LMWPTP cooperates for the resistance of CML towards stressor stimuli.


Asunto(s)
Antioxidantes/metabolismo , Autofagia , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/patología
6.
J Cell Biochem ; 118(11): 3846-3854, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28387439

RESUMEN

In chemoresistant leukemia cells (Lucena-1), the low molecular weight protein tyrosine phosphatase (LMWPTP) is about 20-fold more active than in their susceptible counterpart (K562). We found this phosphatase ensures the activated statuses of Src and Bcr-Abl. Since, phosphorylation and dephosphorylation of proteins represent a key post-translational regulation of several enzymes, we also explored the kinome. We hereby show that LMWPTP superactivation, together with kinome reprogramming, cooperate towards glucose addiction. Resistant leukemia cells present lower levels of oxidative metabolism, in part due to downexpression of the following mitochondrial proteins: pyruvate dehydrogenase subunit alpha 1, succinate dehydrogenase, and voltage-dependent anion channel. Those cells displayed higher expression levels of glucose transporter 1 and higher production of lactate. In addition, Lucena-1 siRNA LMWPTP cells showed lower expression levels of glucose transporter 1 and lower activity of lactate dehydrogenase. On the other hand, K562 cells overexpressing LMWPTP presented higher expression/activity of both proteins. In this study, we show that LMWPTP is a pivotal mediator of metabolic reprogramming that confers survival advantages to leukemia cells against death stimuli. J. Cell. Biochem. 118: 3846-3854, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Resistencia a Antineoplásicos , Glucólisis , Leucemia/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Enfermedad Aguda , Humanos , Células K562 , Leucemia/patología , Fosforilación
8.
J Pathol ; 234(3): 398-409, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25065357

RESUMEN

Protease-activated receptor-2 (PAR-2) is a G protein-coupled receptor that functions as a cell-surface sensor for coagulation factors and other proteases associated with the tumour microenvironment. Pancreatic cancer cells express high levels of PAR-2 and activation of PAR-2 may induce their proliferation and migration. Interestingly, however, PAR-2 expression is increased in stroma-rich pancreatic cancer regions, suggesting a potential role of PAR-2 in the tumour microenvironment. Here, we assessed the importance of PAR-2 in the stromal compartment by utilizing an orthotopic pancreatic cancer model, in which tumour cells are PAR-2-positive, whereas stromal cells are PAR-2-negative. We assessed tumour weight and volume and analysed proliferation and (lymph)angiogenesis both in vivo and in vitro. We show that genetic ablation of PAR-2 from the stromal compartment inhibits primary tumour growth, which is accompanied by reduced vascularization in primary tumours and reduced in tube formation of vascular endothelial cells in vitro. In contrast to smaller primary tumours, the number of lymph node metastases was increased in PAR-2-deficient animals, which was accompanied by an increased number of lymphatic vessels. In vitro tube-formation assays show that PAR-2 does not inhibit the intrinsic tube-forming capacity of lymphatic endothelial cells, but that PAR-2 actually inhibits cancer cell-induced tube formation. Overall, stromal PAR-2 thus plays a dual role in pancreatic cancer development by potentiating primary tumour growth but limiting lymphangiogenesis and subsequent lymph node metastasis. Our data identify a novel role of PAR-2 in the tumour microenvironment and pinpoint PAR-2 as a negative regulator of lymphangiogenesis.


Asunto(s)
Linfangiogénesis/fisiología , Metástasis Linfática/patología , Neoplasias Pancreáticas/patología , Receptor PAR-2/metabolismo , Microambiente Tumoral/fisiología , Animales , Western Blotting , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/metabolismo , Análisis de Matrices Tisulares
9.
Int J Cancer ; 135(10): 2294-304, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24436106

RESUMEN

Protease activated receptor (PAR)-1 expression in tumor cells is associated with disease progression and overall survival in a variety of cancers of epithelial origin; however, the importance of PAR-1 in the tumor microenvironment remains unexplored. Utilizing an orthotopic pancreatic cancer model in which tumor cells are PAR-1 positive whereas stromal cells are PAR-1 negative, we show that PAR-1 expression in the microenvironment drives progression and induces chemoresistance of pancreatic cancer. PAR-1 enhances monocyte recruitment into the tumor microenvironment by regulating monocyte migration and fibroblast dependent chemokine production thereby inducing chemoresistance. Overall, our data identify a novel role of PAR-1 in the pancreatic tumor microenvironment and suggest that PAR-1 may be an attractive target to reduce drug resistance in pancreatic cancer.


Asunto(s)
Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Neoplasias Hepáticas/secundario , Neoplasias Pancreáticas/patología , Receptor PAR-1/fisiología , Células del Estroma/patología , Animales , Antimetabolitos Antineoplásicos/farmacología , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Desoxicitidina/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Técnicas para Inmunoenzimas , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Pronóstico , Transducción de Señal , Células del Estroma/metabolismo , Células Tumorales Cultivadas , Gemcitabina
10.
Sci Rep ; 14(1): 5797, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461178

RESUMEN

Enterotoxins are a type of toxins that primarily affect the intestines. Understanding their harmful effects is essential for food safety and medical research. Current methods lack high-throughput, robust, and translatable models capable of characterizing toxin-specific epithelial damage. Pressing concerns regarding enterotoxin contamination of foods and emerging interest in clinical applications of enterotoxins emphasize the need for new platforms. Here, we demonstrate how Caco-2 tubules can be used to study the effect of enterotoxins on the human intestinal epithelium, reflecting toxins' distinct pathogenic mechanisms. After exposure of the model to toxins nigericin, ochratoxin A, patulin and melittin, we observed dose-dependent reductions in barrier permeability as measured by TEER, which were detected with higher sensitivity than previous studies using conventional models. Combination of LDH release assays and DRAQ7 staining allowed comprehensive evaluation of toxin cytotoxicity, which was only observed after exposure to melittin and ochratoxin A. Furthermore, the study of actin cytoskeleton allowed to assess toxin-induced changes in cell morphology, which were only caused by nigericin. Altogether, our study highlights the potential of our Caco-2 tubular model in becoming a multi-parametric and high-throughput tool to bridge the gap between current enterotoxin research and translatable in vivo models of the human intestinal epithelium.


Asunto(s)
Toxinas Bacterianas , Enterotoxinas , Humanos , Enterotoxinas/toxicidad , Toxinas Bacterianas/toxicidad , Células CACO-2 , Meliteno/farmacología , Nigericina/farmacología , Mucosa Intestinal/patología
11.
Blood ; 118(10): 2889-95, 2011 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-21788337

RESUMEN

Thrombomodulin (TM) is a predominantly endothelial transmembrane glycoprotein that modulates hemostatic function through a domain that controls thrombin-mediated proteolysis and an N-terminal lectin-like domain that controls inflammatory processes. To test the hypothesis that TM is a determinant of malignancy and dissect the importance of these functional domains in cancer biology, metastatic potential was evaluated in TM(Pro) mice expressing a mutant form of TM with reduced thrombin affinity and TM(LeD) mice lacking the N-terminal lectin-like domain. Studies of TM(Pro) mice revealed that TM is a powerful determinant of hematogenous metastasis. TM(Pro) mice exhibited a strongly prometastatic phenotype relative to control mice that was found to result from increased survival of tumor cells newly localized to the lung rather than any alteration in tumor growth. The impact of the TM(Pro) mutation on metastasis was dependent on both tumor cell-associated tissue factor and thrombin procoagulant function. In contrast, expression of a mutant form of TM lacking the lectin-like domain had no significant impact on metastasis. These studies directly demonstrate for the first time that TM-mediated regulation of tumor cell-driven procoagulant function strongly influences metastatic potential and suggest that endothelial cell-associated modulators of hemostasis may represent novel therapeutic targets in limiting tumor dissemination.


Asunto(s)
Lectinas/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Mutación/genética , Trombina/metabolismo , Trombomodulina/fisiología , Animales , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Femenino , Hirudinas/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/metabolismo , Metástasis Linfática , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Neoplásicas Circulantes , Oligonucleótidos Antisentido/farmacología , Recuento de Plaquetas , Protrombina/antagonistas & inhibidores , Protrombina/genética , Proteínas Recombinantes/metabolismo , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patología
12.
Drug Resist Updat ; 15(4): 211-22, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22910179

RESUMEN

Hedgehog (Hh) signaling is a principal component of the morphogenetic code best known to direct pattern formation during embryogenesis. The Hh pathway remains active in adulthood however where it guides tissue regeneration and remodeling and Hh production in the niche plays an important role in maintaining stem cell compartment size. Deregulated Hh signaling activity is associated, depending on the context, with both cancer initiation and progression. Interestingly, the Hh pathway is remarkably druggable, raising hopes that inhibition of the pathway could support anticancer therapy. Indeed, a large body of preclinical data supports such an action, but promising clinical data are still limited to basal cell carcinoma (BSC) and medulloblastoma. Nevertheless cancer resistance against Hh targeting has already emerged as a major problem. Here we shall review the current situation with respect to targeting the Hh pathway in cancer in general and in chemotolerance in particular with a focus on the problems associated with the emergence of tumors resistant to treatment with inhibitors targeting the Hh receptor Smoothened (SMO).


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas Hedgehog/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Ensayos Clínicos como Asunto , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto
13.
Biomedicines ; 11(2)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36831155

RESUMEN

The intestine contains the largest microbial community in the human body, the gut microbiome. Increasing evidence suggests that it plays a crucial role in maintaining overall health. However, while many studies have found a correlation between certain diseases and changes in the microbiome, the impact of different microbial compositions on the gut and the mechanisms by which they contribute to disease are not well understood. Traditional pre-clinical models, such as cell culture or animal models, are limited in their ability to mimic the complexity of human physiology. New mechanistic models, such as organ-on-a-chip, are being developed to address this issue. These models provide a more accurate representation of human physiology and could help bridge the gap between clinical and pre-clinical studies. Gut-on-chip models allow researchers to better understand the underlying mechanisms of disease and the effect of different microbial compositions on the gut. They can help to move the field from correlation to causation and accelerate the development of new treatments for diseases associated with changes in the gut microbiome. This review will discuss current and future perspectives of gut-on-chip models to study host-microbial interactions.

14.
Front Immunol ; 14: 1155085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205118

RESUMEN

The dense tumor stroma of pancreatic ductal adenocarcinoma (PDAC) and its secreted immune active molecules provide a barrier for chemotherapy treatment as well as for immune cell infiltration to the tumor core, providing a challenge for immunotherapeutic strategies. Consequently, the investigation of processes underlying the interaction between the tumor stroma, particularly activated pancreatic stellate cells (PSCs), and immune cells may offer new therapeutic approaches for PDAC treatment. In this study, we established a 3D PDAC model cultured under flow, consisting of an endothelial tube, PSCs and PDAC organoids. This was applied to study the role of the tumor microenvironment (TME) on immune cell recruitment and its effect on partly preventing their interaction with pancreatic cancer cells. We observed that stromal cells form a physical barrier, partly shielding the cancer cells from migrating immune cells, as well as a biochemical microenvironment, that seems to attract and influence immune cell distribution. In addition, stromal targeting by Halofuginone led to an increase in immune cell infiltration. We propose that the here developed model setups will support the understanding of the cellular interplay influencing the recruitment and distribution of immune cells, and contribute to the identification of key players in the PDAC immunosuppressive TME as well as support the discovery of new strategies to treat this immune unresponsive tumor.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/terapia , Células Estrelladas Pancreáticas/patología , Dispositivos Laboratorio en un Chip , Microambiente Tumoral , Neoplasias Pancreáticas
15.
Cell Death Discov ; 9(1): 20, 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681673

RESUMEN

Pancreatic Ductal Adenocarcinoma (PDAC) is estimated to become the second leading cause of cancer-related deaths by 2030 with mortality rates of up to 93%. Standard of care chemotherapeutic treatment only prolongs the survival of patients for a short timeframe. Therefore, it is important to understand events driving treatment failure in PDAC as well as identify potential more effective treatment opportunities. PDAC is characterized by a high-density stroma, high interstitial pressure and very low oxygen tension. The aim of this study was to establish a PDAC platform that supported the understanding of treatment response of PDAC organoids in mono-, and co-culture with pancreatic stellate cells (PSCs) under hypoxic and normoxic conditions. Cultures were exposed to Gemcitabine in combination with molecules targeting relevant molecular programs that could explain treatment specific responses under different oxygen pressure conditions. Two groups of treatment responses were identified, showing either a better effect in monoculture or co-culture. Moreover, treatment response also differed between normoxia and hypoxia. Modulation of response to Gemcitabine was also observed in presence of a Hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) inhibitor and HIF inhibitors. Altogether this highlights the importance of adjusting experimental conditions to include relevant oxygen levels in drug response studies in PDAC.

16.
Adv Healthc Mater ; 12(14): e2201434, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36461624

RESUMEN

Many advanced cancer models, such as patient-derived xenografts (PDXs), offer significant benefits in their preservation of the native tumor's heterogeneity and susceptibility to treatments, but face significant barriers to use in their reliance on a rodent host for propagation and screening. PDXs remain difficult to implement in vitro, particularly in configurations that enable both detailed cellular analysis and high-throughput screening (HTS). Complex multilineage co-cultures with stromal fibroblasts, endothelium, and other cellular and structural components of the tumor microenvironment (TME) further complicate ex vivo implementation. Herein, the culture of multiple prostate cancer (PCa)-derived PDX models as 3D clusters within engineered biomimetic hydrogel matrices, in a HTS-compatible multiwell microfluidic format, alongside bone marrow-derived stromal cells and a perfused endothelial channel. Polymeric hydrogel matrices are customized for each cell type, enabling cell survival in vitro and facile imaging across all conditions. PCa PDXs demonstrate unique morphologies and reliance on TME partners, retention of known phenotype, and expected sensitivity or resistance to standard PCa therapeutics. This novel integration of technologies provides a fully human model, and expands the information to be gathered from each specimen, while avoiding the time and labor involved with animal-based testing.


Asunto(s)
Neoplasias de la Próstata , Masculino , Animales , Humanos , Xenoinjertos , Neoplasias de la Próstata/metabolismo , Técnicas de Cocultivo , Próstata/patología , Modelos Animales de Enfermedad , Hidrogeles , Microambiente Tumoral
17.
Mol Med ; 18: 1122-7, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22371306

RESUMEN

The major cause for plaque instability in atherosclerotic disease is neoangiogenic revascularization, but the factors controlling this process remain only partly understood. Hedgehog (HH) is a morphogen with important functions in revascularization, but its function in human healthy vessel biology as well as in atherosclerotic plaques has not been well investigated. Hence, we determined the status of HH pathway activity both in healthy vessels and atherosclerotic plaques. A series of 10 healthy organ donor-derived human vessels, 17 coronary atherosclerotic plaques and 24 atherosclerotic carotid plaques were investigated for HH pathway activity. We show that a healthy vessel is characterized by a high level of HH pathway activity but that atherosclerotic plaques are devoid of HH signaling despite the presence of HH ligand in these pathological structures. Thus, a dichotomy between healthy vessels and atherosclerotic plaques with respect to the activation status of the HH pathway exists, and it is tempting to suggest that downregulation of HH signaling contributes to long-term plaque stability.


Asunto(s)
Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Proteínas Hedgehog/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Transducción de Señal , Proteínas Hedgehog/genética , Humanos , Ligandos , Placa Aterosclerótica/genética , Transducción de Señal/genética
18.
Front Oncol ; 12: 1012236, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408180

RESUMEN

Glioblastoma is the deadliest brain cancer. One of the main reasons for poor outcome resides in therapy resistance, which adds additional challenges in finding an effective treatment. Small protein kinase inhibitors are molecules that have become widely studied for cancer treatments, including glioblastoma. However, none of these drugs have demonstrated a therapeutic activity or brought more benefit compared to the current standard procedure in clinical trials. Hence, understanding the reasons of the limited efficacy and drug resistance is valuable to develop more effective strategies toward the future. To gain novel insights into the method of action and drug resistance in glioblastoma, we established in parallel two patient-derived glioblastoma 2D and 3D organotypic multicellular spheroids models, and exposed them to a prolonged treatment of three weeks with temozolomide or either the two small protein kinase inhibitors enzastaurin and imatinib. We coupled the phenotypic evidence of cytotoxicity, proliferation, and migration to a novel kinase activity profiling platform (QuantaKinome™) that measured the activities of the intracellular network of kinases affected by the drug treatments. The results revealed a heterogeneous inter-patient phenotypic and molecular response to the different drugs. In general, small differences in kinase activation were observed, suggesting an intrinsic low influence of the drugs to the fundamental cellular processes like proliferation and migration. The pathway analysis indicated that many of the endogenously detected kinases were associated with the ErbB signaling pathway. We showed the intertumoral variability in drug responses, both in terms of efficacy and resistance, indicating the importance of pursuing a more personalized approach. In addition, we observed the influence derived from the application of 2D or 3D models in in vitro studies of kinases involved in the ErbB signaling pathway. We identified in one 3D sample a new resistance mechanism derived from imatinib treatment that results in a more invasive behavior. The present study applied a new approach to detect unique and specific drug effects associated with pathways in in vitro screening of compounds, to foster future drug development strategies for clinical research in glioblastoma.

19.
Biochim Biophys Acta ; 1806(2): 287-303, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20659529

RESUMEN

Most aspects of leukocyte physiology are under the control of reversible tyrosine phosphorylation. It is clear that excessive phosphorylation of signal transduction elements is a pivotal element of many different pathologies including haematological malignancies and accordingly, strategies that target such phosphorylation have clinically been proven highly successful for treatment of multiple types of leukemias and lymphomas. Cellular phosphorylation status is dependent on the resultant activity of kinases and phosphatases. The cell biology of the former is now well understood; for most cellular phosphoproteins we now know the kinases responsible for their phosphorylation and we understand the principles of their aberrant activity in disease. With respect to phosphatases, however, our knowledge is much patchier. Although the sequences of whole genomes allow us to identify phosphatases using in silico methodology, whereas transcription profiling allows us to understand how phosphatase expression is regulated during disease, most functional questions as to substrate specificity, dynamic regulation of phosphatase activity and potential for therapeutic intervention are still to a large degree open. Nevertheless, recent studies have allowed us to make meaningful statements on the role of tyrosine phosphatase activity in the three major signaling pathways that are commonly affected in leukemias, i.e. the Ras-Raf-ERK1/2, the Jak-STAT and the PI3K-PKB-mTOR pathways. Lessons learned from these pathways may well be applicable elsewhere in leukocyte biology as well.


Asunto(s)
Neoplasias Hematológicas/tratamiento farmacológico , Proteínas Tirosina Fosfatasas/fisiología , Animales , Neoplasias Hematológicas/etiología , Neoplasias Hematológicas/metabolismo , Humanos , Antígenos Comunes de Leucocito/fisiología , Fosfohidrolasa PTEN/fisiología , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/fisiología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Transducción de Señal
20.
J Cell Biochem ; 112(1): 71-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20626033

RESUMEN

Despite numerous reports on the ability of ascorbic acid and ß-glycerophosphate (AA/ß-GP) to induce osteoblast differentiation, little is known about the molecular mechanisms involved in this phenomenon. In this work, we used a peptide array containing specific consensus sequences (potential substrates) for protein kinases and traditional biochemical techniques to examine the signaling pathways modulated during AA/ß-GP-induced osteoblast differentiation. The kinomic profile obtained after 7 days of treatment with AA/ß-GP identified 18 kinase substrates with significantly enhanced or reduced phosphorylation. Peptide substrates for Akt, PI3K, PKC, BCR, ABL, PRKG1, PAK1, PAK2, ERK1, ERBB2, and SYK showed a considerable reduction in phosphorylation, whereas enhanced phosphorylation was observed in substrates for CHKB, CHKA, PKA, FAK, ATM, PKA, and VEGFR-1. These findings confirm the potential usefulness of peptide microarrays for identifying kinases known to be involved in bone development in vivo and in vitro and show that this technique can be used to investigate kinases whose function in osteoblastic differentiation is poorly understood.


Asunto(s)
Ácido Ascórbico/metabolismo , Diferenciación Celular , Glicerofosfatos/metabolismo , Osteoblastos/citología , Transducción de Señal , Animales , Células Cultivadas , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA