RESUMEN
PURPOSE OF REVIEW: A holistic perspective on how physicochemical properties modulate the allergenicity of proteins has recently been performed for food allergens, launching the challenge of a similar analysis for aeroallergens. After a first review on aeroallergen classification into protein families (Part 1), this second part (Part 2) will exploit the impact of physicochemical properties (abundance/biological function, protein structure/presence of post-translational modifications, ligand/cofactor/lipid-binding) on inhalant protein allergenicity. RECENT FINDINGS: The abundance linked to biological function is correlated with increased allergenic risk for most protein families, while the loss of structural integrity with consequent destruction of conformational epitopes is well linked with decreased allergenicity. Ligand-binding effect totally depends on the ligand type being highly variable among aeroallergens. Knowledge about the physicochemical properties of aeroallergens is still scarce, which highlights the need for research using integrated approaches (in silico and experimental) to generate and analyze new data on known/new aeroallergens.
Asunto(s)
Alérgenos , Alérgenos/inmunología , Alérgenos/química , Humanos , Animales , Procesamiento Proteico-Postraduccional , Hipersensibilidad/inmunología , Proteínas/inmunología , Proteínas/química , Contaminantes Atmosféricos/inmunología , Contaminantes Atmosféricos/químicaRESUMEN
PURPOSE OF REVIEW: Respiratory allergies are non-communicable diseases caused by the hypersensitivity of the immune system to environmental aeroallergens. The culprits are aero-transported proteins eliciting respiratory symptoms in sensitized/allergic individuals. This review intends to provide a holistic overview on the categorization of aeroallergens into protein families (Part 1) and to exploit the impact of physicochemical properties on inhalant protein allergenicity (Part 2). This first part will focus particularly on aeroallergen organization into families and how this classification fits their physicochemical properties. RECENT FINDINGS: Aeroallergen classification into protein families facilitates the identification of common physicochemical properties, thus aiding a better comprehension of known allergens, while predicting the behavior of novel ones. The available online databases gathering important features of aeroallergens are currently scarce. Information on distinct aeroallergen classification is still lacking, as data is dispersed and often outdated, hampering an efficient evaluation of new aeroallergens.
Asunto(s)
Alérgenos , Alérgenos/inmunología , Humanos , Contaminantes Atmosféricos/inmunología , Contaminantes Atmosféricos/efectos adversos , Animales , Hipersensibilidad Respiratoria/inmunología , Proteínas/inmunología , Proteínas/químicaRESUMEN
New types of protein sources will enter our diet in a near future, reinforcing the need for a straightforward in vitro (cell-based) screening model to test and predict the safety of these novel proteins, in particular their potential risk for de novo allergic sensitization. The Adverse Outcome Pathway (AOP) for allergen sensitization describes the current knowledge of key events underlying the complex cellular interactions that proceed allergic food sensitization. Currently, there is no consensus on the in vitro model to study the intestinal translocation of proteins as well as the epithelial activation, which comprise the first molecular initiation events (ME1-3) and the first key event of the AOP, respectively. As members of INFOGEST, we have highlighted several critical features that should be considered for any proposed in vitro model to study epithelial protein transport in the context of allergic sensitization. In addition, we defined which intestinal cell types are indispensable in a consensus model of the first steps of the AOP, and which cell types are optional or desired when there is the possibility to create a more complex cell model. A model of these first key aspects of the AOP can be used to study the gut epithelial translocation behavior of known hypo- and hyperallergens, juxtaposed to the transport behavior of novel proteins as a first screen for risk management of dietary proteins. Indeed, this disquisition forms a basis for the development of a future consensus model of the allergic sensitization cascade, comprising also the other key events (KE2-5).
Asunto(s)
Hipersensibilidad a los Alimentos , Humanos , Hipersensibilidad a los Alimentos/prevención & control , Alérgenos , Dieta , Alimentos , Absorción IntestinalRESUMEN
Sesame is an allergenic food with an increasing allergy prevalence among the European/USA population. Sesame allergy is generally life-persisting, being the cause of severe/systemic adverse immune responses in sesame-allergic individuals. Herein, clinical data about sesame allergy, including prevalence, diagnosis, relevance, and treatments are described, with focus on the molecular characterization of sesame allergens, their cross-reactivity and co-sensitization phenomena. The influence of food processing and digestibility on the stability/immunoreactivity of sesame allergens is critically discussed and the analytical approaches available for their detection in foodstuffs. Cross-reactivity between sesame and tree nuts or peanuts is frequent because of the high similarities among proteins of the same family. However, cross-reactivity phenomena are not always correlated with true clinical allergy in sensitized patients. Data suggest that sesame allergens are resistant to heat treatments and digestibility, with little effect on their immunoreactivity. Nevertheless, data are scarce, evidencing the need for more research to understand the effect of food processing on sesame allergenicity modulation. The demands for identifying trace amounts of sesame in foods have prompted the development of analytical methods, which have targeted both protein and DNA markers, providing reliable, specific, and sensitive tools, crucial for the effective management of sesame as an allergenic food.
RESUMEN
Current approaches based on electrophoretic, chromatographic or immunochemical principles have allowed characterizing multiple allergens, mapping their epitopes, studying their mechanisms of action, developing detection and diagnostic methods and therapeutic strategies for the food and pharmaceutical industry. However, some of the common structural features related to the allergenic potential of food proteins remain unknown, or the pathological mechanism of food allergy is not yet fully understood. In addition, it is also necessary to evaluate new allergens from novel protein sources that may pose a new risk for consumers. Technological development has allowed the expansion of advanced technologies for which their whole potential has not been entirely exploited and could provide novel contributions to still unexplored molecular traits underlying both the structure of food allergens and the mechanisms through which they sensitize or elicit adverse responses in human subjects, as well as improving analytical techniques for their detection. This review presents cutting-edge instrumental techniques recently applied when studying structural and functional aspects of proteins, mechanism of action and interaction between biomolecules. We also exemplify their role in the food allergy research and discuss their new possible applications in several areas of the food allergy field.
Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Humanos , Alérgenos/química , Hipersensibilidad a los Alimentos/terapia , EpítoposRESUMEN
Tetrasomy 21 is a rare occurrence. Only 14 cases have been reported in the literature, 8 of which are partial tetrasomy cases and 6 which are complete tetrasomy cases. Of the incidences, no proband with true complete tetrasomy 21 has survived the neonatal period. We report complete mosaic tetrasomy 21 in a female infant with the typical Down syndrome phenotype, including Hirschsprung's disease and atrioventricular (AV) canal defect. This is in contrast to cases of partial tetrasomy 21, which often have an atypical trisomy 21 presentation and multiple nonspecific traits, including short stature, microcephaly, and developmental delays. This case demonstrates the difference in clinical presentation between the partial and complete subtype of tetrasomy 21 and provides the first postnatal clinical picture of an infant with true mosaic complete tetrasomy 21.
Asunto(s)
Trastornos de los Cromosomas/genética , Discapacidades del Desarrollo/genética , Síndrome de Down/genética , Tetrasomía/genética , Anomalías Múltiples , Aneuploidia , Trastornos de los Cromosomas/epidemiología , Trastornos de los Cromosomas/patología , Discapacidades del Desarrollo/patología , Síndrome de Down/patología , Femenino , Defectos de los Tabiques Cardíacos/genética , Defectos de los Tabiques Cardíacos/patología , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/patología , Humanos , Lactante , Recién Nacido , Cariotipificación , Microcefalia/genética , Microcefalia/patología , Mosaicismo , Fenotipo , Tetrasomía/patologíaRESUMEN
Lupine is commonly utilized as a technological food and ingredient in a great variety of processed products (snacks, bakery, meat, and dairy products) principally owing to its nutritional value and technological properties. However, its ingestion, even at trace amounts (in the range of mg protein per kg of food), can lead to severe adverse reactions in allergic individuals. Lupine belongs to the Leguminosae family, having the conglutins (α-, ß-, δ-, and γ-) as allergens, among other proteins. Cross-sensitization of lupine-sensitized individuals with other legume species, mainly peanut, can occur, but the associated clinical reactivity is still unclear. The protection of the sensitized individuals should depend on an avoidance diet, which should rely on the compliance of food labeling and, as such, on their verification by analytical methods. Food processing, such as heat treatments, has an important influence on the structural properties of lupine proteins, altering their detectability and allergenicity. In this review, different aspects related with lupine allergy are described, namely, the overall prevalence, clinical relevance, diagnosis, and treatment. The characterization of lupine allergens and their potential cross-reactivity with other legumes are critically discussed. The effects of food matrix, processing, and digestibility on lupine proteins, as well as the available analytical tools for detecting lupine at trace levels in foods, are also herein emphasized.
Asunto(s)
Reacciones Cruzadas , Lupinus/efectos adversos , Alérgenos/inmunología , Manipulación de Alimentos , Hipersensibilidad a los Alimentos , Humanos , Lupinus/química , Lupinus/inmunología , Hipersensibilidad al Cacahuete , Proteínas de Plantas/análisisRESUMEN
Cow milk allergy is one of the most common food allergies in early childhood and often persists through adult life, forcing an individual to a complete elimination diet. Milk proteins are present in uncounted food products, such as cheese, yogurt, or bakery item, exposing allergic persons to a constant threat. Many efforts have been made to overcome this global problem and to improve the life quality of allergic individuals. First, proper and reliable food labeling is fundamental for consumers, but the verification of its compliance is also needed, which should rely on accurate and sensitive analytical methods to detect milk allergens in processed foods. At the same time, strategies to reduce milk allergenicity, such as immunotherapy or the use of food processing techniques to modify allergen structure, have to be extensively studied. Recent research findings on the applicability of food processing, such as heat treatment, fermentation, or high pressure, have revealed great potential in reducing milk allergenicity. In this review, significant research advances on cow milk allergy are explored, focusing on prevalence, diagnosis, and therapy. Molecular characterization of cow milk allergens and cross-reactivity with other nonbovine milk species are described, as well as the effects of processing, food matrix, and digestibility on milk allergenicity. Additionally, analytical methods for the detection of milk allergens in food are described, from immunoassays and mass spectrometry methods for protein analysis to real-time polymerase chain reaction for DNA analysis.
RESUMEN
Sesame (Sesamum indicum L.) is an important allergenic food whose presence can be the cause of severe allergic reactions in sensitised individuals. In this work, nanoplate digital PCR (ndPCR) was used to develop two methods to detect trace amounts of sesame in processed foods and compared with previously proposed real-time PCR assays. Two independent ndPCR approaches were successfully advanced, achieving sensitivities of 5 and 0.1 mg/kg of sesame in dough/biscuits, targeting the CO6b-1 and ITS regions, respectively. The sensitivity using both targets was improved by one order of magnitude comparing with real-time PCR and was not affected by food processing. CO6b-1 system was not influenced by food matrix, exhibiting similar performance regardless the use of complex matrix extracts or serial diluted DNA. Herein, ndPCR was proposed for the first time for the detection of allergenic foods with the advantage of providing better performance than real-time PCR regarding sensitivity and robustness.
Asunto(s)
Hipersensibilidad a los Alimentos , Sesamum , Humanos , Sesamum/genética , Análisis de los Alimentos/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa , ADN de Plantas/genética , ADN de Plantas/análisis , Alérgenos/genética , Alérgenos/análisisRESUMEN
Edible insects have been proposed as an environmentally and economically sustainable source of protein, and are considered as an alternative food, especially to meat. The migratory locust, Locusta migratoria, is an edible species authorised by the European Union as a novel food. In addition to their nutritional value, edible insects are also sources of bioactive compounds. This study used an in silico approach to simulate the gastrointestinal digestion of selected L. migratoria proteins and posteriorly identify peptides capable of selectively inhibiting the N-subunit of the somatic angiotensin-I converting enzyme (sACE). The application of the molecular docking protocol enabled the identification of three peptides, namely TCDSL, IDCSR and EAEEGQF, which were predicted to act as potential selective inhibitors of the sACE N-domain and, therefore, possess bioactivity against cardiac and pulmonary fibrosis.
Asunto(s)
Locusta migratoria , Animales , Locusta migratoria/química , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Péptidos/metabolismo , Proteínas , AlimentosRESUMEN
Correction for 'Exploiting Locusta migratoria as a source of bioactive peptides with anti-fibrosis properties using an in silico approach' by Carla S. S. Teixeira et al., Food Funct., 2024, 15, 493-502, https://doi.org/10.1039/D3FO04246D.
RESUMEN
Lupine is a legume commonly used in human diet as a functional food due to its high nutritional content and important technological properties. However, its consumption can lead to the manifestation of adverse immunological reactions, posing significant health issues in sensitized/allergic patients. This work aims to investigate the effect of food processing combined with simulated gastrointestinal (GI) digestion on the immunoreactivity of lupine γ-conglutin. Model foods of wheat pasta containing 35% of lupine flour (Lupinus albus, L. luteus, and L. angustifolius) were prepared and submitted to a boiling process. The proteins were extracted and their profiles characterized by SDS-PAGE. Simulated GI digestion was performed on thermally treated pasta using the INFOGEST harmonized digestion protocol 2.0. The IgG binding capacity of γ-conglutin was assessed by immunoblotting in non-reducing conditions and indirect ELISA with specific antibodies. Results demonstrate that the boiling treatment affected the immunoreactivity of the three lupine species differently. Simulated GI digestion led to extensive destruction of the protein structure, more significant in the intestinal phase, reducing but not abolishing the IgG affinity to γ-conglutin and its potential presentation to immunocompetent cells. This information can offer valuable insights to the food industry for developing food formulations with reduced allergenic properties.
RESUMEN
Food allergy is an increasing challenge to public health, with widespread global distribution. With no cure for this pathology, the food-allergic individuals are forced to adopt food eviction measurements, relying on label information to avoid consuming the offending foods. To safeguard these individuals, the analytical methods based on real-time PCR approaches are currently faced as excellent tools to verify labeling compliance, aiding industry and regulatory agencies to efficiently manage food allergen control programs. Therefore, this chapter intends to describe a protocol of real-time PCR to analyze allergenic food species. For method development, the main steps to be considered are (i) in silico sequence analysis and primer/hydrolysis probe design, (ii) preparation of calibrators (model foods containing the allergenic ingredient), (iii) efficient DNA extraction from complex food matrices, (iv) amplification by real-time PCR with hydrolysis probe (90-200 bp) targeting a highly specific DNA region (allergen-encoding gene), (v) sequencing PCR products for identity confirmation, and (vi) validation and application to commercial foods. Herein, a real-time PCR approach for the detection and quantification of cashew nut as an allergenic food is described as an example protocol, including all the steps for method development and validation.
Asunto(s)
Alérgenos , Alimentos , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Alérgenos/genética , FenbendazolRESUMEN
The consumption of insects has increased in western countries, raising concerns about their potential to induce food allergic reactions in sensitized/allergic individuals. This work intended to develop a real-time PCR approach for the detection/quantification of yellow mealworm (Tenebrio molitor) as a potential allergenic food in complex matrices. For this purpose, reference mixtures simulating the production of pork sausages and wheat biscuits containing known amounts of mealworm were used. Real-time PCR with TaqMan probe targeting the cytochrome b gene of T. molitor was able to detect up to 2 fg of insect DNA, and 1.0 and 0.1 mg/kg of mealworm flour in autoclaved sausages and baked biscuits, respectively. Generally, the method showed acceptable analytical performance parameters, confirming its suitability/applicability for a wide range of foods. However, real-time PCR data showed significant differences among food matrix and processing, highlighting the importance of using appropriate calibration models for quantitative analysis. Finally, the real-time PCR approach was successfully validated with blind mixtures and applied to commercial samples, demonstrating its efficacy and reliability in the quantification of mealworm in processed foodstuffs.
Asunto(s)
Hipersensibilidad a los Alimentos , Tenebrio , Humanos , Animales , Reproducibilidad de los Resultados , Hipersensibilidad a los Alimentos/etiología , Alérgenos , Manipulación de AlimentosRESUMEN
A plasmonic nanostructure was constructed as a biorecognition element coupled to an optical sensing platform in sandwich format, targeting the hazelnut Cor a 14 allergen-encoding gene. The analytical performance of the genosensor presented a linear dynamic range between 100 amol L-1 and 1 nmol L-1, a limit of detection (LOD) < 19.9 amol L-1, and a sensitivity of 13.4 ± 0.6 m°. The genosensor was successfully hybridized with hazelnut PCR products, tested with model foods, and further validated by real-time PCR. It reached a LOD <0.001% (10 mg kg-1) of hazelnut in wheat material (corresponding to 1.6 mg kg-1 of protein) and a sensitivity of -17.2 ± 0.5 m° for a linear range of 0.001%-1%. Herein, a new genosensing approach is proposed as a highly sensitive and specific alternative tool with potential application in monitoring hazelnut as an allergenic food, protecting the health of sensitized/allergic individuals.
Asunto(s)
Corylus , Hipersensibilidad a los Alimentos , Humanos , Alérgenos/genética , Corylus/genética , Corylus/química , Inmunoglobulina E , Proteínas de Plantas/genética , Proteínas de Plantas/análisis , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
The production of food and feed to meet the needs of the growing world's population will soon become a serious challenge. In search for sustainable solutions, entomophagy is being proposed as an alternative source of proteins, with economic and environmental advantages when compared to meat. Edible insects are not only a valuable source of important nutrients, but their gastrointestinal digestion also originates small peptides with important bioactive properties. The present work intends to provide an exhaustive systematic review on research articles reporting bioactive peptides identified from edible insects, as demonstrated by in silico, in vitro, and/or in vivo assays. A total of 36 studies were identified following the PRISMA methodology, gathering 211 potentially bioactive peptides with antioxidant, antihypertensive, antidiabetic, antiobesity, anti-inflammatory, hypocholesterolemia, antimicrobial, anti-severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), antithrombotic, and immunomodulatory properties, originated from the hydrolysates of 12 different insect species. From these candidates, the bioactive properties of 62 peptides were characterized in vitro and 3 peptides were validated in vivo. Data establishing the scientific basis of the health benefits associated with the consumption of edible insects can be a valuable contribution to overcoming the cultural issues that hinder the introduction of insects in the Western diet.
RESUMEN
Entomophagy is a sustainable alternative source of proteins for human nutrition. Acheta domesticus is one of the three insect species that complies with the European Union Regulation on novel foods, but to date, there are no reports on their potential bioactive peptides. In this study, an in silico approach was applied to simulate the gastrointestinal (GI) digestion of six A. domesticus proteins and identify new peptides with potential anti-hypertensive and/or anti-diabetic properties, resulting from their capability to inhibit the somatic Angiotensin-I converting enzyme (sACE) and/or dipeptidyl peptidase 4 (DPP-4), respectively. A molecular docking protocol was applied to evaluate the binding interactions between the 43 peptides ranked with high probability of being bioactive and three drug targets: DPP-4 and two catalytic domains (N- and C-) of sACE. Five peptides (AVQPCF, CAIAW, IIIGW, DATW and QIVW) showed high docking scores for both enzymes, suggesting their potential to inhibit the DPP-4 and both catalytic domains of sACE, thus possessing multifunctional bioactive properties. Two peptides (PIVCF and DVW) showed higher docking scores for the N-domain of sACE, indicating a potential action as selective inhibitors and consequently with anti-cardiac and pulmonary fibrosis bioactivities. This is the first study identifying peptides originated from the simulated GI digestion of A. domesticus with potential activities against hypertension, diabetes, cardiac and pulmonary fibrosis.
Asunto(s)
Diabetes Mellitus , Inhibidores de la Dipeptidil-Peptidasa IV , Hipertensión , Fibrosis Pulmonar , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de la Dipeptidil-Peptidasa IV/química , Péptidos/química , Hipertensión/tratamiento farmacológicoRESUMEN
In this work, three allergen-encoding genes (Ana o 1, Ana o 2, Ana o 3) were investigated for the detection of cashew nut as an allergenic food. Normalised and single-tube nested real-time PCR approaches targeting the Ana o 2 or Ana o 3 genes are proposed and compared. Normalised real-time PCR detected 10 pg, while single-tube nested real-time PCR achieved 1 pg of cashew nut DNA. Single-tube nested real-time PCR targeting Ana o 3 allowed the best relative sensitivities (10 mg/kg cashew nut in dough/biscuit), being successfully validated regarding precision/accuracy. The normalised real-time PCR did not show acceptable accuracy for both targets. Sensitivity of single-tube nested real-time PCR was affected by the matrix (pasta), but not by thermal processing (dough/biscuit). Herein, two highly sensitive and specific single-tube nested real-time PCR targeting allergen-encoding genes are proposed for the first time as quantitative/validated tools for cashew nut analysis as an allergenic food.
Asunto(s)
Anacardium , Hipersensibilidad a los Alimentos , Hipersensibilidad a la Nuez , Alérgenos/genética , Antígenos de Plantas/genética , Inmunoglobulina E , Hipersensibilidad a la Nuez/genética , Nueces , Proteínas de Plantas/genética , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Argan oil is a traditional product obtained from the fruits of the argan tree (Argania spinosa L.), which is endemic only to Morocco. It is commercialized worldwide as cosmetic and food-grade argan oil, attaining very high prices in the international market. Therefore, argan oil is very prone to adulteration with cheaper vegetable oils. The present work aims at developing novel real-time PCR approaches to detect olive and soybean oils as potential adulterants, as well as ascertain the presence of argan oil. The ITS region, matK and lectin genes were the targeted markers, allowing to detect argan, olive and soybean DNA down to 0.01 pg, 0.1 pg and 3.2 pg, respectively, with real-time PCR. Moreover, to propose practical quantitative methods, two calibrant models were developed using the normalized ΔCq method to estimate potential adulterations of argan oil with olive or soybean oils. The results allowed for the detection and quantification of olive and soybean oils within 50-1% and 25-1%, respectively, both in argan oil. Both approaches provided acceptable performance parameters and accurate determinations, as proven by their applicability to blind mixtures. Herein, new qualitative and quantitative PCR assays are proposed for the first time as reliable and high-throughput tools to authenticate and valorize argan oil.