Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 48(2): 1951-1957, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33481178

RESUMEN

Current methods of CRISPR-Cas9-mediated site-specific mutagenesis create deletions and small insertions at the target site which are repaired by imprecise non-homologous end-joining. Targeting of the Cas9 nuclease relies on a short guide RNA (gRNA) corresponding to the genome sequence approximately at the intended site of intervention. We here propose an improved version of CRISPR-Cas9 genome editing that relies on two complementary guide RNAs instead of one. Two guide RNAs delimit the intervention site and allow the precise deletion of several nucleotides at the target site. As proof of concept, we generated heterozygous deletion mutants of the kcng4b, gdap1, and ghitm genes in the zebrafish Danio rerio using this method. A further analysis by high-resolution DNA melting demonstrated a high efficiency and a low background of unpredicted mutations. The use of two complementary gRNAs improves CRISPR-Cas9 specificity and allows the creation of predictable and precise mutations in the genome of D. rerio.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , Pez Cebra/genética , Animales , Eliminación de Gen , Heterocigoto , Proteínas del Tejido Nervioso/genética , Desnaturalización de Ácido Nucleico , Canales Aniónicos Dependientes del Voltaje/genética , Proteínas de Pez Cebra/genética
2.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919556

RESUMEN

Mechanochemical and in-solution synthesis of caffeine complexes with α-, ß-, and γ-cyclodextrins was optimized. It was found that short-duration, low-energy cogrinding, and evaporation (instead of freeze-drying) are effective methods for the formation and isolation of these complexes. The products obtained, their pure components, and their mixtures were examined by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), FT-IR and Raman spectroscopy. Moreover, molecular modeling provided an improved understanding of the association process between the guest and host molecules in these complexes. The complexes were found to exhibit high toxicity in zebrafish (Danio rerio) embryos, in contrast to pure caffeine and cyclodextrins at the same molar concentrations. HPLC measurements of the caffeine levels in zebrafish embryos showed that the observed cytotoxicity is not caused by an increased caffeine concentration in the body of the organism, as the concentrations are similar regardless of the administered caffeine form. Therefore, the observed high toxicity could be the result of the synergistic effect of caffeine and cyclodextrins.


Asunto(s)
Cafeína/química , Ciclodextrinas/química , Animales , Cafeína/farmacología , Rastreo Diferencial de Calorimetría , Ciclodextrinas/farmacología , Sinergismo Farmacológico , Embrión no Mamífero/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Difracción de Rayos X , Pez Cebra
3.
Am J Physiol Renal Physiol ; 317(5): F1211-F1216, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31461353

RESUMEN

Proteinuria develops when specific components in the glomerular filtration barrier have impaired function. Although the precise components involved in maintaining this barrier have not been fully identified, heparan sulfate proteoglycans are believed to play an essential role in maintaining glomerular filtration. Although in situ studies have shown that a loss of heparan sulfate glycosaminoglycans increases the permeability of the glomerular filtration barrier, recent studies using experimental models have shown that podocyte-specific deletion of heparan sulfate glycosaminoglycan assembly does not lead to proteinuria. However, tubular reabsorption of leaked proteins might have masked an increase in glomerular permeability in these models. Furthermore, not only podocytes but also glomerular endothelial cells are involved in heparan sulfate synthesis in the glomerular filtration barrier. Therefore, we investigated the effect of a global heparan sulfate glycosaminoglycan deficiency on glomerular permeability. We used a zebrafish embryo model carrying a homozygous germline mutation in the ext2 gene. Glomerular permeability was assessed with a quantitative dextran tracer injection method. In this model, we accounted for tubular reabsorption. Loss of anionic sites in the glomerular basement membrane was measured using polyethyleneimine staining. Although mutant animals had significantly fewer negatively charged areas in the glomerular basement membrane, glomerular permeability was unaffected. Moreover, heparan sulfate glycosaminoglycan-deficient embryos had morphologically intact podocyte foot processes. Glomerular filtration remains fully functional despite a global reduction of heparan sulfate.


Asunto(s)
Embrión no Mamífero/fisiología , Heparitina Sulfato/deficiencia , Glomérulos Renales/fisiología , Animales , Regulación de la Expresión Génica , Heparitina Sulfato/metabolismo , Mutación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Antimicrob Agents Chemother ; 59(2): 753-62, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25385118

RESUMEN

The translational value of zebrafish high-throughput screens can be improved when more knowledge is available on uptake characteristics of potential drugs. We investigated reference antibiotics and 15 preclinical compounds in a translational zebrafish-rodent screening system for tuberculosis. As a major advance, we have developed a new tool for testing drug uptake in the zebrafish model. This is important, because despite the many applications of assessing drug efficacy in zebrafish research, the current methods for measuring uptake using mass spectrometry do not take into account the possible adherence of drugs to the larval surface. Our approach combines nanoliter sampling from the yolk using a microneedle, followed by mass spectrometric analysis. To date, no single physicochemical property has been identified to accurately predict compound uptake; our method offers a great possibility to monitor how any novel compound behaves within the system. We have correlated the uptake data with high-throughput drug-screening data from Mycobacterium marinum-infected zebrafish larvae. As a result, we present an improved zebrafish larva drug-screening platform which offers new insights into drug efficacy and identifies potential false negatives and drugs that are effective in zebrafish and rodents. We demonstrate that this improved zebrafish drug-screening platform can complement conventional models of in vivo Mycobacterium tuberculosis-infected rodent assays. The detailed comparison of two vertebrate systems, fish and rodent, may give more predictive value for efficacy of drugs in humans.


Asunto(s)
Antituberculosos/uso terapéutico , Evaluación Preclínica de Medicamentos/métodos , Investigación Biomédica Traslacional/métodos , Tuberculosis/tratamiento farmacológico , Animales , Larva/efectos de los fármacos
5.
Methods ; 62(3): 246-54, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23769806

RESUMEN

The increasing use of zebrafish larvae for biomedical research applications is resulting in versatile models for a variety of human diseases. These models exploit the optical transparency of zebrafish larvae and the availability of a large genetic tool box. Here we present detailed protocols for the robotic injection of zebrafish embryos at very high accuracy with a speed of up to 2000 embryos per hour. These protocols are benchmarked for several applications: (1) the injection of DNA for obtaining transgenic animals, (2) the injection of antisense morpholinos that can be used for gene knock-down, (3) the injection of microbes for studying infectious disease, and (4) the injection of human cancer cells as a model for tumor progression. We show examples of how the injected embryos can be screened at high-throughput level using fluorescence analysis. Our methods open up new avenues for the use of zebrafish larvae for large compound screens in the search for new medicines.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Larva/genética , Microinyecciones/métodos , Robótica/métodos , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Benchmarking , Modelos Animales de Enfermedad , Embrión no Mamífero/inmunología , Embrión no Mamífero/microbiología , Embrión no Mamífero/ultraestructura , Técnicas de Silenciamiento del Gen , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Larva/inmunología , Larva/microbiología , Larva/ultraestructura , Microscopía Fluorescente , Morfolinos/administración & dosificación , Mycobacterium tuberculosis/inmunología , Trasplante de Neoplasias , Oligonucleótidos Antisentido/administración & dosificación , Staphylococcus epidermidis/inmunología , Células Tumorales Cultivadas/trasplante , Pez Cebra/inmunología , Pez Cebra/microbiología
6.
J Biol Chem ; 287(40): 33905-16, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22869369

RESUMEN

The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation of the common proteoglycan linkage tetrasaccharide were analyzed along with ext2 and extl3 mutants, predicted to have defective HS polymerization. Notably, the effects on HS and CS biosynthesis in the respective mutant strains were shown to differ from what had been hypothesized. In uxs1 and b3gat3 mutant larvae, biosynthesis of CS was shown to be virtually abolished, whereas these mutants still were capable of synthesizing 50% of the HS produced in control larvae. extl3 and ext2 mutants on the other hand were shown to synthesize reduced amounts of hypersulfated HS. Further, extl3 mutants produced higher levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies in the single mutant strains, as well as in ext2;uxs1 double mutants, was conducted. A correlation between HS and CS production and phenotypes was found, such that impaired HS biosynthesis was shown to affect chondrocyte intercalation, whereas impaired CS biosynthesis inhibited formation of the extracellular matrix surrounding chondrocytes.


Asunto(s)
Cartílago/metabolismo , Sulfatos de Condroitina/química , Regulación del Desarrollo de la Expresión Génica , Heparitina Sulfato/química , Alelos , Animales , Cruzamientos Genéticos , Progresión de la Enfermedad , Femenino , Genotipo , Masculino , Microscopía Confocal/métodos , Microscopía Electrónica de Transmisión/métodos , Modelos Biológicos , Morfogénesis , Mutación , Faringe/patología , Pez Cebra
7.
J Pathol ; 224(2): 160-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21506131

RESUMEN

Proteoglycans are secreted into the extracellular matrix of virtually all cell types and function in several cellular processes. They consist of a core protein onto which glycosaminoglycans (e.g., heparan or chondroitin sulphates), are attached. Proteoglycans are important modulators of gradient formation and signal transduction. Impaired biosynthesis of heparan sulphate glycosaminoglycans causes osteochondroma, the most common bone tumour to occur during adolescence. Cytochemical staining with positively charged dyes (e.g., polyethyleneimine-PEI) allows, visualisation of proteoglycans and provides a detailed description of how proteoglycans are distributed throughout the cartilage matrix. PEI staining was studied by electron and reflection contrast microscopy in human growth plates, osteochondromas and five different proteoglycan-deficient zebrafish mutants displaying one of the following skeletal phenotypes: dackel (dak/ext2), lacking heparan sulphate and identified as a model for human multiple osteochondromas; hi307 (ß3gat3), deficient for most glycosaminoglycans; pinscher (pic/slc35b2), presenting with defective sulphation of glycosaminoglycans; hi954 (uxs1), lacking most glycosaminoglycans; and knypek (kny/gpc4), missing the protein core of the glypican-4 proteoglycan. The panel of genetically well-characterized proteoglycan-deficient zebrafish mutants serves as a convincing and comprehensive study model to investigate proteoglycan distribution and the relation of this distribution to the model mutation status. They also provide insight into the distributions and gradients that can be expected in the human homologue. Human growth plate, wild-type zebrafish and fish mutants with mild proteoglycan defects (hi307 and kny) displayed proteoglycans distributed in a gradient throughout the matrix. Although the mutants pic and hi954, which had severely impaired proteoglycan biosynthesis, showed no PEI staining, dak mutants demonstrated reduced PEI staining and no gradient formation. Most chondrocytes from human osteochondromas showed normal PEI staining. However, approximately 10% of tumour chondrocytes were similar to those found in the dak mutant (e.g., lack of PEI gradients). The cells in the reduced PEI-stained areas are likely associated with loss-of-function mutations in the EXT genes, and they might contribute to tumour initiation by disrupting the gradients.


Asunto(s)
Neoplasias Óseas/metabolismo , Placa de Crecimiento/metabolismo , Osteocondroma/metabolismo , Proteoglicanos/metabolismo , Adolescente , Adulto , Animales , Neoplasias Óseas/ultraestructura , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Placa de Crecimiento/ultraestructura , Humanos , Microscopía Electrónica , Microscopía de Contraste de Fase , Mutación , N-Acetilglucosaminiltransferasas/genética , Proteínas de Neoplasias/metabolismo , Osteocondroma/ultraestructura , Proteoglicanos/deficiencia , Pez Cebra
8.
J Pathol ; 223(4): 531-42, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21294126

RESUMEN

Proteoglycans are molecules consisting of protein cores onto which sugar chains, i.e., glycosaminoglycans (GAGs) such as heparan or chondroitin sulphates, are attached. Proteoglycans are produced by nearly all cells, and once secreted they become a major component of the extracellular matrix. Cartilage is particularly rich in proteoglycans, and changes in the structure and composition of GAGs have been found in osteochondromas and osteoarthritis. The zebrafish (Danio rerio) exhibits fast development, a growth plate-like organization of its craniofacial skeleton and an availability of various mutants, making it a powerful model for the study of human skeletal disorders with unknown aetiology. We analysed skeletons from five zebrafish lines with known mutations in genes involved in proteoglycan synthesis: dackel (dak/ext2), lacking heparan sulphate; hi307 (ß3gat3), deficient for most GAGs; pinscher (pic/slc35b2), presenting defective sulphation of GAGs and other molecules; hi954 (uxs1), lacking Notch and most GAGs due to impaired protein xylosylation; and knypek (kny/gpc4), missing the protein core of the Glypican-4 proteoglycan. Here we show that each mutant displays different phenotypes related to: (a) cartilage morphology; (b) composition of the extracellular matrix; (c) ultrastructure of the extracellular matrix; and (d) the intracellular ultrastructure of chondrocytes, proving that sulphated GAGs orchestrate the cartilage intra- and extracellular ultrastructures. The mild phenotype of the hi307 mutant suggests that proteoglycans consisting of a protein core and a short sugar linker might suffice for proper chondrocyte stacking. Finally, knypek supports the involvement of Glypican-4 in the craniofacial phenotype of Simpson-Golabi-Behmel syndrome and suggests GPC4 as a modulator of the overgrowth phenotype that is associated with this syndrome and is primarily caused by a mutation in GPC3. Moreover, we speculate on the potential involvement of SLC35B2, ß3GAT3 and UXS1 in skeletal dysplasias. This work promotes the use of zebrafish as a model of human skeletal development and associated pathologies.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Cartílago/ultraestructura , Proteoglicanos/deficiencia , Animales , Enfermedades del Desarrollo Óseo/metabolismo , Enfermedades del Desarrollo Óseo/patología , Cartílago/metabolismo , Membrana Celular/ultraestructura , Condrocitos/ultraestructura , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Estudios de Asociación Genética , Glicosaminoglicanos/análisis , Cuerpos de Inclusión/ultraestructura , Uniones Intercelulares/ultraestructura , Microscopía Electrónica , Osteogénesis/genética , Pez Cebra
9.
Free Radic Biol Med ; 183: 69-74, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35314357

RESUMEN

EPR spectroscopy is a technique that provides direct information about free radicals in biological systems. So far, X-band EPR was seldomly used for in vivo studies as the small resonator size and high power used to detect EPR signals were unsuitable for living organisms. Here, we report new solutions which lift some limitations and make X-band EPR suitable for an in vivo detection of free radicals in zebrafish - a small laboratory animal that is often used as a model for various studies related to free radicals. We designed specially-shaped glass and quartz capillaries to ensure the zebrafish's safety during the experiments. The optimal EPR spectrometer parameters, safe for zebrafish embryos and sufficient to obtain EPR spectrum, were 4 scans by 20s, 100G sweep, and 0.8 mW power. Combining the specially-shaped capillary with a multi-harmonic analyzer for the EPR spectrometer allowed increasing the time up to 16 scans by 11s and lowering the power to 0.25 mW. As a proof of principle, we demonstrate the detection of melanin radicals and the 5-DSA spin probe in zebrafish larvae. As fish survive the EPR scans, the possibility of performing multiple measurements of free radicals in living zebrafish offers new tools for studies aiming to understand redox biology and membrane-dependent functions in both health and disease.


Asunto(s)
Melaninas , Pez Cebra , Animales , Espectroscopía de Resonancia por Spin del Electrón/métodos , Radicales Libres/química , Melaninas/química , Óxidos de Nitrógeno
10.
Cell Biosci ; 12(1): 34, 2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35305696

RESUMEN

BACKGROUND: Huntington's disease (HD) is a neurodegenerative disorder whereby mutated huntingtin protein (mHTT) aggregates when polyglutamine repeats in the N-terminal of mHTT exceeds 36 glutamines (Q). However, the mechanism of this pathology is unknown. Siah1-interacting protein (SIP) acts as an adaptor protein in the ubiquitination complex and mediates degradation of other proteins. We hypothesized that mHTT aggregation depends on the dysregulation of SIP activity in this pathway in HD. RESULTS: A higher SIP dimer/monomer ratio was observed in the striatum in young YAC128 mice, which overexpress mHTT. We found that SIP interacted with HTT. In a cellular HD model, we found that wildtype SIP increased mHTT ubiquitination, attenuated mHTT protein levels, and decreased HTT aggregation. We predicted mutations that should stabilize SIP dimerization and found that SIP mutant-overexpressing cells formed more stable dimers and had lower activity in facilitating mHTT ubiquitination and preventing exon 1 mHTT aggregation compared with wildtype SIP. CONCLUSIONS: Our data suggest that an increase in SIP dimerization in HD medium spiny neurons leads to a decrease in SIP function in the degradation of mHTT through a ubiquitin-proteasome pathway and consequently an increase in mHTT aggregation. Therefore, SIP could be considered a potential target for anti-HD therapy during the early stage of HD pathology.

11.
Hum Mutat ; 32(2): E2036-49, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21280143

RESUMEN

Multiple osteochondromas (MO) is a hereditary skeletal disorder characterized by the presence of cartilage capped bony outgrowths at bone surface. Causative mutations in EXT1 or EXT2 genes have been described in 85-90 % of MO cases. However, in about 10-15 % of the MO cases, genomic alterations can not be detected, implying the potential role of other alterations. We have designed a custom-made Agilent oligonucleotide-based microarray, containing 44,000 probes, with tiling coverage of EXT1/2 genes and addition of 68 genes involved in heparan sulfate biosynthesis and other related pathways. Out of the 17 patient samples with previously undetected mutations, a low level of deletion of the EXT1 gene in about 10-15% of the blood cells was detected in two patients and mosaic deletion of the EXT2 was detected in one patient. Here we show that for the first time somatic mosaicism with large genomic deletions as the underlying mechanism in MO formation was identified. We propose that the existence of mosaic mutations and not alterations of other heparan sulfate biosynthesis related genes play a significant role in the development of MO in patients who are tested negative for mutations in Exostosins.


Asunto(s)
Exostosis Múltiple Hereditaria/genética , N-Acetilglucosaminiltransferasas/genética , Femenino , Eliminación de Gen , Humanos , Masculino , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos
12.
PLoS Genet ; 4(7): e1000136, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18654627

RESUMEN

Mutations in human Exostosin genes (EXTs) confer a disease called Hereditary Multiple Exostoses (HME) that affects 1 in 50,000 among the general population. Patients with HME have a short stature and develop osteochondromas during childhood. Here we show that two zebrafish mutants, dackel (dak) and pinscher (pic), have cartilage defects that strongly resemble those seen in HME patients. We have previously determined that dak encodes zebrafish Ext2. Positional cloning of pic reveals that it encodes a sulphate transporter required for sulphation of glycans (Papst1). We show that although both dak and pic are required during cartilage morphogenesis, they are dispensable for chondrocyte and perichondral cell differentiation. They are also required for hypertrophic chondrocyte differentiation and osteoblast differentiation. Transplantation analysis indicates that dak(-/-) cells are usually rescued by neighbouring wild-type chondrocytes. In contrast, pic(-/-) chondrocytes always act autonomously and can disrupt the morphology of neighbouring wild-type cells. These findings lead to the development of a new model to explain the aetiology of HME.


Asunto(s)
Proteínas de Transporte de Anión/genética , Regulación del Desarrollo de la Expresión Génica , N-Acetilglucosaminiltransferasas/genética , Osteogénesis/genética , Proteínas de Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Animales , Proteínas de Transporte de Anión/fisiología , Clonación Molecular , Embrión no Mamífero , Marcadores Genéticos , Homocigoto , Pérdida de Heterocigocidad , Repeticiones de Microsatélite , Modelos Animales , Mutación , N-Acetilglucosaminiltransferasas/fisiología , Osteogénesis/fisiología , Mapeo Físico de Cromosoma , ARN Mensajero/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
13.
Front Cell Neurosci ; 15: 647860, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33986646

RESUMEN

Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disease that is caused by a mutation of the NPC1 or NPC2 gene, in which un-esterified cholesterol and sphingolipids accumulate mainly in the liver, spleen, and brain. Abnormal lysosomal storage leads to cell damage, neurological problems, and premature death. The time of onset and severity of symptoms of NPC disease are highly variable. The molecular mechanisms that are responsible for NPC disease pathology are far from being understood. The present study generated and characterized a zebrafish mutant that lacks Npc2 protein that may be useful for studies at the organismal, cellular, and molecular levels and both small-scale and high-throughput screens. Using CRISPR/Cas9 technology, we knocked out the zebrafish homolog of NPC2. Five-day-old npc2 mutants were morphologically indistinguishable from wildtype larvae. We found that live npc2-/- larvae exhibited stronger Nile blue staining. The npc2-/- larvae exhibited low mobility and a high anxiety-related response. These behavioral changes correlated with downregulation of the mcu (mitochondrial calcium uniporter) gene, ppp3ca (calcineurin) gene, and genes that are involved in myelination (mbp and mpz). Histological analysis of adult npc2-/- zebrafish revealed that pathological changes in the nervous system, kidney, liver, and pancreas correlated with inflammatory responses (i.e., the upregulation of il1, nfκß, and mpeg; i.e., hallmarks of NPC disease). These findings suggest that the npc2 mutant zebrafish may be a model of NPC disease.

14.
Lab Invest ; 90(7): 1091-101, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20421870

RESUMEN

Primary cilia are specialized cell surface projections found on most cell types. Involved in several signaling pathways, primary cilia have been reported to modulate cell and tissue organization. Although they have been implicated in regulating cartilage and bone growth, little is known about the organization of primary cilia in the growth plate cartilage and osteochondroma. Osteochondromas are bone tumors formed along the growth plate, and they are caused by mutations in EXT1 or EXT2 genes. In this study, we show the organization of primary cilia within and between the zones of the growth plate and osteochondroma. Using confocal and electron microscopy, we found that in both tissues, primary cilia have a similar formation but a distinct organization. The shortest ciliary length is associated with the proliferative state of the cells, as confirmed by Ki-67 immunostaining. Primary cilia organization in the growth plate showed that non-polarized chondrocytes (resting zone) are becoming polarized (proliferating and hypertrophic zones), orienting the primary cilia parallel to the longitudinal axis of the bone. The alignment of primary cilia forms one virtual axis that crosses the center of the columns of chondrocytes reflecting the polarity axis of the growth plate. We also show that primary cilia in osteochondromas are found randomly located on the cell surface. Strikingly, the growth plate-like polarity was retained in sub-populations of osteochondroma cells that were organized into small columns. Based on this, we propose the existence of a mixture ('mosaic') of normal lining (EXT(+/-) or EXT(wt/wt)) and EXT(-/-) cells in the cartilaginous cap of osteochondromas.


Asunto(s)
Neoplasias Óseas/patología , Polaridad Celular , Cilios/ultraestructura , Placa de Crecimiento/patología , Osteocondroma/patología , Adolescente , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Proliferación Celular , Niño , Preescolar , Femenino , Placa de Crecimiento/metabolismo , Humanos , Cinesinas/metabolismo , Masculino , Mosaicismo , Osteocondroma/genética , Osteocondroma/metabolismo , Adulto Joven
15.
Plant Mol Biol ; 71(3): 277-89, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19629717

RESUMEN

Chitinases help plants defend themselves against fungal attack, and play roles in other processes, including development. The catalytic modules of most plant chitinases belong to glycoside hydrolase family 19. We report here x-ray structures of such a module from a Norway spruce enzyme, the first for any family 19 class IV chitinase. The bi-lobed structure has a wide cleft lined by conserved residues; the most interesting for catalysis are Glu113, the proton donor, and Glu122, believed to be a general base that activate a catalytic water molecule. Comparisons to class I and II enzymes show that loop deletions in the class IV proteins make the catalytic cleft shorter and wider; from modeling studies, it is predicted that only three N-acetylglucosamine-binding subsites exist in class IV. Further, the structural comparisons suggest that the family 19 enzymes become more closed on substrate binding. Attempts to solve the structure of the complete protein including the associated chitin-binding module failed, however, modeling studies based on close relatives indicate that the binding module recognizes at most three N-acetylglucosamine units. The combined results suggest that the class IV enzymes are optimized for shorter substrates than the class I and II enzymes, or alternatively, that they are better suited for action on substrates where only small regions of chitin chain are accessible. Intact spruce chitinase is shown to possess antifungal activity, which requires the binding module; removing this module had no effect on measured chitinase activity.


Asunto(s)
Quitinasas/química , Picea/enzimología , Proteínas de Plantas/química , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Antifúngicos/farmacología , Basidiomycota/efectos de los fármacos , Basidiomycota/crecimiento & desarrollo , Catálisis , Dominio Catalítico , Quitinasas/genética , Quitinasas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Picea/genética , Pichia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Homología de Secuencia de Aminoácido , Tirosina/genética , Tirosina/metabolismo
16.
Eur J Hum Genet ; 27(1): 61-69, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30254215

RESUMEN

PPP3CA encodes calmodulin-binding catalytic subunit of calcineurin, a ubiquitously expressed calcium/calmodulin-regulated protein phosphatase. Recently de novo PPP3CA variants were reported as a cause of disease in 12 subjects presenting with epileptic encephalopathy and dysmorphic features. We describe a boy with similar phenotype and severe early onset epileptic encephalopathy in whom a novel de novo c.1324C>T (p.(Gln442Ter)) PPP3CA variant was found by whole exome sequencing. Western blot experiments in patient's cells (EBV transformed lymphocytes and neuronal cells derived through reprogramming) indicate that despite normal mRNA abundance the protein expression level is strongly reduced both for the mutated and wild-type protein. By in vitro studies with recombinant protein expressed in E. coli we show that c.1324C>T (p.(Gln442Ter)) results in constitutive activation of the enzyme. Our results confirm the role of PPP3CA defects in pathogenesis of a distinct neurodevelopmental disorder including severe epilepsy and dysmorphism and provide further functional clues regarding the pathogenic mechanism.


Asunto(s)
Calcineurina/genética , Anomalías Craneofaciales/genética , Epilepsia/genética , Mutación Missense , Calcineurina/metabolismo , Células Cultivadas , Niño , Anomalías Craneofaciales/patología , Regulación hacia Abajo , Epilepsia/patología , Humanos , Masculino , Fenotipo , Síndrome
17.
Mater Sci Eng C Mater Biol Appl ; 80: 603-615, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28866207

RESUMEN

The chemical composition of nanoparticles (NPs) may be so designed as to provide measurability for numerous imaging techniques in order to achieve synergistic advantages. Innovative and unique structure of the core/shell ZnO@Gd2O3 NPs possesses luminescent and magnetic properties, and is expected that they will become a new generation of contrast agents for Magnetic Resonance Imaging (MRI) and nanocarriers for theranostics. Thus, by surface biofunctionalization, it is possible to indicate particular nanoparticle compositions which provide efficient imaging, targeted drug delivery, and biocompatibility. Novel ZnO@Gd2O3 NPs were synthesized and biofunctionalized by folic acid (FA) and doxorubicin (Doxo) to provide target and anticancer functions. Physicochemical analyses of the nanoparticles were performed. The biological study included a cytotoxicity in vitro, cellular distribution evaluation, as well as toxicity analyses, performed for the first time, on the in vivo zebrafish (Danio rerio) model. Nanoparticles were found to be effective double-function biomarkers (MRI T2 contrast agents, fluorescent imaging). The biological study showed that ZnO@Gd2O3 and ZnO@Gd2O3@OA-polySi@FA NPs are biocompatible in a particular concentration ranges. Conjugation with folic acid and/or doxorubicin resulted in effective drug delivery targeting. The in vivo results described the toxicology profile toward the zebrafish embryo/larvae, including new data concerning the survival, hatching ratio, and developmental malformations.


Asunto(s)
Nanopartículas del Metal , Fenómenos Químicos , Medios de Contraste , Doxorrubicina , Sistemas de Liberación de Medicamentos , Gadolinio , Magnetismo , Óxido de Zinc
18.
Zebrafish ; 13(4): 266-71, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27028803

RESUMEN

The purpose of the Be Healthy as a Fish educational program that is organized by the International Institute of Molecular and Cell Biology (IIMCB) in Warsaw, Poland, is to educate children about the ways in which zebrafish can be used as a model organism to help scientists understand the way the human body works. We introduce Be Healthy as a Fish workshops to children in fourth to sixth grades of primary school (9-11 years old), together with two kinds of materials under the same title: a book and a movie. We focus on the field of biology in a way that complements the children's classroom curriculum and encourages them to broaden their interests in biology in the future. The Be Healthy as a Fish educational program was inaugurated in 2014 at the Warsaw Science Festival. As of October 31, 2015, 526 primary school students participated in 27 workshops. Approximately 2000 people have received the book and nearly 1700 people have watched the movie. Be Healthy as a Fish: Origin of the Title There is a popular saying in Poland that someone is "healthy as a fish" meaning that one enjoys good health. Does this imply that fish are really that healthy? Obviously, some fish may not be healthy. Just like other animals and humans, they can and do get sick. However, this common and deceptive impression of "healthy fish" results from the fact that people hardly ever have an opportunity to observe a fish that is sick. Why does our educational program have such a possibly misleading title that may not always be true? We took advantage of this provocative title and commonly known expression and assigned to it a completely new meaning: fish can get sick, but they are important for human health. Notably, this catchy sentence intrinsically combines two keywords-health and fish-which, in our opinion, makes it a good title for a successful educational program.


Asunto(s)
Biología/educación , Educación en Salud , Ciencia/educación , Pez Cebra , Animales , Niño , Humanos , Polonia , Instituciones Académicas , Estudiantes
19.
Orphanet J Rare Dis ; 9: 35, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24628984

RESUMEN

BACKGROUND: Mutations in the EXT genes disrupt polymerisation of heparan sulphates (HS) and lead to the development of osteochondroma, an isolated/sporadic- or a multifocal/hereditary cartilaginous bone tumour. Zebrafish (Danio rerio) is a very powerful animal model which has shown to present the same cartilage phenotype that is commonly seen in mice model and patients with the rare hereditary syndrome, Multiple Osteochondroma (MO). METHODS: Zebrafish dackel (dak) mutant that carries a nonsense mutation in the ext2 gene was used in this study. A panel of molecular, morphological and biochemical analyses was used to assess at what step bone formation is affected and what mechanisms underlie changes in the bone formation in the ext2 mutant. RESULTS: During bone development in the ext2-/- zebrafish, chondrocytes fail to undergo terminal differentiation; and pre-osteoblasts do not differentiate toward osteoblasts. This inadequate osteogenesis coincides with increased deposition of lipids/fats along/in the vessels and premature adipocyte differentiation as shown by biochemical and molecular markers. Also, the ext2-null fish have a muscle phenotype, i.e. muscles are shorter and thicker. These changes coexist with misshapen bones. Normal expression of runx2 together with impaired expression of osterix and its master regulator--xbp1 suggest that unfolded protein responses might play a role in MO pathogenesis. CONCLUSIONS: Heparan sulphates are required for terminal differentiation of the cartilaginous template and consecutive formation of a scaffold that is needed for further bone development. HS are also needed for mesenchymal cell differentiation. At least one copy of ext2 is needed to maintain the balance between bone and fat lineages, but homozygous loss of the ext2 function leads to an imbalance between cartilage, bone and fat lineages. Normal expression of runx2 and impaired expression of osterix in the ext2-/- fish indicate that HS are required by osteoblast precursors for their further differentiation towards osteoblastic lineage. Lower expression of xbp1, a master regulator of osterix, suggests that HS affect the 'unfolded protein response', a pathway that is known to control bone formation and lipid metabolism. Our observations in the ext2-null fish might explain the musculoskeletal defects that are often observed in MO patients.


Asunto(s)
Diferenciación Celular/genética , Mesodermo/citología , N-Acetilglucosaminiltransferasas/genética , Animales , Secuencia de Bases , Codón sin Sentido , Cartilla de ADN , Reacción en Cadena de la Polimerasa , Pez Cebra
20.
Virchows Arch ; 460(1): 95-102, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22116208

RESUMEN

Endochondral bone formation requires a cartilage template, known as the growth plate, and vascular invasion, bringing osteoblasts and osteoclasts. Endochondral chondrocytes undergo sequences of cell division, matrix secretion, cell hypertrophy, apoptosis, and matrix calcification/mineralisation. In this study, two critical steps of endochondral bone formation, the deposition of collagen X-rich matrix and blood vessel attraction/invasion, were investigated by immunohistochemistry. Fourteen multiple osteochondromas and six secondary peripheral chondrosarcomas occurring in patients with multiple osteochondromas were studied and compared to epiphyseal growth plate samples. Mutation analysis showed all studied patients (expect one) to harbour a germ-line mutations in either EXT1 or EXT2. Here, we described that homozygous mutations in EXT1/EXT2, which are causative for osteochondroma formation, are likely to affect terminal chondrocyte differentiation and vascularisation in the osteocartilaginous interface. Contrastingly, terminal chondrocyte differentiation and vascularisation seem to be unaffected in secondary peripheral chondrosarcoma. In addition, osteochondromas with high vascular density displayed a higher proliferation rate. A similar apoptotic rate was observed in osteochondromas and secondary peripheral chondrosarcomas. Recently, it has been shown that cells with functional EXT1 and EXT2 are outnumbering EXT1/EXT2 mutated cells in secondary peripheral chondrosarcomas. This might explain the increased type X collagen production and blood vessel attraction in these malignant tumours.


Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Condrosarcoma/metabolismo , Condrosarcoma/patología , Colágeno Tipo X/metabolismo , Progresión de la Enfermedad , Neovascularización Patológica/patología , Adolescente , Adulto , Apoptosis , Diferenciación Celular , Niño , Preescolar , Condrocitos/patología , Femenino , Placa de Crecimiento/metabolismo , Placa de Crecimiento/patología , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , N-Acetilglucosaminiltransferasas/genética , Osificación Heterotópica/patología , Osteocondroma/metabolismo , Osteocondroma/patología , Estudios Retrospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA