Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 551(7678): 100-104, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29072293

RESUMEN

Direct lineage conversion offers a new strategy for tissue regeneration and disease modelling. Despite recent success in directly reprogramming fibroblasts into various cell types, the precise changes that occur as fibroblasts progressively convert to the target cell fates remain unclear. The inherent heterogeneity and asynchronous nature of the reprogramming process renders it difficult to study this process using bulk genomic techniques. Here we used single-cell RNA sequencing to overcome this limitation and analysed global transcriptome changes at early stages during the reprogramming of mouse fibroblasts into induced cardiomyocytes (iCMs). Using unsupervised dimensionality reduction and clustering algorithms, we identified molecularly distinct subpopulations of cells during reprogramming. We also constructed routes of iCM formation, and delineated the relationship between cell proliferation and iCM induction. Further analysis of global gene expression changes during reprogramming revealed unexpected downregulation of factors involved in mRNA processing and splicing. Detailed functional analysis of the top candidate splicing factor, Ptbp1, revealed that it is a critical barrier for the acquisition of cardiomyocyte-specific splicing patterns in fibroblasts. Concomitantly, Ptbp1 depletion promoted cardiac transcriptome acquisition and increased iCM reprogramming efficiency. Additional quantitative analysis of our dataset revealed a strong correlation between the expression of each reprogramming factor and the progress of individual cells through the reprogramming process, and led to the discovery of new surface markers for the enrichment of iCMs. In summary, our single-cell transcriptomics approaches enabled us to reconstruct the reprogramming trajectory and to uncover intermediate cell populations, gene pathways and regulators involved in iCM induction.


Asunto(s)
Reprogramación Celular/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Análisis de la Célula Individual , Transcriptoma , Algoritmos , Animales , Linaje de la Célula/genética , Regulación hacia Abajo/genética , Factor de Transcripción GATA4/genética , Ribonucleoproteínas Nucleares Heterogéneas/deficiencia , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Factores de Transcripción MEF2/genética , Ratones , Proteína de Unión al Tracto de Polipirimidina/deficiencia , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Dominio T Box/genética
2.
Genesis ; 54(7): 398-406, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27194122

RESUMEN

Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) through forced expression of cardiac-lineage specific transcription factors holds promise as an alternative strategy for cardiac regeneration. To facilitate research in iCM reprogramming, we generated a suite of new tools. We developed a transformed cell line derived from mouse embryonic fibroblasts (MEF). This fibroblast cell line (MEF-T) harbors an αMHC-eGFP reporter transgene for rapid detection of newly derived iCMs. The MEF-T cell line is highly proliferative and easily transfected and transduced, making it an ideal tool for transgene expression and genetic manipulation. Additionally, we generated a Tet-On inducible polycistronic iCM reprogramming construct for the temporal regulation of reprogramming factor expression. Furthermore, we introduced this construct into MEF-T and created an inducible reprogrammable fibroblast cell line. These tools will facilitate future research in cell fate reprogramming by enabling the temporal control of reprogramming factor expression as well as high-throughput screening using libraries of small molecules, noncoding RNAs, and siRNAs. genesis 54:398-406, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Diferenciación Celular/genética , Reprogramación Celular/genética , Miocitos Cardíacos/metabolismo , Regeneración/genética , Animales , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corazón/crecimiento & desarrollo , Ratones , Ratones Transgénicos , Miocardio/metabolismo
3.
Sci Rep ; 7(1): 2193, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28526819

RESUMEN

Cloning of multiple genes in a single vector has greatly facilitated both basic and translational studies that require co-expression of multiple factors or multi-units of complex protein. Many strategies have been adopted, among which 2A "self-cleaving" peptides have garnered increased interest for their polycistronic nature, small size and high "cleavage" efficiency. However, broad application of 2 A peptides is limited by the lack of systematic comparison of different 2As alone or in combination. Here we characterized the effect of varying gene position and 2As on the expression of proteins encoded in bi-, tri-, or quad-cistronic constructs. Using direct cardiac reprogramming as an example, we further determined the effect of varied 2As on the efficiency of fluorescent cell labeling and cell fate conversion. We found that the expression of fluorophores decreased as it was moved towards the end of the construct while reprogramming was most efficient with the fluorophore at the second position. Moreover, quad-cistronic TPE2A constructs resulted in more efficient reprogramming than 3P2A or PTE2A constructs. We expect that the bi-, tri-, and quad-cistronic vectors constructed here and our results on protein expression ratios from different 2A constructs could serve to guide future utilization of 2A peptides in basic research and clinical applications.


Asunto(s)
Vectores Genéticos/genética , Péptidos/genética , Animales , Línea Celular , Rastreo Celular/métodos , Técnicas de Reprogramación Celular , Expresión Génica , Orden Génico , Vectores Genéticos/química , Humanos , Ratones , Regiones Promotoras Genéticas , Secuencias Repetidas en Tándem
4.
Cell Stem Cell ; 18(3): 382-95, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26942853

RESUMEN

Direct reprogramming of induced cardiomyocytes (iCMs) suffers from low efficiency and requires extensive epigenetic repatterning, although the underlying mechanisms are largely unknown. To address these issues, we screened for epigenetic regulators of iCM reprogramming and found that reducing levels of the polycomb complex gene Bmi1 significantly enhanced induction of beating iCMs from neonatal and adult mouse fibroblasts. The inhibitory role of Bmi1 in iCM reprogramming is mediated through direct interactions with regulatory regions of cardiogenic genes, rather than regulation of cell proliferation. Reduced Bmi1 expression corresponded with increased levels of the active histone mark H3K4me3 and reduced levels of repressive H2AK119ub at cardiogenic loci, and de-repression of cardiogenic gene expression during iCM conversion. Furthermore, Bmi1 deletion could substitute for Gata4 during iCM reprogramming. Thus, Bmi1 acts as a critical epigenetic barrier to iCM production. Bypassing this barrier simplifies iCM generation and increases yield, potentially streamlining iCM production for therapeutic purposes.


Asunto(s)
Proliferación Celular , Reprogramación Celular , Epigénesis Genética , Eliminación de Gen , Miocitos Cardíacos/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Ratones , Miocitos Cardíacos/citología , Complejo Represivo Polycomb 1/genética , Proteínas Proto-Oncogénicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA