Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955492

RESUMEN

Oxidative stress, fibrosis, and inflammasome activation from AGE-RAGE interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of ß-caryophyllene (BCP) on activating CB2 receptors against diabetes complications and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dosage of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance, insulin resistance, and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and SERCA2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NOX4 and activating PI3K/AKT/Nrf2 signaling. BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition (EndMT) in DCM mice by inhibiting TGF-ß/Smad signaling. Further, BCP treatment suppressed NLRP3 inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate CB2 receptor dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2 receptor antagonist AM630 and AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP showed the potential to protect the myocardium and pancreas of DCM mice mediating CB2 receptor dependent mechanisms. Significance Statement 1. ß-caryophyllene (BCP), a cannabinoid type 2 receptor (CB2R) agonist. 2. BCP attenuates diabetic cardiomyopathy via activating CB2R in mice 3. CB2R activation by BCP shows strong protection against fibrosis and inflammasome activation 4. It regulates AGE/RAGE and PI3K/Nrf2/Akt signaling in mice.

2.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37628900

RESUMEN

The role of histamine H3 receptors (H3Rs) in memory and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer's disease (AD), is well-accepted. Therefore, the procognitive effects of acute systemic administration of H3R antagonist E169 (2.5-10 mg/kg, i.p.) on MK801-induced amnesia in C57BL/6J mice using the novel object recognition test (NORT) were evaluated. E169 (5 mg) provided a significant memory-improving effect on MK801-induced short- and long-term memory impairments in NORT. The E169 (5 mg)-provided effects were comparable to those observed with the reference phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and were abrogated with the H3R agonist (R)-α-methylhistamine (RAMH). Additionally, our results demonstrate that E169 ameliorated MK801-induced memory deficits by antagonism of H3Rs and by modulation of the level of disturbance in the expression of PI3K, Akt, and GSK-3ß proteins, signifying that E169 mitigated the Akt-mTOR signaling pathway in the hippocampus of tested mice. Moreover, the results observed revealed that E169 (2.5-10 mg/kg, i.p.) did not alter anxiety levels and locomotor activity of animals in open field tests, demonstrating that performances improved following acute systemic administration with E169 in NORT are unrelated to changes in emotional response or in spontaneous locomotor activity. In summary, these obtained results suggest the potential of H3R antagonists such as E169, with good in silico physicochemical properties and stable retained key interactions in docking studies at H3R, in simultaneously modulating disturbed brain neurotransmitters and the imbalanced Akt-mTOR signaling pathway related to neurodegenerative disorders, e.g., AD.


Asunto(s)
Enfermedad de Alzheimer , Antagonistas de los Receptores Histamínicos H3 , Animales , Ratones , Ratones Endogámicos C57BL , Glucógeno Sintasa Quinasa 3 beta , Fosfatidilinositol 3-Quinasas , Maleato de Dizocilpina , Antagonistas de los Receptores Histamínicos H3/farmacología , Antagonistas de los Receptores Histamínicos H3/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasa , Serina-Treonina Quinasas TOR , Amnesia/inducido químicamente , Amnesia/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Transducción de Señal , Cognición
3.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838876

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in social interaction and communication along with repetitive stereotypic behaviors. Currently, there are no specific biomarkers for diagnostic screening or treatments available for autistic patients. Numerous genetic disorders are associated with high prevalence of ASD, including tuberous sclerosis complex, phosphatase and tensin homolog, and fragile X syndrome. Preclinical investigations in animal models of these diseases have revealed irregularities in the PI3K/Akt/mTOR signaling pathway as well as ASD-related behavioral defects. Reversal of the downstream molecular irregularities, associated with mTOR hyperactivation, improved the behavioral deficits observed in the preclinical investigations. Plant bioactive molecules have shown beneficial pre-clinical evidence in ASD treatment by modulating the PI3K/Akt/mTOR pathway. In this review, we summarize the involvement of the PI3K/Akt/mTOR pathway as well as the genetic alterations of the pathway components and its critical impact on the development of the autism spectrum disorder. Mutations in negative regulators of mTORC1, such as TSC1, TSC2, and PTEN, result in ASD-like phenotypes through the disruption of the mTORC1-mediated signaling. We further discuss the various naturally occurring phytoconstituents that have been identified to be bioactive and modulate the pathway to prevent its disruption and contribute to beneficial therapeutic effects in ASD.


Asunto(s)
Trastorno del Espectro Autista , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
4.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613969

RESUMEN

Dysregulation in brain neurotransmitters underlies several neuropsychiatric disorders, e.g., autism spectrum disorder (ASD). Also, abnormalities in the extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway pave the way for neuroinflammation, neurodegeneration, and altered learning phenotype in ASD. Therefore, the effects of chronic systemic administration of the multiple-targeting antagonist ST-713 at the histamine H3 receptor (H3R) and dopamine D2/D3 receptors (D2/D3R) on repetitive self-grooming, aggressive behaviors, and abnormalities in the MAPK pathway in BTBR T + Itpr3tf/J (BTBR) mice were assessed. The results showed that ST-713 (2.5, 5, and 10 mg/kg, i.p.) mitigated repetitive self-grooming and aggression in BTBR mice (all p < 0.05), and the ameliorative effects of the most promising dose of ST-713 (5 mg/kg, i.p.) on behaviors were completely abrogated by co-administration of the H3R agonist (R)-α-methylhistamine or the anticholinergic drug scopolamine. Moreover, the elevated levels of several MAPK pathway proteins and induced proinflammatory markers such as tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were significantly suppressed following chronic administration of ST-713 (5 mg/kg, i.p.) (all p < 0.01). Furthermore, ST-713 significantly increased the levels of histamine and dopamine in hippocampal tissue of treated BTBR mice (all p < 0.01). The current observations signify the potential role of such multiple-targeting compounds, e.g., ST-713, in multifactorial neurodevelopmental disorders such as ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Receptores Histamínicos H3 , Ratones , Animales , Trastorno Autístico/genética , Trastorno del Espectro Autista/tratamiento farmacológico , Receptores Histamínicos H3/metabolismo , Aseo Animal , Dopamina/farmacología , Ratones Endogámicos C57BL , Ratones Endogámicos , Quinasas MAP Reguladas por Señal Extracelular , Agresión , Modelos Animales de Enfermedad
5.
Molecules ; 27(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36364000

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a substantially increasing incidence rate. It is characterized by repetitive behavior, learning difficulties, deficits in social communication, and interactions. Numerous medications, dietary supplements, and behavioral treatments have been recommended for the management of this condition, however, there is no cure yet. Recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental diseases, based on their proved anti-inflammatory effects, such as downregulating the expression of several proteins, including the transforming growth factor beta (TGF-ß), interleukin-6 (IL-6), C-reactive protein (CRP), nuclear factor κB (NF-κB), tumor necrosis factor alpha (TNF-α), and the monocyte chemoattractant protein (MCP-1). Furthermore, numerous previous studies revealed the potential of the SGLT2 inhibitors to provide antioxidant effects, due to their ability to reduce the generation of free radicals and upregulating the antioxidant systems, such as glutathione (GSH) and superoxide dismutase (SOD), while crossing the blood brain barrier (BBB). These properties have led to significant improvements in the neurologic outcomes of multiple experimental disease models, including cerebral oxidative stress in diabetes mellitus and ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and epilepsy. Such diseases have mutual biomarkers with ASD, which potentially could be a link to fill the gap of the literature studying the potential of repurposing the SGLT2 inhibitors' use in ameliorating the symptoms of ASD. This review will look at the impact of the SGLT2 inhibitors on neurodevelopmental disorders on the various models, including humans, rats, and mice, with a focus on the SGLT2 inhibitor canagliflozin. Furthermore, this review will discuss how SGLT2 inhibitors regulate the ASD biomarkers, based on the clinical evidence supporting their functions as antioxidant and anti-inflammatory agents capable of crossing the blood-brain barrier (BBB).


Asunto(s)
Enfermedad de Alzheimer , Trastorno del Espectro Autista , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Ratones , Animales , Ratas , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Trastorno del Espectro Autista/tratamiento farmacológico , Antioxidantes/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Biomarcadores , Enfermedad de Alzheimer/tratamiento farmacológico , Hipoglucemiantes/farmacología
6.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298871

RESUMEN

Autistic spectrum disorder (ASD) refers to a group of neurodevelopmental disorders characterized by impaired social interaction and cognitive deficit, restricted repetitive behaviors, altered immune responses, and imbalanced oxidative stress status. In recent years, there has been a growing interest in studying the role of nicotinic acetylcholine receptors (nAChRs), specifically α7-nAChRs, in the CNS. Influence of agonists for α7-nAChRs on the cognitive behavior, learning, and memory formation has been demonstrated in neuro-pathological condition such as ASD and attention-deficit hyperactivity disorder (ADHD). Curcumin (CUR), the active compound of the spice turmeric, has been shown to act as a positive allosteric modulator of α7-nAChRs. Here we hypothesize that CUR, acting through α7-nAChRs, influences the neuropathology of ASD. In patch clamp studies, fast inward currents activated by choline, a selective agonist of α7-nAChRs, were significantly potentiated by CUR. Moreover, choline induced enhancement of spontaneous inhibitory postsynaptic currents was markedly increased in the presence of CUR. Furthermore, CUR (25, 50, and 100 mg/kg, i.p.) ameliorated dose-dependent social deficits without affecting locomotor activity or anxiety-like behaviors of tested male Black and Tan BRachyury (BTBR) mice. In addition, CUR (50 and 100 mg/kg, i.p.) mitigated oxidative stress status by restoring the decreased levels of superoxide dismutase (SOD) and catalase (CAT) in the hippocampus and the cerebellum of treated mice. Collectively, the observed results indicate that CUR potentiates α7-nAChRs in native central nervous system neurons, mitigates disturbed oxidative stress, and alleviates ASD-like features in BTBR mice used as an idiopathic rodent model of ASD, and may represent a promising novel pharmacological strategy for ASD treatment.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/tratamiento farmacológico , Curcumina/farmacología , Hipocampo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Trastorno Autístico/metabolismo , Colina/farmacología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Agonistas Nicotínicos/farmacología , Conducta Social
7.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669336

RESUMEN

Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by social and communicative impairments, as well as repetitive and restricted behaviors (RRBs). With the limited effectiveness of current pharmacotherapies in treating repetitive behaviors, the present study determined the effects of acute systemic treatment of the novel multi-targeting ligand ST-2223, with incorporated histamine H3 receptor (H3R) and dopamine D2/D3 receptor affinity properties, on ASD-related RRBs in a male Black and Tan BRachyury (BTBR) mouse model of ASD. ST-2223 (2.5, 5, and 10 mg/kg, i.p.) significantly mitigated the increase in marble burying and self-grooming, and improved reduced spontaneous alternation in BTBR mice (all p < 0.05). Similarly, reference drugs memantine (MEM, 5 mg/kg, i.p.) and aripiprazole (ARP, 1 mg/kg, i.p.), reversed abnormally high levels of several RRBs in BTBR (p < 0.05). Moreover, ST-2223 palliated the disturbed anxiety levels observed in an open field test (all p < 0.05), but did not restore the hyperactivity parameters, whereas MEM failed to restore mouse anxiety and hyperactivity. In addition, ST-2223 (5 mg/kg, i.p.) mitigated oxidative stress status by decreasing the elevated levels of malondialdehyde (MDA), and increasing the levels of decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) in different brain parts of treated BTBR mice (all p < 0.05). These preliminary in vivo findings demonstrate the ameliorative effects of ST-2223 on RRBs in a mouse model of ASD, suggesting its pharmacological prospective to rescue core ASD-related behaviors. Further confirmatory investigations on its effects on various brain neurotransmitters, e.g., dopamine and histamine, in different brain regions are still warranted to corroborate and expand these initial data.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Encéfalo/metabolismo , Antagonistas de los Receptores de Dopamina D2/administración & dosificación , Aseo Animal/efectos de los fármacos , Antagonistas de los Receptores Histamínicos H3/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Receptores de Dopamina D3/antagonistas & inhibidores , Animales , Ansiedad/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Antagonistas de los Receptores de Dopamina D2/metabolismo , Células HEK293 , Antagonistas de los Receptores Histamínicos H3/metabolismo , Humanos , Ligandos , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Receptores Histamínicos H3/metabolismo
8.
Molecules ; 27(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35011414

RESUMEN

Diabetes mellitus (DM) is a chronic metabolic condition characterized by persistent hyperglycemia due to insufficient insulin levels or insulin resistance. Despite the availability of several oral and injectable hypoglycemic agents, their use is associated with a wide range of side effects. Monoterpenes are compounds extracted from different plants including herbs, vegetables, and fruits and they contribute to their aroma and flavor. Based on their chemical structure, monoterpenes are classified into acyclic, monocyclic, and bicyclic monoterpenes. They have been found to exhibit numerous biological and medicinal effects such as antipruritic, antioxidant, anti-inflammatory, and analgesic activities. Therefore, monoterpenes emerged as promising molecules that can be used therapeutically to treat a vast range of diseases. Additionally, monoterpenes were found to modulate enzymes and proteins that contribute to insulin resistance and other pathological events caused by DM. In this review, we highlight the different mechanisms by which monoterpenes can be used in the pharmacological intervention of DM via the alteration of certain enzymes, proteins, and pathways involved in the pathophysiology of DM. Based on the fact that monoterpenes have multiple mechanisms of action on different targets in in vitro and in vivo studies, they can be considered as lead compounds for developing effective hypoglycemic agents. Incorporating these compounds in clinical trials is needed to investigate their actions in diabetic patients in order to confirm their ability in controlling hyperglycemia.


Asunto(s)
Hipoglucemiantes/farmacología , Monoterpenos/farmacología , Animales , Biomarcadores , Toma de Decisiones Clínicas , Estudios Clínicos como Asunto , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Susceptibilidad a Enfermedades , Evaluación Preclínica de Medicamentos , Glucosa/metabolismo , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/etiología , Hiperglucemia/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Insulina/metabolismo , Resistencia a la Insulina , Monoterpenos/química , Monoterpenos/uso terapéutico , Relación Estructura-Actividad
9.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503208

RESUMEN

The histamine H3 receptor (H3R) functions as auto- and hetero-receptors, regulating the release of brain histamine (HA) and acetylcholine (ACh), respectively. The enzyme acetylcholine esterase (AChE) is involved in the metabolism of brain ACh. Both brain HA and ACh are implicated in several cognitive disorders like Alzheimer's disease, schizophrenia, anxiety, and narcolepsy, all of which are comorbid with autistic spectrum disorder (ASD). Therefore, the novel dual-active ligand E100 with high H3R antagonist affinity (hH3R: Ki = 203 nM) and balanced AChE inhibitory effect (EeAChE: IC50 = 2 µM and EqBuChE: IC50 = 2 µM) was investigated on autistic-like sociability, repetitive/compulsive behaviour, anxiety, and oxidative stress in male C57BL/6 mice model of ASD induced by prenatal exposure to valproic acid (VPA, 500 mg/kg, intraperitoneal (i.p.)). Subchronic systemic administration with E100 (5, 10, and 15 mg/kg, i.p.) significantly and dose-dependently attenuated sociability deficits of autistic (VPA) mice in three-chamber behaviour (TCB) test (all p < 0.05). Moreover, E100 significantly improved repetitive and compulsive behaviors by reducing the increased percentage of marbles buried in marble-burying behaviour (MBB) (all p < 0.05). Furthermore, pre-treatment with E100 (10 and 15 mg/kg, i.p.) corrected decreased anxiety levels (p < 0.05), however, failed to restore hyperactivity observed in elevated plus maze (EPM) test. In addition, E100 (10 mg/kg, i.p.) mitigated oxidative stress status by increasing the levels of decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and decreasing the elevated levels of malondialdehyde (MDA) in the cerebellar tissues (all p < 0.05). Additionally, E100 (10 mg/kg, i.p.) significantly reduced the elevated levels of AChE activity in VPA mice (p < 0.05). These results demonstrate the promising effects of E100 on in-vivo VPA-induced ASD-like features in mice, and provide evidence that a potent dual-active H3R antagonist and AChE inhibitor (AChEI) is a potential drug candidate for future therapeutic management of autistic-like behaviours.


Asunto(s)
Trastorno Autístico/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Antagonistas de los Receptores Histamínicos H3/farmacología , Estrés Oxidativo/efectos de los fármacos , Receptores Histamínicos H3/metabolismo , Animales , Antioxidantes/metabolismo , Trastorno Autístico/inducido químicamente , Conducta Animal , Cerebelo/metabolismo , Femenino , Glutatión/metabolismo , Cinética , Peroxidación de Lípido , Masculino , Exposición Materna , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Movimiento , Embarazo , Preñez , Ácido Valproico
10.
Molecules ; 25(7)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235506

RESUMEN

Histamine H3 receptors (H3Rs) are involved in several neuropsychiatric diseases including epilepsy. Therefore, the effects of H3R antagonist E177 (5 and 10 mg/kg, intraperitoneal (i.p.)) were evaluated on the course of kindling development, kindling-induced memory deficit, oxidative stress levels (glutathione (GSH), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD)), various brain neurotransmitters (histamine (HA), acetylcholine (ACh), γ-aminobutyric acid (GABA)), and glutamate (GLU), acetylcholine esterase (AChE) activity, and c-Fos protein expression in pentylenetetrazole (PTZ, 40 mg/kg) kindled rats. E177 (5 and 10 mg/kg, i.p.) significantly decreased seizure score, increased step-through latency (STL) time in inhibitory avoidance paradigm, and decreased transfer latency time (TLT) in elevated plus maze (all P < 0.05). Moreover, E177 mitigated oxidative stress by significantly increasing GSH, CAT, and SOD, and decreasing the abnormal level of MDA (all P < 0.05). Furthermore, E177 attenuated elevated levels of hippocampal AChE, GLU, and c-Fos protein expression, whereas the decreased hippocampal levels of HA and ACh were modulated in PTZ-kindled animals (all P < 0.05). The findings suggest the potential of H3R antagonist E177 as adjuvant to antiepileptic drugs with an added advantage of preventing cognitive impairment, highlighting the H3Rs as a potential target for the therapeutic management of epilepsy with accompanied memory deficits.


Asunto(s)
Epilepsia , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo , Antagonistas de los Receptores Histamínicos H3/farmacología , Excitación Neurológica/efectos de los fármacos , Trastornos de la Memoria , Neurotransmisores/metabolismo , Estrés Oxidativo/efectos de los fármacos , Pentilenotetrazol/toxicidad , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Animales , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Epilepsia/patología , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratas , Ratas Wistar
11.
Molecules ; 24(22)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739417

RESUMEN

Epilepsy is a multifaceted neurological disorder which severely affects neuronal function. Some patients may experience status epilepticus (SE), a life-threatening state of ongoing seizure activity linked to cognitive dysfunction, necessitating an immediate intervention. The potential of histamine H3 receptors in several neuropsychiatric diseases including epilepsy is well recognized. In the current study, we aimed to explore the effect of H3R antagonist E177 on prevention and termination of pilocarpine (PLC)-induced SE in rats as well as evaluating the effects of E177 on the levels of oxidative stress in hippocampus tissues. The results showed that the survival rate of animals pretreated with E177 (5 and 10 mg/kg, intraperitoneal (i.p.)) was significantly increased during the first hour of observation, and animals were protected from SE incidence and showed a prolonged average of latency to the first seizure when compared with animals pretreated with PLC (400 mg/kg, i.p.). Moreover, the protective effect of E177 (10 mg/kg) on SE was partially reversed when rats were co- administered with H3R agonist R-(α)-methylhistamine (RAM) and with the H2R antagonist zolantidine (ZOL), but not with the H1R antagonist pyrilamine (PYR). Furthermore, pretreatment with E177 (5 and 10 mg/kg) significantly decreased the abnormal levels of malondialdehyde (MDA), and increased levels of glutathione (GSH) in the hippocampal tissues of the treated rats. However, E177 failed to modulate the levels of catalase (CAT), superoxide dismutase (SOD), or acetylcholine esterase activity (AChE). Our findings suggest that the newly developed H3R antagonist E177 provides neuroprotection in a preclinical PLC-induced SE in rats, highlighting the histaminergic system as a potential therapeutic target for the therapeutic management of SE.


Asunto(s)
Antagonistas de los Receptores Histamínicos H3/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Pilocarpina/toxicidad , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Animales , Catalasa/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar , Estado Epiléptico/metabolismo , Superóxido Dismutasa/metabolismo
12.
Int J Mol Sci ; 19(11)2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30380674

RESUMEN

A newly developed series of non-imidazole histamine H3 receptor (H3R) antagonists (1⁻16) was evaluated in vivo for anticonvulsant effects in three different seizure models in Wistar rats. Among the novel H3R antagonists examined, H3R antagonist 4 shortened the duration of tonic hind limb extension (THLE) in a dose-dependent fashion in the maximal electroshock (MES)-induced seizure and offered full protection against pentylenetetrazole (PTZ)-induced generalized tonic-clonic seizure (GTCS), following acute systemic administration (2.5, 5, 10, and 15 mg/kg, i.p.). However, only H3R antagonist 13, without appreciable protective effects in MES- and PTZ-induced seizure, fully protected animals in the strychnine (STR)-induced GTCS following acute systemic pretreatment (10 mg/kg, i.p.). Moreover, the protective effect observed with H3R antagonist 4 in MES-induced seizure was completely abolished when animals were co-administered with the H3R agonist (R)-α-methylhistamine (RAMH, 10 mg/kg, i.p.). However, RAMH failed to abolish the full protection provided by the H3R antagonist 4 in PTZ-induced seizure and H3R antagonist 13 in STR-induced seizure. Furthermore, in vitro antiproliferative effects or possible metabolic interactions could not be observed for compound 4. Additionally, the predictive in silico, as well as in vitro, metabolic stability for the most promising H3R antagonist 4 was assessed. The obtained results show prospective effects of non-imidazole H3R antagonists as innovative antiepileptic drugs (AEDs) for potential single use against epilepsy.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Antagonistas de los Receptores Histamínicos H3/uso terapéutico , Convulsiones/tratamiento farmacológico , Animales , Electrochoque/efectos adversos , Humanos , Masculino , Pentilenotetrazol , Ratas Wistar , Receptores Histamínicos H3/metabolismo , Convulsiones/inducido químicamente , Convulsiones/etiología , Convulsiones/metabolismo
13.
Drug Dev Ind Pharm ; 41(10): 1726-37, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25586554

RESUMEN

The purpose of this study was to assess the in vitro performances of "vegetable" capsules in comparison to hard gelatin capsules in terms of shell weight variation, reaction to different humidity conditions, resistance to stress in the absence of moisture, powder leakage, disintegration and dissolution. Two types of capsules made of HPMC produced with (Capsule 2) or without (Capsule 3) a gelling agent and hard gelatin capsules (Capsule 1) were assessed. Shell weight variability was relatively low for all tested capsules shells. Although Capsule 1 had the highest moisture content under different humidity conditions, all capsule types were unable to protect the encapsulated hygroscopic polyvinylpyrrolidone (PVP) powder from surrounding humidity. The initial disintegration for all Capsule 1 occurred within 3 min, but for other types of capsules within 6 min (n = 18). Dissolution of acetaminophen was better when the deionized water (DIW) temperature increased from 32 to 42 °C in case of Capsule 1, but the effect of temperature was not significant for the other types of capsules. Acetaminphen dissolution from Capsule 1 was the fastest (i.e. >90% in 10 min) and independent of the media pH or contents unlike Capsule 2 which was influenced by the pH and dissolution medium contents. It is feasible to use hypromellose capsules shells with or without gelling agent for new lines of pharmaceutical products, however, there is a window for capsule shells manufacturing companies to improve the dissolution of their hypromellose capsules to match the conventional gelatin capsule shells and eventually replace them.


Asunto(s)
Acetaminofén/química , Cápsulas/química , Gelatina/química , Derivados de la Hipromelosa/química , Química Farmacéutica , Liberación de Fármacos , Humedad , Povidona/química , Solubilidad , Temperatura , Humectabilidad
14.
Behav Pharmacol ; 25(3): 245-52, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24776492

RESUMEN

To determine the potential of histamine H3 receptor (H3R) ligands as new antiepileptic drugs (AEDs), aromatic ether, and diether derivatives (1-12) belonging to the nonimidazole class of ligands, with high in-vitro binding affinity at human H3R, were tested for their in-vivo anticonvulsive activity in the maximal electroshock (MES)-induced and pentylenetetrazole (PTZ)-kindled seizure models in rats. The anticonvulsive effects of a systemic injection of 1-12 on MES-induced and PTZ-kindled seizures were evaluated against the reference AED phenytoin (PHT) and the structurally related H3R antagonist/inverse agonist pitolisant (PIT). Among the most promising ligands 2, 4, 5, and 11, there was a significant and dose-dependent reduction in the duration of tonic hind limb extension (THLE) in MES-induced seizure subsequent to administration of 4 and 5 [(5, 10, and 15 mg/kg, intraperitoneally (i.p.)]. The protective effects observed for the 1-(3-(3-(4-chlorophenyl)propoxy)propyl)-3-methylpiperidine derivative 11 at 10 mg/kg, i.p. were significantly greater than those of PIT, and were reversed by pretreatment with the central nervous system penetrant H1R antagonist pyrilamine (PYR) (10 mg/kg). Moreover, the protective action of the reference AED PHT, at a dose of 5 mg/kg (without considerable protection in the MES model), was significantly augmented when coadministered with derivative 11 (5 mg/kg, i.p.). Surprisingly, pretreatment with derivative 7 (10 mg/kg, i.p.), an ethylphenoxyhexyl-piperidine derivative without considerable protection in the MES model, potently altered PTZ-kindled seizure, significantly prolonged myoclonic latency time, and clearly shortened the total seizure time when compared with control, PHT, and PIT. These interesting results highlight the potential of H3R ligands as new AEDs or as adjuvants to available AED therapeutics.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Antagonistas de los Receptores Histamínicos H3/uso terapéutico , Algoritmos , Animales , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Electrochoque/efectos adversos , Epilepsia/etiología , Masculino , Pentilenotetrazol/toxicidad , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos
15.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675442

RESUMEN

Studying the involvement of nicotinic acetylcholine receptors (nAChRs), specifically α7-nAChRs, in neuropsychiatric brain disorders such as autism spectrum disorder (ASD) has gained a growing interest. The flavonoid apigenin (APG) has been confirmed in its pharmacological action as a positive allosteric modulator of α7-nAChRs. However, there is no research describing the pharmacological potential of APG in ASD. The aim of this study was to evaluate the effects of the subchronic systemic treatment of APG (10-30 mg/kg) on ASD-like repetitive and compulsive-like behaviors and oxidative stress status in the hippocampus and cerebellum in BTBR mice, utilizing the reference drug aripiprazole (ARP, 1 mg/kg, i.p.). BTBR mice pretreated with APG (20 mg/kg) or ARP (1 mg/g, i.p.) displayed significant improvements in the marble-burying test (MBT), cotton-shredding test (CST), and self-grooming test (SGT) (all p < 0.05). However, a lower dose of APG (10 mg/kg, i.p.) failed to modulate behaviors in the MBT or SGT, but significantly attenuated the increased shredding behaviors in the CST of tested mice. Moreover, APG (10-30 mg/kg, i.p.) and ARP (1 mg/kg) moderated the disturbed levels of oxidative stress by mitigating the levels of catalase (CAT) and superoxide dismutase (SOD) in the hippocampus and cerebellum of treated BTBR mice. In patch clamp studies in hippocampal slices, the potency of choline (a selective agonist of α7-nAChRs) in activating fast inward currents was significantly potentiated following incubation with APG. Moreover, APG markedly potentiated the choline-induced enhancement of spontaneous inhibitory postsynaptic currents. The observed results propose the potential therapeutic use of APG in the management of ASD. However, further preclinical investigations in additional models and different rodent species are still needed to confirm the potential relevance of the therapeutic use of APG in ASD.

16.
Front Pharmacol ; 15: 1364353, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903994

RESUMEN

Introduction: Brain histamine is considered an endogenous anticonvulsant and histamine H1 receptor. H1R antagonists have, in earlier studies, been found to induce convulsions. Moreover, research during the last two decades has provided more information concerning the anticonvulsant activities of histamine H3R (H3R) antagonists investigated in a variety of animal epilepsy models. Methods: Therefore, the in vivo anticonvulsant effect of the H3R antagonist DL76, with proven high in vitro affinity, in vitro selectivity profile, and high in vivo antagonist potency in mice against maximal electroshock (MES)-induced seizures in mice, was assessed. Valproic acid (VPA) was used as a reference antiepileptic drug (AED). In addition, DL76 was tested for its reproductive and fetal toxicity in the same animal species. Results and discussion: Our observations showed that acute systemic administration (intraperitoneal; i.p.) of DL76 (7.5 mg/kg, 15 mg/kg, 30 mg/kg, and 60 mg/kg, i.p.) provided significant and dose-dependent protection against MES-induced seizures in female and male mice. Moreover, the DL76-provided protective effects were comparable to those offered by the VPA and were reversed when animals were co-administered the CNS-penetrant selective H3R agonist R-(α)-methylhistamine (RAM, 10 mg/kg, i.p.). Furthermore, the administration of single (7.5 mg/kg, 15 mg/kg, 30 mg/kg, or 60 mg/kg, i.p.) or multiple doses (3 × 15 mg/kg, i.p.) of H3R antagonist DL76 on gestation days (GD) 8 or 13 failed to affect the maternal body weight of mice when compared with the control mice group. No significant alterations were detected in the average number of implantations and resorptions between the control and DL76-treated groups at the early stages of gestation and the organogenesis period. In addition, no significant differences in the occurrence of skeletal abnormalities, urogenital abnormalities, exencephaly, exomphalos, facial clefts, and caudal malformations were observed. The only significant abnormalities witnessed in the treated groups of mice were in the length of long bones and body length. In conclusion, the novel H3R antagonist DL76 protected test animals against MES-induced seizures and had a low incidence of reproductive and fetal malformation with decreased long bone lengths in vivo, signifying the potential therapeutic value of H3R antagonist DL76 for future preclinical as well as clinical development for use in the management of epilepsy.

17.
J Pharmacol Exp Ther ; 347(2): 398-409, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23965380

RESUMEN

The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 µM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 µM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (-), (+), and racemic menthol inhibited 5-HT3 receptor-mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [(3)H]GR65630 was not altered in the presence of menthol (up to 1 mM), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor-mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 µM). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors.


Asunto(s)
Mentol/farmacología , Receptores de Serotonina 5-HT3/metabolismo , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Animales , Unión Competitiva , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Imidazoles/farmacología , Indoles/farmacología , Potenciales de la Membrana/efectos de los fármacos , Simulación del Acoplamiento Molecular , Oocitos/metabolismo , Técnicas de Placa-Clamp , Unión Proteica , Ensayo de Unión Radioligante , Ratas , Receptores de Serotonina 5-HT3/genética , Transfección , Xenopus laevis
18.
Bioorg Med Chem Lett ; 23(17): 4886-91, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23891186

RESUMEN

Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. Therefore, the previously described and structurally strongly related imidazole-based derivatives belonging to carbamate class with high H3R in vitro affinity, in-vivo antagonist potency, and H3R selectivity profile were investigated on their anticonvulsant activity in maximal electroshock (MES)-induced and pentylenetetrazole (PTZ)-kindled seizure models in Wistar rats. The effects of systemic injection of H3R ligands 1-13 on MES-induced and PTZ-kindled seizures were screened and evaluated against the reference antiepileptic drug (AED) Phenytoin (PHT) and the standard histamine H3R inverse agonist/antagonist Thioperamide (THP) to determine their potential as new antiepileptic drugs. Following administration of the H3R ligands 1-13 (5, 10 and 15 mg/kg, ip) there was a significant dose dependent reduction in MES-induced seizure duration. The protective action observed for the pentenyl carbamate derivative 4, the most protective H3R ligand among 1-13, was significantly higher (P <0.05) than that of standard H3R antagonist THP, and was reversed when rats were pretreated with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10mg/kg), or with the CNS penetrant H1R antagonist Pyrilamine (PYR) (10mg/kg). In addition, subeffective dose of H3R ligand 4 (5mg/kg, ip) significantly potentiated the protective action in rats pretreated with PHT (5mg/kg, ip), a dose without appreciable protective effect when given alone. In contrast, pretreatment with H3R ligand 4 (10mg/kg ip) failed to modify PTZ-kindled convulsion, whereas the reference drug PHT was found to fully protect PTZ-induced seizure. These results indicate that some of the investigated imidazole-based H3R ligands 1-13 may be of future therapeutic value in epilepsy.


Asunto(s)
1-Propanol/uso terapéutico , Anticonvulsivantes/uso terapéutico , Carbamatos/química , Carbamatos/uso terapéutico , Antagonistas de los Receptores Histamínicos/uso terapéutico , Receptores Histamínicos H3/metabolismo , Convulsiones , 1-Propanol/química , Animales , Anticonvulsivantes/química , Electrochoque , Agonistas de los Receptores Histamínicos , Antagonistas de los Receptores Histamínicos/química , Imidazoles/química , Imidazoles/uso terapéutico , Ligandos , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico
19.
Molecules ; 18(11): 14186-202, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24248146

RESUMEN

Premedication with a combination of histamine H1 receptor (H1R) and H2 receptor (H2R) antagonists has been suggested as a prophylactic principle, for instance, in anaesthesia and surgery. Aiming at pharmacological hybrids combining H1R and H2R antagonistic activity, a series of cyanoguanidines 14-35 was synthesized by linking mepyramine-type H1R antagonist substructures with roxatidine-, tiotidine-, or ranitidine-type H2R antagonist moieties. N-desmethylmepyramine was connected via a poly-methylene spacer to a cyanoguanidine group as the "urea equivalent" of the H2R antagonist moiety. The title compounds were screened for histamine antagonistic activity at the isolated ileum (H1R) and the isolated spontaneously beating right atrium (H2R) of the guinea pig. The results indicate that, depending on the nature of the H2R antagonist partial structure, the highest H1R antagonist potency resided in roxatidine-type compounds with spacers of six methylene groups in length (compound 21), and tiotidine-type compounds irrespective of the alkyl chain length (compounds 28, 32, 33), N-cyano-N'-[2-[[(2-guanidino-4-thiazolyl)methyl]thio]ethyl]-N″-[2-[N-[2-[N-(4-methoxybenzyl)-N-(pyridyl)-amino] ethyl]-N-methylamino]ethyl] guanidine (25, pKB values: 8.05 (H1R, ileum) and 7.73 (H2R, atrium) and the homologue with the mepyramine moiety connected by a six-membered chain to the tiotidine-like partial structure (compound 32, pKB values: 8.61 (H1R) and 6.61 (H2R) were among the most potent hybrid compounds. With respect to the development of a potential pharmacotherapeutic agent, structural optimization seems possible through selection of other H1R and H2R pharmacophoric moieties with mutually affinity-enhancing properties.


Asunto(s)
Guanidinas/química , Guanidinas/síntesis química , Antagonistas de los Receptores Histamínicos H1/química , Antagonistas de los Receptores H2 de la Histamina/química , Animales , Cimetidina/análogos & derivados , Cimetidina/química , Cobayas , Antagonistas de los Receptores Histamínicos H1/síntesis química , Antagonistas de los Receptores H2 de la Histamina/síntesis química , Espectroscopía de Resonancia Magnética , Masculino , Estructura Molecular , Piperidinas/química , Pirilamina/química
20.
Pharmaceuticals (Basel) ; 16(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37242552

RESUMEN

Based on their proven anti-inflammatory and antioxidant effects, recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental disorders such as autism spectrum disorder (ASD). Therefore, the aim of this study is to assess the effects of subchronic systemic treatment with intraperitoneal (i.p.) canagliflozin (20, 50, and 100 mg/kg) compared to aripiprazole (ARP) (3 mg/g, i.p.) in a valproic acid (VPA)-induced rat model of autism. The behavioral characteristics of ASD, oxidative stress, and acetylcholinesterase (AChE) activity in rats with ASD-like behaviors, which were induced by prenatal exposure to VPA, were evaluated. The behavioral assessment methods used for this study were the open field test (OFT), the marble-burying test (MBT), and the nestlet-shredding test (NST) to examine their exploratory, anxiety, and compulsiveness-like actions, while the biochemical assessment used for this study was an ELISA colorimetric assay to measure ASD biomarker activity in the hippocampus, prefrontal cortex, and cerebellum. Rats that were pretreated with 100 mg/kg of canagliflozin displayed a significantly lower percentage of shredding (1.12 ± 0.6%, p < 0.01) compared to the ARP group (3.52 ± 1.6%). Pretreatment with (20 mg/kg, 50 mg/kg, and 100 mg/kg) canagliflozin reversed anxiety levels and hyperactivity and reduced hyper-locomotor activity significantly (161 ± 34.9 s, p < 0.05; 154 ± 44.7 s, p < 0.05; 147 ± 33.6 s, p < 0.05) when compared with the VPA group (303 ± 140 s). Moreover, canagliflozin and ARP mitigated oxidative stress status by restoring levels of glutathione (GSH) and catalase (CAT) and increasing the levels of malondialdehyde (MDA) in all tested brain regions. The observed results propose repurposing of canagliflozin in the therapeutic management of ASD. However, further investigations are still required to verify the clinical relevance of canagliflozin in ASD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA