Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 105: 129759, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636717

RESUMEN

Histone H2A mono-ubiquitination plays important roles in epigenetic gene expression and is also involved in tumorigenesis. Small molecules controlling H2A ubiquitination are of interest as potential chemical tools and anticancer drugs. To identify novel small molecule inhibitors of H2A ubiquitination, we synthesized and evaluated several compounds designed based on PRT4165 (1), which is a reported histone ubiquitin ligase RING1A inhibitor. We found that compound 11b strongly inhibited the viability and reduced histone H2A mono-ubiquitination in human osteosarcoma U2OS cells. Therefore, compound 11b is a promising lead compound for the development of H2A histone ubiquitination-inhibiting small molecules.


Asunto(s)
Histonas , Bibliotecas de Moléculas Pequeñas , Ubiquitinación , Humanos , Histonas/metabolismo , Ubiquitinación/efectos de los fármacos , Línea Celular Tumoral , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Estructura Molecular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga
2.
J Pharmacol Sci ; 154(4): 264-273, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485344

RESUMEN

The monosynaptic connection from the lateral parabrachial nucleus (LPB) to the central amygdala (CeA) serves as a fundamental pathway for transmitting nociceptive signals to the brain. The LPB receives nociceptive information from the dorsal horn and spinal trigeminal nucleus and sends it to the "nociceptive" CeA, which modulates pain-associated emotions and nociceptive sensitivity. To elucidate the role of densely expressed mu-opioid receptors (MORs) within this pathway, we investigated the effects of exogenously applied opioids on LPB-CeA synaptic transmission, employing optogenetics in mice expressing channelrhodopsin-2 in LPB neurons with calcitonin gene-related peptide (CGRP). A MOR agonist ([D-Ala2,N-Me-Phe4,Glycinol5]-enkephalin, DAMGO) significantly reduced the amplitude of light-evoked excitatory postsynaptic currents (leEPSCs), in a manner negatively correlated with an increase in the paired-pulse ratio. An antagonist of MORs significantly attenuated these effects. Notably, this antagonist significantly increased leEPSC amplitude when applied alone, an effect further amplified in mice subjected to lipopolysaccharide injection 2 h before brain isolation, yet not observed at the 24-h mark. We conclude that opioids could shut off the ascending nociceptive signal at the LPB-CeA synapse through presynaptic mechanisms. Moreover, this gating process might be modulated by endogenous opioids, and the innate immune system influences this modulation.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Núcleo Amigdalino Central , Ratones , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Núcleo Amigdalino Central/metabolismo , Transmisión Sináptica , Neuronas , Sinapsis/fisiología , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacología
3.
Chem Pharm Bull (Tokyo) ; 72(7): 638-647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945940

RESUMEN

Lysine demethylase 5 (KDM5) proteins are involved in various neurological disorders, including Alzheimer's disease, and KDM5 inhibition is expected to be a therapeutic strategy for these diseases. However, the pharmacological effects of conventional KDM5 inhibitors are insufficient, as they only target the catalytic functionality of KDM5. To identify compounds that exhibit more potent pharmacological activity, we focused on proteolysis targeting chimeras (PROTACs), which degrade target proteins and thus inhibit their entire functionality. We designed and synthesized novel KDM5 PROTAC candidates based on previously identified KDM5 inhibitors. The results of cellular assays revealed that two compounds, 20b and 23b, exhibited significant neurite outgrowth-promoting activity through the degradation of KDM5A in neuroblastoma neuro 2a cells. These results suggest that KDM5 PROTACs are promising drug candidates for the treatment of neurological disorders.


Asunto(s)
Proyección Neuronal , Proteolisis , Proteolisis/efectos de los fármacos , Humanos , Proyección Neuronal/efectos de los fármacos , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Línea Celular Tumoral , Estructura Molecular , Proteína 2 de Unión a Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma/antagonistas & inhibidores , Animales , Ratones , Relación Dosis-Respuesta a Droga , Quimera Dirigida a la Proteólisis
4.
Neuroendocrinology ; 113(1): 48-63, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35785764

RESUMEN

INTRODUCTION: Despite its recent reputation as prosocial neurohormone, the most important physiological role of oxytocin (OT) is stimulating uterine contractions. Though it is well known that plasma OT concentrations change drastically during delivery, it remains unexplored whether and how OT receptors in the maternal brain are activated. We examined whether the responses of cells in the central amygdala (CeA), an OT receptor-rich limbic site involved in pain and fear memory regulation, to exogenously applied OT analogue, Thr-Gly-OT (TGOT), vary depending on delivery. METHODS: Intracellular Ca2+ dynamics of the CeA cells were visualized in brain slices from female rats at virgin (VG), during pregnancy term (PT) days 16-21, within 24 h after delivery (G0), and within 1-3 days after delivery (G3). The Ca2+ responses to 1 µM TGOT, 20 mM KCl (high K), and 300 µM ADP were compared. RESULTS: We found that fraction of cells responding to TGOT, high K, and ADP differed significantly between the four delivery-associated terms. In particular, the fraction of cells responding to TGOT (TGOT responders) significantly increased from VG and PT at G0 and G3. Furthermore, the significant positive correlation between TGOT and high K response in TGOT and high K responders was reduced at G0, while that between TGOT and ADP responses in TGOT and ADP responders was increased at G0. CONCLUSION: These results indicate that the responses of CeA cells to an OT receptor agonist markedly change around delivery, which might play a role in controlling the labor-related pain and post-delivery emotional complications.


Asunto(s)
Núcleo Amigdalino Central , Oxitocina , Periodo Periparto , Receptores de Oxitocina , Animales , Femenino , Embarazo/metabolismo , Embarazo/psicología , Ratas , Calcio/metabolismo , Núcleo Amigdalino Central/metabolismo , Miedo/fisiología , Miedo/psicología , Oxitocina/análogos & derivados , Oxitocina/farmacología , Dolor/metabolismo , Dolor/psicología , Periodo Periparto/metabolismo , Periodo Periparto/psicología , Receptores de Oxitocina/metabolismo
5.
Inorg Chem ; 60(3): 1738-1745, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33444007

RESUMEN

A tetra-armed cyclen (L) with two substituted 3,5-difluorobenzyl and two substituted pyridine-4-yl methyl groups at the 1,4- and 7,10-positions of the cyclen ring as side arms was synthesized. When L was reacted with 1 equiv of the silver(I), dimetallo[3.3]paracyclophane-like 2:2 cyclic dimer, [Ag2(L)2](PF6)2, was obtained. The reaction of L with 2 equiv of silver(I) gave a 3:6 cyclic trimer, [Ag6(L)3(CH3CN)3](OTf)6·3CH3CN. Furthermore, reversible complexation between the 2:2 cyclic dimer and 3:6 cyclic trimer was confirmed by 1H NMR and the CSI mass in the addition of silver(I) or the [2.2.2]cryptand.

6.
J Neurosci ; 39(3): 485-502, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30478035

RESUMEN

It is well known that the posterior parietal cortex (PPC) and frontal motor cortices in primates preferentially control voluntary movements of contralateral limbs. The PPC of rats has been defined based on patterns of thalamic and cortical connectivity. The anatomical characteristics of this area suggest that it may be homologous to the PPC of primates. However, its functional roles in voluntary forelimb movements have not been well understood, particularly in the lateralization of motor limb representation; that is, the limb-specific activity representations for right and left forelimb movements. We examined functional spike activity of the PPC and two motor cortices, the primary motor cortex (M1) and the secondary motor cortex (M2), when head-fixed male rats performed right or left unilateral movements. Unlike primates, PPC neurons in rodents were found to preferentially represent ipsilateral forelimb movements, in contrast to the contralateral preference of M1 and M2 neurons. Consistent with these observations, optogenetic activation of PPC and motor cortices, respectively, evoked ipsilaterally and contralaterally biased forelimb movements. Finally, we examined the effects of optogenetic manipulation on task performance. PPC or M1 inhibition by optogenetic GABA release shifted the behavioral limb preference contralaterally or ipsilaterally, respectively. In addition, weak optogenetic PPC activation, which was insufficient to evoke motor responses by itself, shifted the preference ipsilaterally; although similar M1 activation showed no effects on task performance. These paradoxical observations suggest that the PPC plays evolutionarily different roles in forelimb control between primates and rodents.SIGNIFICANCE STATEMENT In rodents, the primary and secondary motor cortices (M1 and M2, respectively) are involved in voluntary movements with contralateral preference. However, it remains unclear whether and how the posterior parietal cortex (PPC) participates in controlling multiple limb movements. We recorded functional activity from these areas using a behavioral task to monitor movements of the right and left forelimbs separately. PPC neurons preferentially represented ipsilateral forelimb movements and optogenetic PPC activation evoked ipsilaterally biased forelimb movements. Optogenetic PPC inhibition via GABA release shifted the behavioral limb preference contralaterally during task performance, whereas weak optogenetic PPC activation, which was insufficient to evoke motor responses by itself, shifted the preference ipsilaterally. Our findings suggest rodent PPC contributes to ipsilaterally biased motor response and/or planning.


Asunto(s)
Miembro Anterior/fisiología , Lateralidad Funcional/fisiología , Movimiento/fisiología , Lóbulo Parietal/fisiología , Animales , Channelrhodopsins/genética , Channelrhodopsins/fisiología , Condicionamiento Operante , Electromiografía , Masculino , Corteza Motora/fisiología , Optogenética , Técnicas de Placa-Clamp , Desempeño Psicomotor/fisiología , Ratas , Ratas Transgénicas , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/fisiología
7.
Bioorg Chem ; 94: 103403, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31711765

RESUMEN

Studies have suggested that sirtuin inhibition may have beneficial effects on several age-related diseases such as neurodegenerative disorders and cancer. Garcinia mangostana is a well-known tropical plant found mostly in South East Asia with several positive health effects. Some of its phytochemicals such as α-mangostin was found to be able to modulate sirtuin activity in mice and was implicated with inflammation, diabetes and obesity. However, comprehensive studies on sirtuin activity by the prenylated xanthones extracted from Garcinia mangostana have yet to be reported. The present study led to the discovery and identification of γ-mangostin as a potent and selective SIRT2 inhibitor. It was demonstrated that γ-mangostin was able to increase the α-tubulin acetylation in MDA-MD-231 and MCF-7 breast cancer cells. It was also found to possess potent antiproliferative activity against both cell lines. In addition, it was able to induce neurite outgrowth in the N2a cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Garcinia mangostana/química , Sirtuina 2/antagonistas & inhibidores , Xantonas/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Sirtuina 2/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas , Xantonas/química , Xantonas/aislamiento & purificación
8.
Mol Pain ; 14: 1744806918807102, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30270724

RESUMEN

Nociceptive signals originating in the periphery are conveyed to the brain through specific afferent and ascending pathways. The spino-(trigemino-)parabrachio-amygdaloid pathway is one of the principal pathways mediating signals from nociception-specific ascending neurons to the central amygdala, a limbic structure involved in aversive signal-associated emotional responses, including the emotional aspects of pain. Recent studies suggest that the right and left central amygdala play distinct roles in the regulation of nociceptive responses. Using a latent formalin inflammatory pain model of the rat, we analyzed the right-left differences in synaptic potentiation at the synapses formed between the fibers from the lateral parabrachial nucleus and central amygdala neurons as well as those in the c-Fos expression in the lateral parabrachial nucleus, central amygdala, and the basolateral/lateral amygdala after formalin injection to either the right or left side of the rat upper lip. Although the single-sided formalin injection caused a significant bilateral increase in c-Fos-expressing neurons in the lateral parabrachial nucleus with slight projection-side dependence, the increase in the amplitude of postsynaptic excitatory currents and the number of c-Fos-expressing neurons in the central amygdala occurred predominantly on the right side regardless of the side of the inflammation. Although there was no significant correlation in the number of c-Fos-expressing neurons between the lateral parabrachial nucleus and central amygdala in the formalin-injected animals, these numbers were significantly correlated between the basolateral amygdala and central amygdala. It is thus concluded that the lateral parabrachial nucleus-central amygdala synaptic potentiation reported in various pain models is not a simple Hebbian plasticity in which raised inputs from the lateral parabrachial nucleus cause lateral parabrachial nucleus-central amygdala potentiation but rather an integrative and adaptive response involving specific mechanisms in the right central amygdala.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Nociceptores/metabolismo , Dolor/tratamiento farmacológico , Sinapsis/metabolismo , Vías Aferentes/fisiología , Animales , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Inflamación/tratamiento farmacológico , Masculino , Ratas Wistar , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
9.
Adv Exp Med Biol ; 1099: 157-166, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30306523

RESUMEN

In addition to the canonical spino-thalamo-cortical pathway, lines of recently accumulated anatomical and physiological evidence suggest that projections originating in nociception-specific neurons in lamina I of the dorsal horn or the spinal nucleus of the trigeminal nerve to the lateral parabrachial nucleus (LPB) and then to the central amygdala (CeA) play essential roles in the nociception-emotion link and its tightening in chronic pain. With recent advances in the artificial manipulation of central neuronal activity, such as those with optogenetics, it is now possible to address many unanswered questions regarding the molecular and cellular mechanisms underlying the plastic changes in this pathway and their role in the pain chronification process.


Asunto(s)
Núcleo Amigdalino Central/fisiopatología , Dolor Crónico/fisiopatología , Vías Nerviosas , Plasticidad Neuronal , Nocicepción , Amígdala del Cerebelo , Emociones , Humanos , Núcleos Parabraquiales , Nervio Trigémino
10.
Mol Pain ; 13: 1744806917709201, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28604219

RESUMEN

The capsular part of the central amygdala (CeC) is called the "nociceptive amygdala," as it receives nociceptive information from various pathways, including monosynaptic input from the lateral part of the parabrachial nucleus (LPB), a major target of ascending neurons in the spinal and medullary dorsal horn. LPB-CeC synaptic transmission is mediated by glutamate but the fibers from the LPB also contain calcitonin gene-related peptide (CGRP) and the CeC is rich in CGRP-binding sites. CGRP might be released in response to strong nociception and activate these CGRP receptors. Though it has been shown that CGRP affects the excitatory postsynaptic current (EPSC) amplitude at this synapse in a manner sensitive to NMDA receptor (NMDA-R) blockers, the effect of CGRP on postsynaptic NMDA-R-mediated current recorded in isolation has never been directly examined. Thus, we evaluated the effects of CGRP on NMDA-R-mediated EPSCs that were pharmacologically isolated in brain slices from naïve mice. CGRP significantly increased the amplitude of EPSCs mediated by NMDA-Rs in a manner dependent on protein kinase A activation, but not that mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, in concentration-dependent and antagonist-sensitive manners. This CGRP-induced potentiation of synaptic NMDA-R function would have a potent impact on the strengthening of the nociception-emotion link in persistent pain.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Núcleos Parabraquiales/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética , Receptores de N-Metil-D-Aspartato/genética , Transmisión Sináptica/genética
11.
Eur J Neurosci ; 46(6): 2149-2160, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28833700

RESUMEN

The role of the neuropeptide calcitonin gene-related peptide (CGRP) is well established in nociceptive behaviors. CGRP is highly expressed in the projection pathway from the parabrachial nucleus to the laterocapsular region of the central amygdala (CeC), which plays a critical role in relaying nociceptive information. The CeC is a key structure in pain behavior because it integrates and modulates nociceptive information along with other sensory signals. Previous studies have demonstrated that blockade of the amygdalar CGRP-signaling cascade attenuates nociceptive behaviors in pain models, while CGRP application facilitates amygdalar synaptic transmission and induces pain behaviors. Despite these lines of evidence, it remains unclear whether endogenous CGRP is involved in the development of nociceptive behaviors accompanied with amygdalar plasticity in a peripheral inflammation model in vivo. To directly address this, we utilized a previously generated CGRP knockout (KO) mouse to longitudinally study formalin-induced plasticity and nociceptive behavior. We found that synaptic potentiation in the right PB-CeC pathway that was observed in wild-type mice was drastically attenuated in the CGRP KO mice 6 h post-inflammation, when acute nociceptive behavior was no longer observed. Furthermore, the bilateral tactile allodynia 6 h post-inflammation was significantly decreased in the CGRP KO mice. In contrast, the acute nociceptive behavior immediately after the formalin injection was reduced only at 20-25 min post-injection in the CGRP KO mice. These results suggest that endogenous CGRP contributes to peripheral inflammation-induced synaptic plasticity in the amygdala, and this plasticity may underlie the exaggerated nociception-emotion linkage in pain chronification.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Plasticidad Neuronal , Nocicepción , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/fisiología , Transmisión Sináptica
12.
J Neurophysiol ; 115(6): 2721-39, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26888105

RESUMEN

A large majority of neurons in the superficial layer of the dorsal horn projects to the lateral parabrachial nucleus (LPB). LPB neurons then project to the capsular part of the central amygdala (CeA; CeC), a key structure underlying the nociception-emotion link. LPB-CeC synaptic transmission is enhanced in various pain models by using electrical stimulation of putative fibers of LPB origin in brain slices. However, this approach has limitations for examining direct monosynaptic connections devoid of directly stimulating fibers from other structures and local GABAergic neurons. To overcome these limitations, we infected the LPB of rats with an adeno-associated virus vector expressing channelrhodopsin-2 and prepared coronal and horizontal brain slices containing the amygdala. We found that blue light stimulation resulted in monosynaptic excitatory postsynaptic currents (EPSCs), with very small latency fluctuations, followed by a large polysynaptic inhibitory postsynaptic current in CeC neurons, regardless of the firing pattern type. Intraplantar formalin injection at 24 h before slice preparation significantly increased EPSC amplitude in late firing-type CeC neurons. These results indicate that direct monosynaptic glutamatergic inputs from the LPB not only excite CeC neurons but also regulate CeA network signaling through robust feed-forward inhibition, which is under plastic modulation in response to persistent inflammatory pain.


Asunto(s)
Núcleo Amigdalino Central/fisiopatología , Neuronas/fisiología , Dolor Nociceptivo/fisiopatología , Núcleos Parabraquiales/fisiopatología , Sinapsis/fisiología , Potenciales de Acción/fisiología , Animales , Núcleo Amigdalino Central/patología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Plasticidad Neuronal/fisiología , Neuronas/patología , Dolor Nociceptivo/patología , Núcleos Parabraquiales/patología , Ratas Wistar , Sinapsis/patología , Técnicas de Cultivo de Tejidos
13.
Epilepsia ; 57(3): 495-505, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26792416

RESUMEN

OBJECTIVE: Patients with epileptic spasms are at high risk for learning and memory impairment later in life. We examined whether synaptic plasticity is affected in the adult hippocampus, a structure responsible for learning and memory, using an animal model of epileptic spasms of unknown cause. METHODS: We produced a rat model of N-methyl-d-aspartate (NMDA)-induced spasms combined with prenatal betamethasone administration. In 6- to 11-week-old rats, we evaluated the long-term potentiation (LTP) and general properties of synaptic transmission in pyramidal neurons in the CA1 area of the hippocampus in brain slices. RESULTS: The magnitude of LTP by theta burst stimulation was significantly larger in adult rats with a history of infantile NMDA injections than in control rats and rats that received additional adrenocorticotropic hormone (ACTH) treatment. The frequency of spontaneous excitatory transmission, but not inhibitory transmission, was smaller in adult rats with a history of infantile NMDA injections. SIGNIFICANCE: This study is the first to provide a basis for the alteration of synaptic plasticity and transmission in a model of epileptic spasms of unknown cause. Postnatal NMDA treatment causing epileptic spasms-like aberrant episodes in the early stage of life in rats has a latent influence on various forms of synaptic plasticity in the hippocampus. Our results provide a novel insight into cognitive impairment that appears later in life in patients with a history of epileptic spasms.


Asunto(s)
Betametasona/toxicidad , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Epilepsia/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , N-Metilaspartato/toxicidad , Factores de Edad , Animales , Animales Recién Nacidos , Betametasona/administración & dosificación , Femenino , Potenciación a Largo Plazo/fisiología , Masculino , N-Metilaspartato/administración & dosificación , Técnicas de Cultivo de Órganos , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley
14.
J Neurosci ; 34(7): 2605-17, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24523550

RESUMEN

ATP production through oxidative phosphorylation in the mitochondria is the most efficient way to provide energy to various energy-consuming activities of the neurons. These processes require a large amount of ATP molecules to be maintained. Of these, synaptic transmission is most energy consuming. Here we report that lactate transported through monocarboxylate transporters (MCTs) at excitatory synapses constitutively supports synaptic transmission, even under conditions in which a sufficient supply of glucose and intracellular ATP are present. We analyzed the effects of MCT inhibition on neuronal activities using whole-cell recordings in brain slices of rats in the nucleus of the solitary tract. MCT inhibitors (α-cyano-4-hydroxycinnamic acid (4-CIN), phloretin, and d-lactate) significantly decreased the amplitude of EPSCs without reducing release probability. Although 4-CIN significantly reduced currents mediated by heterologously expressed AMPA-Rs in oocytes (a novel finding in this study), the IC50 of the inhibitory effect on EPSC in brain slices was ∼3.8 times smaller than that on AMPA-R currents in oocytes. Removal of intracellular ATP significantly potentiated the inhibition of EPSC with 4-CIN in a manner that was counteracted by intracellular lactate addition. In addition, extracellular lactate rescued aglycemic suppression of EPSC, in a manner that was prevented by 4-CIN. Inhibition of MCTs also reduced NMDA-R-mediated EPSCs and, to a lesser extent, the IPSC. The reduction in EPSC amplitude by γ-d-glutamylglycine was enhanced by 4-CIN, suggesting also a decreased quantal content. We conclude that "on-site" astrocyte-neuron lactate transport to presynaptic and postsynaptic elements is necessary for the integrity of excitatory synaptic transmission.


Asunto(s)
Metabolismo Energético/fisiología , Transportadores de Ácidos Monocarboxílicos/metabolismo , Núcleo Solitario/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Xenopus
15.
Mol Brain ; 17(1): 27, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783364

RESUMEN

Itch is a protective/defensive function with divalent motivational drives. Itch itself elicits an unpleasant experience, which triggers the urge to scratch, relieving the itchiness. Still, it can also result in dissatisfaction when the scratch is too intense and painful or unsatisfactory due to insufficient scratch effect. Therefore, it is likely that the balance between the unpleasantness/pleasure and satisfaction/unsatisfaction associated with itch sensation and scratching behavior is determined by complex brain mechanisms. The physiological/pathological mechanisms underlying this balance remain largely elusive. To address this issue, we targeted the "reward center" of the brain, the nucleus accumbens (NAc), in which itch-responsive neurons have been found in rodents. We examined how neurons in the NAc are activated or suppressed during histamine-induced scratching behaviors in mice. The mice received an intradermal injection of histamine or saline at the neck, and the scratching number was analyzed by recording the movement of the bilateral hind limbs for about 45 min after injection. To experimentally manipulate the scratch efficacy in these histamine models, we compared histamine's behavioral and neuronal effects between mice with intact and clipped nails on the hind paws. As expected, the clipping of the hind limb nail increased the number of scratches after the histamine injection. In the brains of mice exhibiting scratching behaviors, we analyzed the expression of the c-fos gene (Fos) as a readout of an immediate activation of neurons during itch/scratch and dopamine receptors (Drd1 and Drd2) using multiplex single-molecule fluorescence in situ hybridization (RNAscope) in the NAc and surrounding structures. We performed a model-free analysis of gene expression in geometrically divided NAc subregions without assuming the conventional core-shell divisions. The results indicated that even within the NAc, multiple subregions responded differentially to various itch/scratch conditions. We also found different clusters with neurons showing similar or opposite changes in Fos expression and the correlation between scratch number and Fos expression in different itch/scratch conditions. These regional differences and clusters would provide a basis for the complex role of the NAc and surrounding structures in encoding the outcomes of scratching behavior and itchy sensations.


Asunto(s)
Histamina , Ratones Endogámicos C57BL , Núcleo Accumbens , Prurito , Animales , Prurito/fisiopatología , Prurito/patología , Masculino , Conducta Animal , Proteínas Proto-Oncogénicas c-fos/metabolismo , Neuronas/metabolismo , Ratones
16.
Mol Pain ; 9: 59, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24279796

RESUMEN

BACKGROUND: Painful diabetic neuropathy (PDN) is a serious complication of diabetes mellitus that affects a large number of patients in many countries. The molecular mechanisms underlying the exaggerated nociception in PDN have not been established. Recently, duloxetine (DLX), a serotonin and noradrenaline re-uptake inhibitor, has been recommended as one of the first-line treatments of PDN in the United States Food and Drug Administration, the European Medicines Agency and the Japanese Guideline for the Pharmacologic Management of Neuropathic pain. Because selective serotonin re-uptake inhibitors show limited analgesic effects in PDN, we examined whether the potent analgesic effect of DLX contributes toward improving the pathologically aberrant noradrenaline homeostasis in diabetic models. RESULTS: In streptozotocin (STZ) (50 mg/kg, i.v.)-induced diabetic rats that exhibited robust mechanical allodynia and thermal hyperalgesia, DLX (10 mg/kg, i.p.) significantly and markedly increased the nociceptive threshold. The analgesic effect of DLX was nullified by the prior administration of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) (50 mg/kg, i.p.), which drastically eliminated dopamine-beta-hydroxylase- and norepinephrine transporter-immunopositive fibers in the lumbar spinal dorsal horn and significantly reduced the noradrenaline content in the lumbar spinal cord. The treatment with DSP-4 alone markedly lowered the nociceptive threshold in vehicle-treated non-diabetic rats; however, this pro-nociceptive effect was occluded in STZ-treated diabetic rats. Furthermore, STZ-treated rats exhibited a higher amount of dopamine-beta-hydroxylase- and norepinephrine transporter-immunopositive fibers in the dorsal horn and noradrenaline content in the spinal cord compared to vehicle-treated rats. CONCLUSIONS: Impaired noradrenaline-mediated regulation of the spinal nociceptive network might underlie exaggerated nociception in PDN. DLX might exert its analgesic effect by selective enhancement of noradrenergic signals, thus counteracting this situation.


Asunto(s)
Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Norepinefrina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Tiofenos/uso terapéutico , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Clorhidrato de Duloxetina , Masculino , Ratas
17.
Artículo en Inglés | MEDLINE | ID: mdl-23947708

RESUMEN

The adsorption equilibrium of Pb(II) on Andosols was investigated and described quantitatively in order to develop a simple method for the rapid monitoring of heavy metals in soils. The effect of solution pH on adsorption isotherms was investigated experimentally and in simulations. At pH 7, the considerable desorption of Pb(II) due to the extensive dissolution of humic substances (HS) from soils into aqueous phases is known to be an obstacle to carrying out simulations. In batch experiments, the total organic carbon (TOC) of the aqueous phases was shown to be enhanced by the addition of pre-extracted HS to soil suspensions. By combining the ion-exchange and Freundlich models, the adsorption equilibriums of free Pb(2+) ions and Pb(2+)-HS were simulated and were shown to be in good agreement with the experimental results. By estimating the concentrations and adsorption amounts of Pb(2+) and Pb(2+)-HS from measured CPb and TOC, it is possible to accurately simulate the soil contamination status even in in the presence of dissolved HS in the water in the solid-liquid extraction samples.


Asunto(s)
Monitoreo del Ambiente/métodos , Restauración y Remediación Ambiental/métodos , Sustancias Húmicas , Plomo/química , Contaminantes del Suelo/química , Adsorción , Restauración y Remediación Ambiental/instrumentación , Sustancias Húmicas/análisis , Concentración de Iones de Hidrógeno , Modelos Químicos
18.
Neurobiol Pain ; 13: 100131, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215502

RESUMEN

Nociplastic pain, the most recently proposed mechanistic descriptor of chronic pain, is the pain resulting from an altered nociceptive system and network without clear evidence of nociceptor activation, injury or disease in the somatosensory system. As the pain-associated symptoms in many patients suffering from undiagnosed pain would result from the nociplastic mechanisms, it is an urgent issue to develop pharmaceutical therapies that would mitigate the aberrant nociception in nociplastic pain. We have recently reported that a single injection of formalin to the upper lip shows sustained sensitization lasting for more than 12 days at the bilateral hindpaws, where there is no injury or neuropathy in rats. Using the equivalent model in mice, we show that pregabalin (PGB), a drug used for treating neuropathic pain, significantly attenuates this formalin-induced widespread sensitization at the bilateral hindpaws, even on the 6 day after the initial single orofacial injection of formalin. On the 10th day after formalin injection, the hindlimb sensitization before PGB injection was no more significant in mice receiving daily PGB injections, unlike those receiving daily vehicle injections. This result suggests that PGB would act on the central pain mechanisms that undergo nociplastic changes triggered by initial inflammation and mitigate widespread sensitization resulting from the established changes.

19.
Life Sci ; 324: 121736, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37121542

RESUMEN

AIMS: This study aimed to determine whether pathological changes in the bone marrow cause Osteoarthritis (OA) pain based on magnetic resonance imaging (MRI), immunohistochemistry, and electrophysiology. MAIN METHODS: Adjuvant-induced arthritis (AIA) was achieved by injecting 150 µL of complete Freund's adjuvant into the right knee joints of male Sprague-Dawley rats. AIA rats were compared with saline-injected rats. KEY FINDINGS: AIA significantly induced mechanical hyperalgesia and spontaneous pain in the right hind paw 1-14 days after induction. Intratibial injection of 50 µL of 1 % lidocaine significantly suppressed AIA-induced mechanical hyperalgesia (p = 0.0001) and spontaneous pain (p = 0.0006) 3 days after induction. In T2-weighted MRI, AIA induced high-signal intensity within the proximal tibial metaphysis, and the mean T2 values in this area significantly increased on days 3 (p = 0.0043) and 14 (p = 0.0012) after induction. AIA induced intraosseous edema and significantly increased the number of intraosseous granulocytes on days 3 (p < 0.0001) and 14 (p < 0.0001) after induction. The electrophysiological study on days 3-7 after induction showed significantly increased spontaneous firing rates (p = 0.0166) and evoked responses to cutaneous stimuli (brush, p < 0.0001; pinching, p = 0.0359) in the right hind paw plantar surface and intratibial stimuli (p = 0.0002) in wide-dynamic-range neurons of the spinal dorsal horn. SIGNIFICANCE: Intraosseous changes caused by OA induce hypersensitivity in the sensory afferents innervating bone marrow may be involved in OA pain. Novel bone marrow-targeted therapies could be beneficial for treating OA pain.


Asunto(s)
Hiperalgesia , Osteoartritis , Ratas , Masculino , Animales , Hiperalgesia/etiología , Nociceptores , Médula Ósea/patología , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Dolor/etiología , Dolor/patología , Osteoartritis/patología , Inflamación/complicaciones
20.
Mol Pain ; 8: 51, 2012 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-22776418

RESUMEN

BACKGROUND: Neurons in the capsular part of the central nucleus of the amygdala (CeC), a region also called "nociceptive amygdala," receive nociceptive information from the dorsal horn via afferent pathways relayed from the lateral parabrachial nucleus (LPB). As the central amygdala is known to be involved in the acquisition and expression of emotion, this pathway is thought to play central roles in the generation of affective responses to nociceptive inputs. Excitatory synaptic transmission between afferents arising from the LPB and these CeC neurons is potentiated in arthritic, visceral, neuropathic, inflammatory and muscle pain models. In neuropathic pain models following spinal nerve ligation (SNL), in which we previously showed a robust LPB-CeC potentiation, the principal behavioral symptom is tactile allodynia triggered by non-C-fiber low-threshold mechanoreceptor afferents. Conversely, recent anatomical studies have revealed that most of the spinal neurons projecting to the LPB receive C-fiber afferent inputs. Here, we examined the hypothesis that these C-fiber-mediated inputs are necessary for the full establishment of robust synaptic potentiation of LPB-CeC transmission in the rats with neuropathic pain. RESULTS: Postnatal capsaicin treatment, which has been shown to denervate the C-fibers expressing transient receptor potential vanilloid type-1 (TRPV1) channels, completely abolished eye-wiping responses to capsaicin eye instillation in rats, but this treatment did not affect mechanical allodynia in the nerve-ligated animals. However, the postnatal capsaicin treatment prevented LPB-CeC synaptic potentiation after SNL, unlike in the vehicle-treated rats, primarily due to the decreased incidence of potentiated transmission by elimination of TRPV1-expressing C-fiber afferents. CONCLUSIONS: C-fiber-mediated afferents in the nerve-ligated animals may be a required facilitator of the establishment of nerve injury-evoked synaptic potentiation in the CeC. These inputs might play essential roles in the chronic pain-induced plastic changes in the central network linking nociception and negative emotion.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Capsaicina/farmacología , Fibras Nerviosas Amielínicas/efectos de los fármacos , Neuralgia/metabolismo , Nociceptores/metabolismo , Transmisión Sináptica , Vías Aferentes/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Femenino , Masculino , Fibras Nerviosas Amielínicas/fisiología , Neuralgia/fisiopatología , Umbral del Dolor , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA