Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nano Lett ; 24(6): 1967-1973, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38289648

RESUMEN

Interfaces play a critical thermodynamic role in the existence of multilayer systems. Due to their utility in bridging energetic and compositional differences between distinct species, the formation of interfaces inherently creates internal strain in the bulk due to the reorganization needed to accommodate such a change. We report the effect of scaling interfacial stress by deposition of different adlayers on a host thin metal film. Intrinsic property differences between host and deposited metal atoms result in varying degree of composition and energy gradient within the interface. Interfacial stress can increase defects in the host leading to (i) energy dissipation and reorganization to minimize surface energy, and (ii) increased material strength. We infer that dissipation of interfacial stress induces defect migration, hence bulk and surface atomic reconstruction as captured by the surface roughness and grain size reduction coupled with a concomitant increase in material strength.

2.
Chemphyschem ; : e202400626, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024523

RESUMEN

Self-assembled monolayers (SAMs) are emerging as platform technology for a myriad of applications, yet they still possess varied spatial stability and predictability issues as their properties are heavily dependent on subtle structural features. Reducing entropy within such a system serves as one of many potential solutions to increase order and therefore coherence/precision in measured properties. Here we explore controlled thermal annealing to improve edge disorders in SAMs and significantly reduce data variance. Using both odd- and even-numbered n-alkanethiol SAMs on Au, we observe statistically significant difference in the contact angles between edge and center. Thermal annealing at 40°C significantly narrows differences between edges and centre of the SAM, albeit with significant reduction in the parity dependent odd-even effect. This study provides a pathway to improve SAMs consistency through minimal external perturbation as reflected by the minimization of odd-even effect as SAMs become increasingly ordered.

3.
Angew Chem Int Ed Engl ; 63(27): e202318949, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38446671

RESUMEN

Lanthanoid carboxylates were synthesized and in situ self-assembled to illustrate temperature-driven evolution in chromaticity. Evolution in structure (crystallinity), composition, luminosity, and chromaticity were investigated revealing the coupled role of divergence in order/structure (spatial organization), and composition in tuning observed color. Loss of crystallinity or increase in residual carbon leads to decrease in luminosity even with increase in hue. Comparing Ho and Er congeners shows that the density of accessible transition states relates to shifts in low and high wavelength components of color. This work demonstrates that, just as interface dipoles can lead to change in semiconductor band gap, structure and composition can analogously alter observed color.

4.
Langmuir ; 35(43): 13853-13859, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31585036

RESUMEN

We have developed a new spray-based method for characterizing surface energies of planar, porous substrates. Distinct spray modes (electrospray versus electrostatic spray), from the porous substrates, occur in the presence of an applied DC potential after wetting with solvents of different surface tension. The ion current resulting from the spray process is maximized when the surface energy of the porous substrate approaches the surface tension of the wetting solvent. By monitoring the selected ion current (e.g., benzoylecgonine, m/z 290 → 168) with a mass spectrometer or the total ion current with an ammeter, we determined the solvent surface tension yielding the maximum ion current to indicate the surface energy of the solid. Detailed evaluations using polymeric substrates of known surface energies enabled effective calibration of the approach that resulted in the correct estimation of the surface energy of hydrophobic paper substrates prepared by gas-phase silanization. A three-parameter empirical model suggests that the experimentally observed ion current profile is governed by differential partitioning of analyte controlled by the interfacial forces between the wetting solvent and the porous substrate.

5.
Anal Chem ; 90(15): 9353-9358, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29975501

RESUMEN

It is well-known that 2D dried blood spots on paper offer a facile sample collection, storage, and transportation of blood. However, large volume requirements, possible analyte instability, and difficult sample recovery plague this method, lowering confidence in analyte quantification. For the first time, we demonstrate a new approach using 3D dried blood spheroids for stabilization of small volume blood samples, mitigating these effects without cold storage. Blood spheroids form on hydrophobic paper, preventing interaction between the sample and paper substrate, eliminating all chromatographic effects. Stability of the enzyme alanine transaminase and labile organic compounds such as cocaine and diazepam were also shown to increase in the spheroid by providing a critical radius of insulation. On-surface analysis of the dried blood spheroids using paper spray mass spectrometry resulted in sub-ng/mL limits of detection for all illicit drugs tested, representing 1 order of magnitude improvement compared with analysis from 2D dried blood spots.


Asunto(s)
Pruebas con Sangre Seca/métodos , Temperatura , Alanina Transaminasa/sangre , Cocaína/sangre , Diazepam/sangre , Estabilidad de Enzimas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Límite de Detección
6.
Macromol Rapid Commun ; 39(8): e1800026, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29516614

RESUMEN

A facile method is reported for rapid, room-temperature synthesis of block copolymers (BCP) of complex morphology and hence nontraditional spherical assembly. The use of solvated electrons generates radical anions on olefinic monomers, and with a felicitous choice of monomer pairs, this species will propagate bimechanistically (via radical and the anion) to form BCPs. Molecular weight of the obtained BCP range from Mw = 97 000-404 000 g mol-1 (polydispersity index, PDI = 1.4-3.0) depending on monomer pairs. The composition of the blocks can be controlled by changing monomer ratio, with the caveat that yield is affected. Detailed characterization by 2D nuclear magnetic resonance spectroscopy, differential scanning calorimetry (DSC), and analysis of the mechanisms involved indicate the structure of obtained block copolymers to be at least a triblock with a complex central unit. Evaluating trends in the Hammett parameter segregates monomer pairs into "armed and disarmed" groups with respect to radical or anionic polymerization akin to oligosaccharides synthesis.


Asunto(s)
Sustancias Macromoleculares/química , Sustancias Macromoleculares/síntesis química , Polímeros/química , Polímeros/síntesis química , Rastreo Diferencial de Calorimetría , Estructura Molecular , Polimerizacion , Temperatura
7.
Phys Chem Chem Phys ; 20(7): 4864-4878, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29384159

RESUMEN

Charge transport across large area molecular tunneling junctions is widely studied due to its potential in the development of quantum electronic devices. Large area junctions based on eutectic gallium indium (used in the form of a conical tip top electrode) have emerged as a reliable platform for delineating structure-property relationships. Discrepancies, however, arise from different tip-morphologies and fabrication techniques. It can be, therefore, challenging to make reliable conclusions based on molecular features. Of particular note is the discrepancy between the behaviors of hydrocarbons containing odd and even numbered carbons across different EGaIn electrodes. Moreover, inconsistencies in tip roughness and oxide thickness can lead to more than a 100× increase in current densities with narrow distribution in data. Besides effects on the precision vs. accuracy of data, a theoretically predicted length-dependent limit to observation of the odd-even effect has not been realized experimentally. We developed a method to chemically polish the EGaIn tip to allow formation of smooth conformal contact due to re-establishment of liquid character at the point of contact though tension-driven reconstruction of a thin oxide layer. To evaluate the polished tip, we measured charge transport behavior across n-alkanethiolate SAMs and observed good correlation in the odd-even oscillation behavior to that observed from wetting studies. Since these molecules are homologues of each other, only differing in the orientation of the terminal CH2CH3 moiety, the odd-even effects are governed by orientation induced differences in the absences of SAM (gauche) defects. Comparison of obtained data with the literature shows significant difference between odd-numbered SAMs across Ag and Au.

8.
Langmuir ; 33(47): 13451-13467, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-28777587

RESUMEN

Self-assembled monolayers (SAMs) have emerged as a simple platform technology and hence have been broadly studied. With advances in state-of-the-art fabrication and characterization methods, new insights into SAM structure and related properties have been delineated, albeit with some discrepancies and/or incoherencies. Some discrepancies, especially between experimental and theoretical work, are in part due to the misunderstanding of subtle structural features such as phase evolution and SAM quality. Recent work has, however, shown that simple techniques, such as the measurement of static contact angles, can be used to delineate otherwise complex properties of the SAM, especially when complemented by other more advanced techniques. In this article, we highlight the effect of nanoscale substrate asperities and molecular chain length on the SAM structure and associated properties. First, surfaces with tunable roughness are prepared on both Au and Ag, and their corresponding n-alkanethiolate SAMs are characterized through wetting and spectroscopy. From these data, chain-length- and substrate-morphology-dependent limits to the odd-even effect (structure and properties vary with the number of carbons in the molecules and the nature of the substrate), parametrization of gauche defect densities, and structural phase evolution (liquidlike, waxy, crystalline interfaces) are deduced. An evaluation of the correlation between the effect of roughness and the components of surface tension (polar-γp and dispersive-γd) reveals that wetting, at nanoscale rough surfaces, evolves proportionally with the ratio of the two components of surface tension. The evolution of conformational order is captured over a range of molecular lengths and parametrized through a dimensionless number, χc. By deploying a well-known tensiometry technique (herein the liquid is used to characterize the solid, hence the term inverse tensiometry) to characterize SAMs, we demonstrate that complex molecular-level phenomena in SAMs can be understood through simplicity.

9.
Phys Chem Chem Phys ; 19(10): 6989-6995, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28244512

RESUMEN

This paper reports the effects of substrate roughness on the odd-even effect in n-alkanethiolate self-assembled monolayers (SAMs) probed by vibrational sum frequency generation (SFG) spectroscopy. By fabricating SAMs on surfaces across the so-called odd-even limit, we demonstrate that differentiation of the vibrational frequencies of CH3 from SAMs derived from alkyl thiols with either odd (SAMO) or even (SAME) numbers of carbons depends on the roughness of the substrate on which they are formed. Odd-even oscillation in SFG susceptibility amplitudes was observed for spectra derived from SAME and SAMO fabricated on flat surfaces (RMS roughness = 0.4 nm) but not on rougher surfaces (RMS roughness = 2.38 nm). In addition, we discovered that local chemical environments for the terminal CH3 group have a chain-length dependence. There seems to be a transition at around C13, beyond which SAMs become "solid-like".

10.
Sci Technol Adv Mater ; 16(4): 049501, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27889792

RESUMEN

[This corrects the article DOI: 10.1088/1468-6996/14/5/054402.].

11.
J Am Chem Soc ; 135(48): 18131-44, 2013 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-24187999

RESUMEN

Analysis of rates of tunneling across self-assembled monolayers (SAMs) of n-alkanethiolates SCn (with n = number of carbon atoms) incorporated in junctions having structure Ag(TS)-SAM//Ga2O3/EGaIn leads to a value for the injection tunnel current density J0 (i.e., the current flowing through an ideal junction with n = 0) of 10(3.6±0.3) A·cm(-2) (V = +0.5 V). This estimation of J0 does not involve an extrapolation in length, because it was possible to measure current densities across SAMs over the range of lengths n = 1-18. This value of J0 is estimated under the assumption that values of the geometrical contact area equal the values of the effective electrical contact area. Detailed experimental analysis, however, indicates that the roughness of the Ga2O3 layer, and that of the Ag(TS)-SAM, determine values of the effective electrical contact area that are ~10(-4) the corresponding values of the geometrical contact area. Conversion of the values of geometrical contact area into the corresponding values of effective electrical contact area results in J0(+0.5 V) = 10(7.6±0.8) A·cm(-2), which is compatible with values reported for junctions using top-electrodes of evaporated Au, and graphene, and also comparable with values of J0 estimated from tunneling through single molecules. For these EGaIn-based junctions, the value of the tunneling decay factor ß (ß = 0.75 ± 0.02 Å(-1); ß = 0.92 ± 0.02 nC(-1)) falls within the consensus range across different types of junctions (ß = 0.73-0.89 Å(-1); ß = 0.9-1.1 nC(-1)). A comparison of the characteristics of conical Ga2O3/EGaIn tips with the characteristics of other top-electrodes suggests that the EGaIn-based electrodes provide a particularly attractive technology for physical-organic studies of charge transport across SAMs.

12.
Anal Chem ; 85(17): 8442-7, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23972068

RESUMEN

Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Líquidos Iónicos/química , Campos Magnéticos , Gravedad Específica
13.
Sci Technol Adv Mater ; 14(5): 054402, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27877606

RESUMEN

Paper-based microfluidic devices have emerged as simple yet powerful platforms for performing low-cost analytical tests. This paper reports a microfluidic paper-based electrochemical biosensor array for multiplexed detection of physiologically relevant metabolic biomarkers. Different from existing paper-based electrochemical devices, our device includes an array of eight electrochemical sensors and utilizes a handheld custom-made electrochemical reader (potentiostat) for signal readout. The biosensor array can detect several analytes in a sample solution and produce multiple measurements for each analyte from a single run. Using the device, we demonstrate simultaneous detection of glucose, lactate and uric acid in urine, with analytical performance comparable to that of the existing commercial and paper-based platforms. The paper-based biosensor array and its electrochemical reader will enable the acquisition of high-density, statistically meaningful diagnostic information at the point of care in a rapid and cost-efficient way.

14.
J Am Chem Soc ; 134(26): 10876-84, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22676159

RESUMEN

This paper describes physical-organic studies of charge transport by tunneling through self-assembled monolayers (SAMs), based on systematic variations of the structure of the molecules constituting the SAM. Replacing a -CH(2)CH(2)- group with a -CONH- group changes the dipole moment and polarizability of a portion of the molecule and has, in principle, the potential to change the rate of charge transport through the SAM. In practice, this substitution produces no significant change in the rate of charge transport across junctions of the structure Ag(TS)-S(CH(2))(m)X(CH(2))(n)H//Ga(2)O(3)/EGaIn (TS = template stripped, X = -CH(2)CH(2)- or -CONH-, and EGaIn = eutectic alloy of gallium and indium). Incorporation of the amide group does, however, increase the yields of working (non-shorting) junctions (when compared to n-alkanethiolates of the same length). These results suggest that synthetic schemes that combine a thiol group on one end of a molecule with a group, R, to be tested, on the other (e.g., HS~CONH~R) using an amide-based coupling provide practical routes to molecules useful in studies of molecular electronics.


Asunto(s)
Aleaciones/química , Amidas/química , Etilenos/química , Transporte Biológico , Electroquímica/métodos , Electrónica , Galio , Indio , Plata/química , Compuestos de Sulfhidrilo
15.
J Am Chem Soc ; 133(9): 2962-75, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21323319

RESUMEN

This paper compares charge transport across self-assembled monolayers (SAMs) of n-alkanethiols containing odd and even numbers of methylenes. Ultraflat template-stripped silver (Ag(TS)) surfaces support the SAMs, while top electrodes of eutectic gallium-indium (EGaIn) contact the SAMs to form metal/SAM//oxide/EGaIn junctions. The EGaIn spontaneously reacts with ambient oxygen to form a thin (∼1 nm) oxide layer. This oxide layer enables EGaIn to maintain a stable, conical shape (convenient for forming microcontacts to SAMs) while retaining the ability to deform and flow upon contacting a hard surface. Conical electrodes of EGaIn conform (at least partially) to SAMs and generate high yields of working junctions. Ga(2)O(3)/EGaIn top electrodes enable the collection of statistically significant numbers of data in convenient periods of time. The observed difference in charge transport between n-alkanethiols with odd and even numbers of methylenes--the "odd-even effect"--is statistically discernible using these junctions and demonstrates that this technique is sensitive to small differences in the structure and properties of the SAM. Alkanethiols with an even number of methylenes exhibit the expected exponential decrease in current density, J, with increasing chain length, as do alkanethiols with an odd number of methylenes. This trend disappears, however, when the two data sets are analyzed together: alkanethiols with an even number of methylenes typically show higher J than homologous alkanethiols with an odd number of methylenes. The precision of the present measurements and the statistical power of the present analysis are only sufficient to identify, with statistical confidence, the difference between an odd and even number of methylenes with respect to J, but not with respect to the tunneling decay constant, ß, or the pre-exponential factor, J(0). This paper includes a discussion of the possible origins of the odd-even effect but does not endorse a single explanation.

16.
Mater Horiz ; 8(3): 925-931, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821322

RESUMEN

Thin passivating surface oxide layers on metal alloys form a dissipation horizon between dissimilar phases, hence harbour an inherent free energy and composition gradient. We exploit this gradient to drive order and selective surface separation (speciation), enabling redox-driven enrichment of the core by selective conversion of low standard reduction potential (E°) components into oxides. Coupling this oxide growth to volumetric changes during solidification allows us to create oxide crystallites trapped in a metal ('ship-in-a-bottle') or extrusion of metal fingerlings on the heavily oxidized particle. We confirm the underlying mechanism through high temperature X-ray diffraction and characterization of solidification-trapped particle states. We demonstrate that engineering the passivating surface oxide can lead to purification via selective dealloying with concomitant enrichment of the core, leading to disparate particle morphologies.


Asunto(s)
Aleaciones , Óxidos , Oxidación-Reducción , Difracción de Rayos X
17.
Nanoscale ; 11(29): 14060-14069, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31313799

RESUMEN

Coordination polymers are ideal synthons in creating high aspect ratio nanostructures, however, conventional synthetic methods are often restricted to batch-wise and costly processes. Herein, we demonstrate a non-traditional, frugal approach to synthesize 1D coordination polymers by in situ etching of zerovalent metal particle precursors. This procedure is denoted as the heterogeneous metal/ligand reaction and was demonstrated on Group 13 metals as a proof of concept. Simple carboxylic acids supply the etchant protons and ligands for metal ions (conjugate base) in a 1 : 1 ratio. This scalable reaction produces a 1D polymer that assembles into high-aspect ratio 'nanobeams'. We demonstrate control over crystal structure and morphology by tuning the: (i) metal center, (ii) stoichiometry and (iii) structure of the ligands. This work presents a general scalable method for continuous, heat free and water-based coordination polymer synthesis.

19.
J Phys Chem Lett ; 9(17): 5078-5085, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30126267

RESUMEN

Charge transport across self-assembled monolayers (SAMs) has been widely studied. Discrepancies of charge tunneling data that arise from various studies, however, call for efforts to develop new statistical analytical approaches to understand charge tunneling across SAMs. Structure-property studies on charge tunneling across SAM-based junctions have largely been through comparison of average tunneling rates and associated variance. These early moments (especially the average) are dominated by barrier width-a static property of the junction. In this work, we show that analysis of higher statistical moments (skewness and kurtosis) reveals the dynamic nature of the tunnel junction. Intramolecular Keesom (dipole-dipole) interactions dynamically fluctuate with bias as dictated by stereoelectronic limitations. Analyzing variance in the distribution of tunneling data instead of the first statistical moment (average), for a series of n-alkanethiols containing internal amide and aromatic terminal groups, we observe that the direction of dipole moments affects molecule-electrode coupling. An applied bias induces changes in the tunneling probability, affecting the distribution of tunneling paths in large-area molecular junctions.

20.
Front Chem ; 6: 338, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30246006

RESUMEN

Fibrous cellulosic materials have been used as templates for material synthesis or organization via thermal degradation of the cellulose. Most of these methods, however, fail to exploit fiber organization, in part due to loss of structure with processing. Herein, we demonstrate that chemi- and physi-sorbed modifiers of cellulose alters the thermal degradation mechanism allowing for controlled deposition of oxide and carbon (incomplete combustion) along the original paper fiber network. We demonstrate that the degradation of the cellulose fibers depends on the amount of physisorbed material due, in part, to effect on the propagation of the ignition event. From the distribution of the residual elements and shape of the deposits, we can infer that the thermal degradation process depends on the nature, and concentration, of filler(s) or occluded.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA