Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Cancer ; 140(2): 449-459, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27699769

RESUMEN

The PI3K-AKT-mTOR signaling cascade is activated in the majority of human cancers, and its activation also plays a key role in resistance to chemo and targeted therapeutics. In particular, in both breast and prostate cancer, increased AKT pathway activity is associated with cancer progression, treatment resistance and poor disease outcome. Here, we evaluated the activity of a novel allosteric AKT1/2 inhibitor, BAY 1125976, in biochemical, cellular mechanistic, functional and in vivo efficacy studies in a variety of tumor models. In in vitro kinase activity assays, BAY 1125976 potently and selectively inhibited the activity of full-length AKT1 and AKT2 by binding into an allosteric binding pocket formed by kinase and PH domain. In accordance with this proposed allosteric binding mode, BAY 1125976 bound to inactive AKT1 and inhibited T308 phosphorylation by PDK1, while the activity of truncated AKT proteins lacking the pleckstrin homology domain was not inhibited. In vitro, BAY 1125976 inhibited cell proliferation in a broad panel of human cancer cell lines. Particularly high activity was observed in breast and prostate cancer cell lines expressing estrogen or androgen receptors. Furthermore, BAY 1125976 exhibited strong in vivo efficacy in both cell line and patient-derived xenograft models such as the KPL4 breast cancer model (PIK3CAH1074R mutant), the MCF7 and HBCx-2 breast cancer models and the AKTE17K mutant driven prostate cancer (LAPC-4) and anal cancer (AXF 984) models. These findings indicate that BAY 1125976 is a potent and highly selective allosteric AKT1/2 inhibitor that targets tumors displaying PI3K/AKT/mTOR pathway activation, providing opportunities for the clinical development of new, effective treatments.


Asunto(s)
Nitrilos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sulfonas/farmacología , Animales , Células CACO-2 , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Células HeLa , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Desnudos , Ratones SCID , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
2.
Front Oncol ; 13: 1280977, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144523

RESUMEN

Background: Identification of cancer metastasis-relevant molecular networks is desired to provide the basis for understanding and developing intervention strategies. Here we address the role of GIPC1 in the process of MACC1-driven metastasis. MACC1 is a prognostic indicator for patient metastasis formation and metastasis-free survival. MACC1 controls gene transcription, promotes motility, invasion and proliferation of colon cancer cells in vitro, and causes tumor growth and metastasis in mice. Methods: By using yeast-two-hybrid assay, mass spectrometry, co-immunoprecipitation and peptide array we analyzed GIPC1 protein binding partners, by using the MACC1 gene promoter and chromatin immunoprecipitation and electrophoretic mobility shift assay we probed for GIPC1 as transcription factor. We employed GIPC1/MACC1-manipulated cell lines for in vitro and in vivo analyses, and we probed the GIPC1/MACC1 impact using human primary colorectal cancer (CRC) tissue. Results: We identified MACC1 and its paralogue SH3BP4 as protein binding partners of the protein GIPC1, and we also demonstrated the binding of GIPC1 as transcription factor to the MACC1 promoter (TSS to -60 bp). GIPC1 knockdown reduced endogenous, but not CMV promoter-driven MACC1 expression, and diminished MACC1-induced cell migration and invasion. GIPC1 suppression reduced tumor growth and metastasis in mice intrasplenically transplanted with MACC1-overexpressing CRC cells. In human primary CRC specimens, GIPC1 correlates with MACC1 expression and is of prognostic value for metastasis formation and metastasis-free survival. Combination of MACC1 and GIPC1 expression improved patient survival prognosis, whereas SH3BP4 expression did not show any prognostic value. Conclusions: We identified an important, dual function of GIPC1 - as protein interaction partner and as transcription factor of MACC1 - for tumor progression and cancer metastasis.

3.
ChemMedChem ; 15(10): 827-832, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32237114

RESUMEN

Due to its frequent mutations in multiple lethal cancers, KRAS is one of the most-studied anticancer targets nowadays. Since the discovery of the druggable allosteric binding site containing a G12C mutation, KRASG12C has been the focus of attention in oncology research. We report here a computationally driven approach aimed at identifying novel and selective KRASG12C covalent inhibitors. The workflow involved initial enumeration of virtual molecules tailored for the KRAS allosteric binding site. Tools such as pharmacophore modeling, docking, and free-energy perturbations were deployed to prioritize the compounds with the best profiles. The synthesized naphthyridinone scaffold showed the ability to react with G12C and inhibit KRASG12C . Analogues were prepared to establish structure-activity relationships, while molecular dynamics simulations and crystallization of the inhibitor-KRASG12C complex highlighted an unprecedented binding mode.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Relación Estructura-Actividad
4.
J Med Chem ; 62(2): 928-940, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30563338

RESUMEN

The availability of a chemical probe to study the role of a specific domain of a protein in a concentration- and time-dependent manner is of high value. Herein, we report the identification of a highly potent and selective ERK5 inhibitor BAY-885 by high-throughput screening and subsequent structure-based optimization. ERK5 is a key integrator of cellular signal transduction, and it has been shown to play a role in various cellular processes such as proliferation, differentiation, apoptosis, and cell survival. We could demonstrate that inhibition of ERK5 kinase and transcriptional activity with a small molecule did not translate into antiproliferative activity in different relevant cell models, which is in contrast to the results obtained by RNAi technology.


Asunto(s)
Proteína Quinasa 7 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Piridinas/química , Pirimidinas/química , Apoptosis/efectos de los fármacos , Sitios de Unión , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Semivida , Humanos , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Piridinas/metabolismo , Piridinas/farmacología , Pirimidinas/metabolismo , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Transcripción Genética/efectos de los fármacos
5.
Oncotarget ; 8(30): 48660-48670, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27750213

RESUMEN

Acetyl-CoA carboxylase (ACC) is the rate-limiting enzyme in de novo fatty acid synthesis, and its ACC1 isoform is overexpressed in pancreatic and various other cancers. The activity of many oncogenic signaling molecules, including WNT and Hedgehog (HH), is post-translationally modified by lipidation. Here, we report that inhibition of ACC by a small molecule inhibitor, BAY ACC002, blocked WNT3A lipidation, secretion, and signaling. In pancreatic cancer cells, where WNT and HH are key oncogenic drivers, ACC inhibition simultaneously suppressed WNT and HH signaling, and led to anti-proliferative effects. Treatment with ACC inhibitors blocked tumor growth and converted the poorly differentiated histological phenotype to epithelial phenotype in multiple cell line-based and patient-derived pancreatic cancer xenograft models. Together, our data highlight the potential utility of ACC inhibitors for pancreatic cancer treatment, and provide novel insight into the link between upregulated de novo fatty acid synthesis in cancer cells, protein lipidation, and oncogenic signaling.


Asunto(s)
Acetil-CoA Carboxilasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Proteínas Hedgehog/metabolismo , Neoplasias Pancreáticas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Wnt/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Femenino , Humanos , Ratones , Neoplasias Pancreáticas/patología , Proteína Wnt3A/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cancer Lett ; 390: 21-29, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28043914

RESUMEN

The initiation of mRNA translation has received increasing attention as an attractive target for cancer treatment in the recent years. The oncogenic eukaryotic translation initiation factor 4E (eIF4E) is the major substrate of MAP kinase-interacting kinase 1 (MNK1), and it is located at the junction of the cancer-associated PI3K and MAPK pathways. The fact that MNK1 is linked to cell transformation and tumorigenesis renders the kinase a promising target for cancer therapy. We identified a novel small molecule MNK1 inhibitor, BAY 1143269, by high-throughput screening and lead optimization. In kinase assays, BAY 1143269 showed potent and selective inhibition of MNK1. By targeting MNK1 activity, BAY 1143269 strongly regulated downstream factors involved in cell cycle regulation, apoptosis, immune response and epithelial-mesenchymal transition in vitro or in vivo. In addition, BAY 1143269 demonstrated strong efficacy in monotherapy in cell line and patient-derived non-small cell lung cancer xenograft models as well as delayed tumor regrowth in combination treatment with standard of care chemotherapeutics. In summary, the inhibition of MNK1 activity with a highly potent and selective inhibitor BAY 1143269 may provide an innovative approach for anti-cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Imidazoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Oncogenes/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Piridazinas/farmacología , Animales , Antineoplásicos/química , Western Blotting , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Imidazoles/química , Concentración 50 Inhibidora , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Piridazinas/química
7.
Sci Rep ; 6: 33943, 2016 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-27666871

RESUMEN

Epilepsy is one of the most common neurological disorders characterized by recurrent seizures due to neuronal hyperexcitability. Here we compared miRNA expression patterns in mesial temporal lobe epilepsy with and without hippocampal sclerosis (mTLE + HS and mTLE -HS) to investigate the regulatory mechanisms differentiating both patient groups. Whole genome miRNA sequencing in surgically resected hippocampi did not reveal obvious differences in expression profiles between the two groups of patients. However, one microRNA (miR-184) was significantly dysregulated, which was confirmed by qPCR. We observed that overexpression of miR-184 inhibited cytokine release after LPS stimulation in primary microglial cells, while it did not affect the viability of murine primary neurons and primary astrocytes. Pathway analysis revealed that miR-184 is potentially involved in the regulation of inflammatory signal transduction and apoptosis. Dysregulation of some the potential miR-184 target genes was confirmed by qPCR and 3'UTR luciferase reporter assay. The reduced expression of miR-184 observed in patients with mTLE + HS together with its anti-inflammatory effects indicate that miR-184 might be involved in the modulation of inflammatory processes associated with hippocampal sclerosis which warrants further studies elucidating the role of miR-184 in the pathophysiology of mTLE.

8.
Nat Commun ; 7: 11420, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27117818

RESUMEN

Brown adipose tissue (BAT) dissipates energy and its activity correlates with leanness in human adults. (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography coupled with computer tomography (PET/CT) is still the standard for measuring BAT activity, but exposes subjects to ionizing radiation. To study BAT function in large human cohorts, novel diagnostic tools are needed. Here we show that brown adipocytes release exosomes and that BAT activation increases exosome release. Profiling miRNAs in exosomes released from brown adipocytes, and in exosomes isolated from mouse serum, we show that levels of miRNAs change after BAT activation in vitro and in vivo. One of these exosomal miRNAs, miR-92a, is also present in human serum exosomes. Importantly, serum concentrations of exosomal miR-92a inversely correlate with human BAT activity measured by (18)F-FDG PET/CT in two unique and independent cohorts comprising 41 healthy individuals. Thus, exosomal miR-92a represents a potential serum biomarker for BAT activity in mice and humans.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Exosomas/metabolismo , MicroARNs/sangre , Adulto , Animales , Estudios de Cohortes , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Adulto Joven
9.
Mol Metab ; 4(8): 576-83, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26266090

RESUMEN

OBJECTIVE: Obesity is an enormous burden for patients and health systems world-wide. Brown adipose tissue dissipates energy in response to cold and has been shown to be metabolically active in human adults. The type I transforming growth factor ß (TGFß) receptor Activin receptor-like kinase 7 (Alk7) is highly expressed in adipose tissues and is down-regulated in obese patients. Here, we studied the function of Alk7 in brown adipocytes. METHODS: Using pharmacological and genetic tools, Alk7 signaling pathway and its effects were studied in murine brown adipocytes. Brown adipocyte differentiation and activation was analyzed. RESULTS: Alk7 is highly upregulated during differentiation of brown adipocytes. Interestingly, Alk7 expression is increased by cGMP/protein kinase G (PKG) signaling, which enhances brown adipocyte differentiation. Activin AB effectively activates Alk7 and SMAD3 signaling. Activation of Alk7 in brown preadipocytes suppresses the master adipogenic transcription factor PPARγ and differentiation. Stimulation of Alk7 during late differentiation of brown adipocytes reduces lipid content and adipogenic marker expression but enhances UCP1 expression. CONCLUSIONS: We found a so far unknown crosstalk between cGMP and Alk7 signaling pathways. Tight regulation of Alk7 is required for efficient differentiation of brown adipocytes. Alk7 has differential effects on adipogenic differentiation and the development of the thermogenic program in brown adipocytes.

10.
J Mol Neurosci ; 55(2): 466-79, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25078263

RESUMEN

Epilepsy affects around 50 million people worldwide, and in about 65% of patients, the etiology of disease is unknown. MicroRNAs are small non-coding RNAs that have been suggested to play a role in the pathophysiology of epilepsy. Here, we compared microRNA expression patterns in the hippocampus using two chronic models of epilepsy characterised by recurrent spontaneous seizures (pilocarpine and self-sustained status epilepticus (SSSE)) and an acute 6-Hz seizure model. The vast majority of microRNAs deregulated in the acute model exhibited increased expression with 146 microRNAs up-regulated within 6 h after a single seizure. In contrast, in the chronic models, the number of up-regulated microRNAs was similar to the number of down-regulated microRNAs. Three microRNAs-miR-142-5p, miR-331-3p and miR-30a-5p-were commonly deregulated in all three models. However, there is a clear overlap of differentially expressed microRNAs within the chronic models with 36 and 15 microRNAs co-regulated at 24 h and at 28 days following status epilepticus, respectively. Pathway analysis revealed that the altered microRNAs are associated with inflammation, innate immunity and cell cycle regulation. Taken together, the identified microRNAs and the pathways they modulate might represent candidates for novel molecular approaches for the treatment of patients with epilepsy.


Asunto(s)
MicroARNs/genética , Convulsiones/genética , Estado Epiléptico/genética , Animales , Genes cdc , Hipocampo/metabolismo , Inmunidad Innata/genética , Inflamación/genética , Masculino , Ratones , MicroARNs/metabolismo , Convulsiones/metabolismo , Estado Epiléptico/metabolismo
11.
Nat Commun ; 4: 1769, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23612310

RESUMEN

Brown adipocytes are a primary site of energy expenditure and reside not only in classical brown adipose tissue but can also be found in white adipose tissue. Here we show that microRNA 155 is enriched in brown adipose tissue and is highly expressed in proliferating brown preadipocytes but declines after induction of differentiation. Interestingly, microRNA 155 and its target, the adipogenic transcription factor CCAAT/enhancer-binding protein ß, form a bistable feedback loop integrating hormonal signals that regulate proliferation or differentiation. Inhibition of microRNA 155 enhances brown adipocyte differentiation and induces a brown adipocyte-like phenotype ('browning') in white adipocytes. Consequently, microRNA 155-deficient mice exhibit increased brown adipose tissue function and 'browning' of white fat tissue. In contrast, transgenic overexpression of microRNA 155 in mice causes a reduction of brown adipose tissue mass and impairment of brown adipose tissue function. These data demonstrate that the bistable loop involving microRNA 155 and CCAAT/enhancer-binding protein ß regulates brown lineage commitment, thereby, controlling the development of brown and beige fat cells.


Asunto(s)
Adipocitos Marrones/citología , Adipocitos Blancos/citología , Diferenciación Celular/genética , Retroalimentación Fisiológica , MicroARNs/metabolismo , Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Adipogénesis/genética , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Modelos Biológicos , Transducción de Señal/genética , Factor de Crecimiento Transformador beta1/metabolismo
12.
Methods Mol Biol ; 1020: 175-92, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23709033

RESUMEN

Obesity has reached pandemic dimensions with more than half a billion adults affected worldwide. Detailed knowledge of adipose biology is required for the development of urgently needed novel therapies directed against obesity. Two types of adipose tissue can be distinguished in humans and mice: white adipose tissue (WAT), which primarily stores energy in the form of lipids and has endocrine functions. In contrast, brown adipose tissue (BAT) dissipates energy in the form of heat (thermogenesis). Recent studies in humans demonstrated that BAT not only plays a role for non-shivering thermogenesis in newborns but is also metabolically active in adults. Here, we describe protocols for the generation of cellular models for the analysis of adipogenesis as well as function of brown and white fat. These models are based on the in vitro differentiation of mesenchymal stem cells (MSCs) isolated from adipose tissues. Using specific differentiation protocols, the role of cGMP signaling in both brown as well as white adipocytes can be studied.


Asunto(s)
Adipocitos/metabolismo , GMP Cíclico/metabolismo , Transducción de Señal , Adipocitos/citología , Adipocitos Marrones/citología , Adipocitos Marrones/metabolismo , Adipocitos Blancos/citología , Adipocitos Blancos/metabolismo , Adipogénesis/fisiología , Animales , Diferenciación Celular , Separación Celular/métodos , GMP Cíclico/química , Activación Enzimática , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo
13.
Sci Signal ; 5(239): ra62, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22932701

RESUMEN

The ubiquitous second messenger cyclic guanosine monophosphate (cGMP) plays an important role in metabolism and promotes brown adipocyte differentiation. We showed that ablation of the gene encoding vasodilator-stimulated phosphoprotein (VASP), a major downstream component of the cGMP signaling cascade, increased cellular cGMP content in brown and white adipocytes and mouse embryonic fibroblasts. VASP-deficient cells showed increased activation of Rac1, which in turn increased the abundance of the cGMP-producing enzyme soluble guanylyl cyclase (sGC), the main receptor for nitric oxide. Consequently, loss of VASP caused increased cGMP concentrations and enhanced brown adipocyte differentiation. Consistent with the in vitro data, we found increased energy expenditure in VASP-deficient mice and exposure to cold triggered enhanced lipolysis and cellular respiration in VASP-deficient brown fat cells. In addition, VASP-deficient mice exhibited increased development of brown-like adipocytes in white fat. Our data revealed that a VASP to Rac to sGC negative feedback loop limited cGMP production, thereby regulating adipogenesis and energy homeostasis.


Asunto(s)
Adipocitos Marrones/metabolismo , Moléculas de Adhesión Celular/metabolismo , GMP Cíclico/biosíntesis , Guanilato Ciclasa/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/fisiología , Proteína de Unión al GTP rac1/metabolismo , Aclimatación/fisiología , Adipocitos Marrones/fisiología , Adipogénesis/fisiología , Análisis de Varianza , Animales , Compuestos Azo , Western Blotting , Calorimetría Indirecta , Moléculas de Adhesión Celular/genética , Diferenciación Celular/fisiología , Respiración de la Célula/fisiología , Frío , Metabolismo Energético/fisiología , Lipólisis/fisiología , Luciferasas , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Fosfoproteínas/genética , Guanilil Ciclasa Soluble , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA