RESUMEN
BACKGROUND: Ultra-high field 7T MRI can provide excellent tissue contrast and anatomical details, but is often cost prohibitive, and is not widely accessible in clinical practice. PURPOSE: To generate synthetic 7T images from widely acquired 3T images with deep learning and to evaluate the feasibility of this approach for brain imaging. STUDY TYPE: Prospective. POPULATION: 33 healthy volunteers and 89 patients with brain diseases, divided into training, and evaluation datasets in the ratio 4:1. SEQUENCE AND FIELD STRENGTH: T1-weighted nonenhanced or contrast-enhanced magnetization-prepared rapid acquisition gradient-echo sequence at both 3T and 7T. ASSESSMENT: A generative adversarial network (SynGAN) was developed to produce synthetic 7T images from 3T images as input. SynGAN training and evaluation were performed separately for nonenhanced and contrast-enhanced paired acquisitions. Qualitative image quality of acquired 3T and 7T images and of synthesized 7T images was evaluated by three radiologists in terms of overall image quality, artifacts, sharpness, contrast, and visualization of vessel using 5-point Likert scales. STATISTICAL TESTS: Wilcoxon signed rank tests to compare synthetic 7T images with acquired 7T and 3T images and intraclass correlation coefficients to evaluate interobserver variability. P < 0.05 was considered significant. RESULTS: Of the 122 paired 3T and 7T MRI scans, 66 were acquired without contrast agent and 56 with contrast agent. The average time to generate synthetic images was ~11.4 msec per slice (2.95 sec per participant). The synthetic 7T images achieved significantly improved tissue contrast and sharpness in comparison to 3T images in both nonenhanced and contrast-enhanced subgroups. Meanwhile, there was no significant difference between acquired 7T and synthetic 7T images in terms of all the evaluation criteria for both nonenhanced and contrast-enhanced subgroups (P ≥ 0.180). DATA CONCLUSION: The deep learning model has potential to generate synthetic 7T images with similar image quality to acquired 7T images. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.
Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Humanos , Estudios de Factibilidad , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagenRESUMEN
BACKGROUND: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy has been implemented as a therapeutic alternative for the treatment of drug-refractory essential tremor (ET). However, its impact on the brain structural network is still unclear. PURPOSE: To investigate both global and local alterations of the white matter (WM) connectivity network in ET after MRgFUS thalamotomy. STUDY TYPE: Retrospective. SUBJECTS: Twenty-seven ET patients (61 ± 11 years, 19 males) with MRgFUS thalamotomy and 28 healthy controls (HC) (61 ± 11 years, 20 males) were recruited for comparison. FIELD STRENGTH/SEQUENCE: A 3 T/single shell diffusion tensor imaging by using spin-echo-based echo-planar imaging, three-dimensional T1 weighted imaging by using gradient-echo-based sequence. ASSESSMENT: Patients were undergoing MRgFUS thalamotomy and their clinical data were collected from pre-operation to 6-month post-operation. Network topological metrics, including rich-club organization, small-world, and efficiency properties were calculated. Correlation between the topological metrics and tremor scores in ET groups was also calculated to assess the role of neural remodeling in the brain. STATISTICAL TESTS: Two-sample independent t-tests, chi-squared test, ANOVA, Bonferroni test, and Spearman's correlation. Statistical significance was set at P < 0.05. RESULTS: For ET patients, the strength of rich-club connection and clustering coefficient significantly increased vs. characteristic path length decreased at 6-month post-operation compared with pre-operation. The distribution pattern of rich-club regions was different in ET groups. Specifically, the order of the rich-club regions was changed according to the network degree value after MRgFUS thalamotomy. Moreover, the altered nodal efficiency in the right temporal pole of the superior temporal gyrus (R = 0.434-0.596) and right putamen (R = 0.413-0.436) was positively correlated with different tremor improvement. DATA CONCLUSION: These findings might improve understanding of treatment-induced modulation from a network perspective and may work as an objective marker in the assessment of ET tremor control with MRgFUS thalamotomy. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 4.
Asunto(s)
Temblor Esencial , Sustancia Blanca , Masculino , Humanos , Imagen de Difusión Tensora , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Estudios Retrospectivos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/cirugía , Temblor , Tálamo/diagnóstico por imagen , Tálamo/cirugía , Imagen por Resonancia Magnética/métodos , Resultado del TratamientoRESUMEN
Background Iodinated contrast agents (ICAs), which are widely used in CT angiography (CTA), may cause adverse effects in humans, and their use is time-consuming and costly. Purpose To develop an ICA-free deep learning imaging model for synthesizing CTA-like images and to assess quantitative and qualitative image quality as well as the diagnostic accuracy of synthetic CTA (Syn-CTA) images. Materials and Methods A generative adversarial network (GAN)-based CTA imaging model was trained, validated, and tested on retrospectively collected pairs of noncontrast CT and CTA images of the neck and abdomen from January 2017 to June 2022, and further validated on an external data set. Syn-CTA image quality was evaluated using quantitative metrics. In addition, two senior radiologists scored the visual quality on a three-point scale (3 = good) and determined the vascular diagnosis. The validity of Syn-CTA images was evaluated by comparing the visual quality scores and diagnostic accuracy of aortic and carotid artery disease between Syn-CTA and real CTA scans. Results CT scans from 1749 patients (median age, 60 years [IQR, 50-68 years]; 1057 male patients) were included in the internal data set: 1137 for training, 400 for validation, and 212 for testing. The external validation set comprised CT scans from 42 patients (median age, 67 years [IQR, 59-74 years]; 37 male patients). Syn-CTA images had high similarity to real CTA images (normalized mean absolute error, 0.011 and 0.013 for internal and external test set, respectively; peak signal-to-noise ratio, 32.07 dB and 31.58 dB; structural similarity, 0.919 and 0.906). The visual quality of Syn-CTA and real CTA images was comparable (internal test set, P = .35; external validation set, P > .99). Syn-CTA showed reasonable to good diagnostic accuracy for vascular diseases (internal test set: accuracy = 94%, macro F1 score = 91%; external validation set: accuracy = 86%, macro F1 score = 83%). Conclusion A GAN-based model that synthesizes neck and abdominal CTA-like images without the use of ICAs shows promise in vascular diagnosis compared with real CTA images. Clinical trial registration no. NCT05471869 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Zhang and Turkbey in this issue.
Asunto(s)
Aorta , Angiografía por Tomografía Computarizada , Humanos , Masculino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Arterias CarótidasRESUMEN
Parkinson's disease (PD) is a common, progressive, and incurable neurodegenerative disease. Pharmacological treatment is the first-line therapy for PD, including carbidopa-levodopa, dopamine agonists. However, some patients respond poorly to medication. For these patients, functional neurosurgical treatment is an important option. Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel, minimally invasive surgical option for patients refractory to drugs. Currently, several important anatomical structures can be targeted by MRgFUS in the treatment of PD. However, there is no uniform standard for target selection. This review summarizes the clinical studies on MRgFUS for PD, focusing on the relationship between different treatment targets and the relieved symptoms, to help clinicians determine the ideal therapeutic target for individual patients. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 4.
Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapiaRESUMEN
OBJECTIVES: Susceptibility-weighted imaging (SWI) is crucial for the characterization of intracranial hemorrhage and mineralization, but has the drawback of long acquisition times. We aimed to propose a deep learning model to accelerate SWI, and evaluate the clinical feasibility of this approach. METHODS: A complex-valued convolutional neural network (ComplexNet) was developed to reconstruct high-quality SWI from highly accelerated k-space data. ComplexNet can leverage the inherently complex-valued nature of SWI data and learn richer representations by using complex-valued network. SWI data were acquired from 117 participants who underwent clinical brain MRI examination between 2019 and 2021, including patients with tumor, stroke, hemorrhage, traumatic brain injury, etc. Reconstruction quality was evaluated using quantitative image metrics and image quality scores, including overall image quality, signal-to-noise ratio, sharpness, and artifacts. RESULTS: The average reconstruction time of ComplexNet was 19 ms per section (1.33 s per participant). ComplexNet achieved significantly improved quantitative image metrics compared to a conventional compressed sensing method and a real-valued network with acceleration rates of 5 and 8 (p < 0.001). Meanwhile, there was no significant difference between fully sampled and ComplexNet approaches in terms of overall image quality and artifacts (p > 0.05) at both acceleration rates. Furthermore, ComplexNet showed comparable diagnostic performance to the fully sampled SWI for visualizing a wide range of pathology, including hemorrhage, cerebral microbleeds, and brain tumor. CONCLUSIONS: ComplexNet can effectively accelerate SWI while providing superior performance in terms of overall image quality and visualization of pathology for routine clinical brain imaging. KEY POINTS: ⢠The complex-valued convolutional neural network (ComplexNet) allowed fast and high-quality reconstruction of highly accelerated SWI data, with an average reconstruction time of 19 ms per section. ⢠ComplexNet achieved significantly improved quantitative image metrics compared to a conventional compressed sensing method and a real-valued network with acceleration rates of 5 and 8 (p < 0.001). ⢠ComplexNet showed comparable diagnostic performance to the fully sampled SWI for visualizing a wide range of pathology, including hemorrhage, cerebral microbleeds, and brain tumor.
Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Hemorragia Cerebral , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , NeuroimagenRESUMEN
OBJECTIVE: Although magnetic resonance-guided focused ultrasound (MRgFUS) at the ventral intermediate (VIM) thalamic nucleus is a novel and effective treatment for medication-refractory essential tremor (ET), it is unclear how the ablation lesion affects functional activity. The current study sought to evaluate the functional impact of MRgFUS thalamotomy in patients with ET, as well as to investigate the relationship between neuronal activity changes and tremor control. METHODS: This study included 30 patients with ET who underwent MRgFUS thalamotomy with a 6-month follow-up involving MRI and clinical tremor rating. Additional sex- and age-matched healthy people were recruited for the healthy control group. The fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity were used to identify functional alteration regions of interest (ROIs). To investigate changes after treatment, ROI- and seed-based functional connectivity (FC) analyses were performed. RESULTS: Patients with ET had significantly increased fALFF in the right postcentral gyrus (PoCG; ROI 1), regional homogeneity in the left PoCG (ROI 2), and regional homogeneity in the right PoCG (ROI 3, cluster-level p value family-wise error [pFWE] < 0.05), which were recovered and normalized at 6 months after MRgFUS thalamotomy. FCs between ROI 2 and the right supramarginal gyrus, ROI 2 and the right superior parietal gyrus, and ROI 3 and the left precentral gyrus were also found to be increased after treatment (cluster-level pFWE < 0.05). Furthermore, changes in fALFF, regional homogeneity, and FC values were significantly correlated with tremor relief (p < 0.05). Preoperative FC strengths were found to be inversely related to the postoperative tremor control ratio (p < 0.05). CONCLUSIONS: In patients with ET, the VIM lesion of MRgFUS thalamotomy resulted in symptom-related regional functional recovery associated with sensorimotor and attention networks. Preoperative FC strengths may reflect the postoperative tremor control ratio, implying that this metric could be a useful neuroimaging biomarker for predicting symptom relief in patients with ET following thalamotomy.
Asunto(s)
Temblor Esencial , Psicocirugía , Humanos , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Temblor , Ultrasonografía , Núcleos TalámicosRESUMEN
MRgFUS has just been made available for the 1.7 million Parkinson's disease patients in China. Despite its non-invasive and rapid therapeutic advantages for involuntary tremor, some concerns have emerged about outcomes variability, non-specificity, and side-effects, as little is known about its impact on the long-term plasticity of brain structure. We sought to dissect the characteristics of long-term changes in brain structure caused by MRgFUS lesion and explored potential biological mechanisms. One-year multimodal imaging follow-ups were conducted for nine tremor-dominant Parkinson's disease patients undergoing unilateral MRgFUS thalamotomy. A structural connectivity map was generated for each patient to analyze dynamic changes in brain structure. The human brain transcriptome was extracted and spatially registered for connectivity vulnerability. Genetic functional enrichment analysis was performed and further clarified using in vivo emission computed tomography data. MRgFUS not only abolished tremors but also significantly disrupted the brain network topology. Network-based statistics identified a U-shape MRgFUS-sensitive subnetwork reflective of hand tremor recovery and surgical process, accompanied by relevant cerebral blood flow and gray matter alteration. Using human brain gene expression data, we observed that dopaminergic signatures were responsible for the preferential vulnerability associated with these architectural alterations. Additional PET/SPECT data not only validated these gene signatures, but also suggested that structural alteration was significantly correlated with D1 and D2 receptors, DAT, and F-DOPA measures. There was a long-term dynamic loop between structural alteration and dopaminergic signature for MRgFUS thalamotomy, which may be closely related to the long-term improvements in clinical tremor.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Enfermedad de Parkinson/cirugía , Tálamo/cirugía , Anciano , China , Dopamina/metabolismo , Temblor Esencial/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Procedimientos Neuroquirúrgicos , Proyectos Piloto , Cirugía Asistida por ComputadorRESUMEN
The specific genetic subtypes that gliomas exhibit result in variable clinical courses and the need to involve multidisciplinary teams of neurologists, epileptologists, neurooncologists and neurosurgeons. Currently, the diagnosis of gliomas pivots mainly around the preliminary radiological findings and the subsequent definitive surgical diagnosis (via surgical sampling). Radiomics and radiogenomics present a potential to precisely diagnose and predict survival and treatment responses, via morphological, textural, and functional features derived from MRI data, as well as genomic data. In spite of their advantages, it is still lacking standardized processes of feature extraction and analysis methodology among different research groups, which have made external validations infeasible. Radiomics and radiogenomics can be used to better understand the genomic basis of gliomas, such as tumor spatial heterogeneity, treatment response, molecular classifications and tumor microenvironment immune infiltration. These novel techniques have also been used to predict histological features, grade or even overall survival in gliomas. In this review, workflows of radiomics and radiogenomics are elucidated, with recent research on machine learning or artificial intelligence in glioma.
Asunto(s)
Inteligencia Artificial , Glioma , Humanos , Radiómica , Glioma/diagnóstico por imagen , Glioma/genética , Aprendizaje Automático , Imagen por Resonancia Magnética , Microambiente TumoralRESUMEN
Magnetic resonance-guided focused ultrasound surgery (MRgFUS) thalamotomy is an emerging technique for medication-refractory essential tremor (ET), but with variable outcomes. This study used pattern regression analysis to identify brain signatures predictive of tremor improvements. Fifty-four ET patients (mean age = 63.06 years, standard deviation (SD) = 10.55 years, 38 males) underwent unilateral MRgFUS thalamotomy and were scanned for resting-state functional magnetic resonance imaging (rs-fMRI). Seventy-four healthy controls (mean age = 58.09 years, SD = 10.30 years, 38 males) were recruited for comparison. Tremor responses at 12 months posttreatment were evaluated by the Clinical Rating Scale for Tremor. The fractional amplitude of low-frequency fluctuations (fALFF) was calculated from rs-fMRI data. Two-sample t-test was used to generate a disease-specific mask, within which Multivariate Kernel Ridge Regression analyses were conducted. Predicted and actual clinical scores were compared using Pearson's correlation coefficient (r) and normalized mean squared error (Norm. MSE). Permutation test and leave-one-out strategy were applied for results validation. KRR identified fALFF patterns that significantly predicted the hand tremor improvement (r = 0.23, P = 0.025; Norm. MSE = 0.05, P = 0.026) and the postural tremor improvement (r = 0.28, P = 0.025; Norm. MSE = 0.06, P = 0.023), but not action tremor improvement. Lobule VI of right cerebellum (Cerebelum_6_R), right superior occipital gyrus (Occipital_Sup_R) and lobule X of vermis (Vermis_10) contributed most for hand tremor prediction (normalized weights (NW): 2.77%, 2.40%, 2.34%) while Vermis_10, left supplementary motor area (Supp_Motor_Area_L) and right hippocampus (Hippocampus_R) for postural tremor prediction (NW: 2.69%, 2.12%, 2.05%). The low contributing NW of the individual brain regions suggested that the fALFF pattern as a whole is an overall predicting feature. Preoperative fALFF pattern predicts tremor benefits induced by MRgFUS thalamotomy. ClinicalTrials.gov number: NCT04570046.
Asunto(s)
Temblor Esencial , Aprendizaje Automático , Imagen por Resonancia Magnética , Tálamo , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encéfalo/cirugía , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Temblor Esencial/cirugía , Temblor Esencial/fisiopatología , Imagen por Resonancia Magnética/métodos , Tálamo/cirugía , Tálamo/diagnóstico por imagen , Tálamo/fisiopatología , Resultado del TratamientoRESUMEN
Background: The mechanism underlying tinnitus remains unclear, and when it coexists with vestibular schwannoma (VS), it can significantly diminish the quality of life for affected patients. This study aimed to determine the correlation between preoperative clinical characteristics of VS, postoperative changes in brain function, and tinnitus in patients with VS through a cohort study. Methods: We collected data from 80 patients with VS preoperatively and 28 patients with VS preoperatively and postoperatively, and recruited 28 healthy controls. We used Chi-squared tests and unpaired t-tests to identify clinical characteristics with a significant preoperative effect. We used paired t-tests to identify brain regions where patients demonstrated significant changes in amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) postoperatively. Tinnitus severity was evaluated using the Tinnitus Handicap Inventory (THI) and Visual Analogue Scale (VAS). Pearson correlation coefficients were applied to assess the relationship between the changes in ALFF and ReHo and the changes in THI and VAS scores postoperatively. We also conducted seed- and region of interest (ROI)-based functional connectivity (FC) analyses. Results: Before surgery, patients with VS with tinnitus (n=49) had smaller tumors (t=3.293; P<0.001), more solid tumor (χ2=4.559; P=0.033), and less extrusion into the cerebellum brain stem (χ2=10.345; P=0.001) than those without tinnitus (n=31). After surgery, the 28 patients with VS showed a significant reduction in ALFF in the left Cerebellum_Crus2 (a lobule in the cerebellum anatomy) (ROI 1) and a significant reduction in ReHo in the left Cerebellum_Crus1 (a lobule in the cerebellum anatomy) (ROI 2) and the right precuneus (ROI 3). Conversely, ReHo was significantly increased in the right precentral gyrus (ROI 4) [cluster-level P value family-wise error (PFWE) <0.05]. The changes in ALFF values were negatively correlated with changes in the VAS score (r=-0.32; P<0.05). The FC strengths of patients between ROI 2 and the left and right posterior cingulate gyrus were significantly decreased postoperatively [false discovery rate (FDR) correction; P<0.05]. Conclusions: Preoperative tinnitus in patients with VS may be influenced by tumor characteristics. The functional activities of brain regions are possibly altered postoperatively, which may be involved in the maintenance of postoperative tinnitus. Notably, the changes in ALFF are correlated with tinnitus.
RESUMEN
AIMS: To examine whether functional connectivity (FC) of the occipital gyrus differs between patients with Parkinson's disease (PD) motor subtypes and healthy controls (HCs). METHODS: We enrolled 30 PD patients exhibiting tremor dominance (TD), 43 PD patients with postural instability and gait disturbance (PIGD), and 42 HCs. The occipital gyrus was partitioned into six areas of interest, as seed points, via the Anatomical Automatic Labeling template to compare the FC of the three groups and analyze the relationship of FC with clinical scales. RESULTS: Compared with the PIGD group, the TD group showed increased FC between the left superior occipital gyrus (SOG.L) and right median cingulate and paracingulate gyri (DCG.R)/right paracentral lobule/bilateral inferior parietal, but supramarginal and angular gyri; the left middle occipital gyrus (MOG.L) and left posterior cingulate gyrus (PCG.L); the MOG.R and SOG.L/right calcarine fissure and surrounding cortex/DCG.R/PCG.L/right cuneus; the left inferior occipital gyrus (IOG.L) and right caudate nucleus; and the IOG.R and PCG.L. CONCLUSION: Differentiated FC between the occipital gyrus and other brain areas within the PD motor subtypes, which may serve as neural markers to distinguish between patients with TD and PIGD PD.
Asunto(s)
Vías Nerviosas , Lóbulo Occipital , Enfermedad de Parkinson , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Occipital/patología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Vías Nerviosas/patología , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios RetrospectivosRESUMEN
OBJECTIVE: To investigate the clinical efficacy of fire acupuncture (FA) on plaque psoriasis (PP), exploring its suitable syndrome types, in order to achieve better therapeutic effects, accelerate the possibility of psoriasis skin lesion recovery, and provide assistance for clinical treatment. METHODS: A total of 8 patients with PP aged between 18 and 60 years were recruited and treated with FA once a week, and the lesion area and severity index (PASI), visual analog scale and pruritus were measured before, 2, 4 and 8 weeks after treatment and at the follow-up period (week 12), respectively. Visual analog scale, and dermoscopy were used for assessment. RESULTS: All patients showed improvement in pruritus after 1 FA treatment, and lesions were reduced to varying degrees after 2 weeks. Except for patients 5 and 8, who only achieved effective results due to severe disease, all other patients with psoriasis achieved significant results at 8 weeks after treatment. CONCLUSION: FA can significantly control the development of lesions, reduce the symptoms of PP lesions and pruritus, and help prevent psoriasis recurrence.
Asunto(s)
Terapia por Acupuntura , Psoriasis , Humanos , Lactante , Psoriasis/tratamiento farmacológico , Resultado del Tratamiento , Prurito/etiología , Prurito/terapia , Investigación , Índice de Severidad de la Enfermedad , Método Doble CiegoRESUMEN
Focused ultrasound is a noninvasive, radiation-free and real-time therapeutic approach to treat deep-seated targets, which benefits numerous diseases otherwise requiring surgeries. Treatment efficiency is one of the key factors determining therapeutic outcomes, but improving it solely by increasing the total power can be limited by the performance of general ultrasound devices. To address this, multi-frequency therapeutic ultrasound, using additional ultrasound waves of different frequencies on top of the standard single-frequency wave, provides a promising method for treatment efficiency enhancement with limited power. Several applications and numerical works have demonstrated its superiority on treatment enhancement. This paper presents an overview of the mechanisms, implementations, applications and decisive parameters of the multi-frequency therapeutic ultrasound, which could help to pave the way for better understanding and further developing this technology in the future.
Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Ultrasonografía , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodosRESUMEN
Background: Regional differences in gray matter volume (GMV) have been reported to be a reliable marker for diagnosing Parkinson's disease (PD). This study aimed to explore the clinical value of GMV to assess magnetic resonance imaging-guided focused ultrasound (MRgFUS) thalamotomy as a treatment for tremor-dominant PD (TDPD). Methods: Nine TDPD patients with MRgFUS thalamotomy were recruited for structural magnetic resonance image (MRI) scanning and clinical score evaluation. GMV was calculated. To investigate changes after treatment, voxel- and region of interest (ROI)-wise GMV analyses were performed. Then, GMV with significant differences was extracted from patients to investigate its dynamic alterations by one-way repeated-measures analysis of variance (ANOVA). The nonparametric Spearman rank correlation analysis was used to evaluate the relationship between GMV alterations and tremor improvement after thalamotomy. Results: Tremors were significantly relieved after MRgFUS thalamotomy in nine patients (P<0.05). The treated hand tremor scores improved 74.82% on average in patients from pre-operation to 12 months post-operation. Voxel-wise analysis at the cluster level showed a significant decrease in GMV in the left middle occipital gyrus (MOG) [t=11.81, voxel-level P<0.001, cluster-level Pfamily-wise error (FWE) <0.05] and an increase in GMV in the left precentral gyrus (PreCG) (t=7.99, voxel-level P<0.001, cluster-level PFWE <0.05) in TDPD patients from preoperative to 12 months post-operation, which was significantly correlated with tremor scores (rho =0.346-0.439, P<0.05). ROI-wise analysis showed that GMV related to MRgFUS thalamotomy was associated with long-term structural alterations (P<0.05 with Bonferroni correction), including specific basal ganglia and related nuclei and cerebellum subregions. Conclusions: GMV can be used to reflect tremor improvement after MRgFUS thalamotomy and be helpful to better understand the distant effect of MRgFUS thalamotomy and the involvement of GMV in tremor control in TDPD. Trial Registration: ClinicalTrials.gov identifier: NCT04570046.
RESUMEN
AIM: This study aimed to evaluate the diagnostic value of ultrahigh-field magnetic resonance imaging (MRI) for brain tumors in clinical practice. METHODS: Thirty patients with brain tumors underwent 7- and 3-T MRI. The performance and diagnostic confidence of 7- and 3-T MRI in the visualization of tumor details such as internal structure and feeding artery were evaluated by radiologists. Contrast-enhanced region performance and tumor detail diagnostic confidence score (DCS) were calculated and compared between 7 and 3T using Wilcoxon rank sum test. RESULTS: In 19 with obvious enhancement and 11 cases without obvious enhancement, 7- and 3-T MRI showed similar performance. The tumors' internal structure and feeding artery were more clearly depicted by 7-T MRI (62.2% and 54.4%, respectively) than by 3-T MRI (2.2% and 6.7%, respectively). Furthermore, the mean DCSs of both internal structure and feeding artery were higher at 7T than at 3T (internal structure: 16.29 ± 9.67 vs. -5.79 ± 4.12, p = 0.028; feeding artery: 21.96 ± 6.93 vs. 4.46 ± 7.07, p = 0.028). The DCS was more significantly improved in the senior radiologist group. CONCLUSION: Better visualization of brain tumor details and higher tumor detail diagnostic confidence can be obtained with 7-T MRI.
Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagenRESUMEN
MRI-guided focused ultrasound (MRgFUS) thalamotomy is a novel, effective, and non-invasive treatment for essential tremor (ET). However, the network mediating MRgFUS in treating ET is not precisely known. This study aimed to identify the disease-specific network associated with the therapeutic effects of MRgFUS thalamotomy on ET and investigate its regional characteristics and genetic signatures to gain insights into the neurobiological mechanism of ET and MRgFUS thalamotomy. Twenty-four ET patients treated with MRgFUS thalamotomy underwent resting-state functional MRI at baseline and postoperative 6 months to measure the fractional amplitude of low-frequency fluctuation (fALFF). Ordinal trends canonical variates analysis (OrT/CVA) was performed on the within-subject fALFF data to identify the ET-related network. Genetic functional enrichment analysis was conducted to study the genetic signatures of this ET-related network using brain-wide gene expression data. OrT/CVA analysis revealed a significant ET-related network for which subject expression showed consistent increases after surgery. The treatment-induced increases in subject expression were significantly correlated with concurrent tremor improvement. This network was characterized by increased activity in the sensorimotor cortex and decreased activity in the posterior cingulate cortex. It was correlated with an expression map of a weighted combination genes enriched for mitochondria relevant ontology terms. This study demonstrates that the therapeutic effects of MRgFUS thalamotomy on ET are associated with modulating a distinct ET-related network which may be driven by mitochondria relevant neurobiological mechanism. Quantification of treatment-induced modulation on the ET-related network can provide an objective marker for evaluating the efficacy of MRgFUS thalamotomy.
Asunto(s)
Temblor Esencial , Humanos , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Tálamo/diagnóstico por imagen , Tálamo/cirugía , Imagen por Resonancia Magnética , Encéfalo , Resultado del TratamientoRESUMEN
OBJECTIVE: Tractography-based direct targeting of the ventral intermediate nucleus (T-VIM) is a novel method that provides patient-specific VIM coordinates. This study aimed to explore the accuracy and predictive value of using T-VIM in combination with tractography and resting-state functional connectivity techniques to perform magnetic resonance imaging-guided focused ultrasound (MRgFUS) thalamotomy as a treatment of Parkinson's disease (PD). METHODS: PD patients underwent MRgFUS thalamotomy and were recruited for functional MRI scanning. A subscore of the Clinical Rating Scale for Tremor was used to evaluate tremor improvement. T-VIM and surgical VIM (S-VIM) were defined on preoperative diffusion tensor MRI and 24-hour postoperative T1-weighted imaging, respectively. The overlapping volume and center distance between S-VIM and T-VIM were measured to determine their correlations with 12-month postoperative tremor improvement. Moreover, pretherapeutic functional connectivity of T-VIM or S-VIM, based on region-of-interest connectivity and whole-brain seed-to-voxel connectivity, was measured with the resting-state functional connectivity technique to investigate their correlations with tremor improvement. RESULTS: All patients had excellent tremor improvement (mean [range] tremor improvement 74.82% [50.00%-94.44%]). The authors found that both overlapping volume and center distance between T-VIM and S-VIM were significantly correlated with tremor improvement (r = 0.788 and p = 0.012 for overlapping volume; r = -0.696 and p = 0.037 for center distance). Pretherapeutic functional connectivity of T-VIM with the ipsilateral sensorimotor cortex (r = 0.876 and p = 0.002), subthalamic nucleus (r = 0.700 and p = 0.036), and visual area (r = 0.911 and p = 0.001) was significantly and positively correlated with tremor improvement. CONCLUSIONS: T-VIM may improve the clinical application of MRgFUS thalamotomy as a treatment of PD. Pretherapeutic functional connectivity of T-VIM with the ipsilateral sensorimotor cortex, subthalamic nucleus, and visual area may predict PD tremor responses after MRgFUS thalamotomy.
RESUMEN
OBJECTIVE: MRI-guided focused ultrasound (MRgFUS) thalamotomy is a novel and minimally invasive alternative for medication-refractory tremor in Parkinson's disease (PD). However, the impact of MRgFUS thalamotomy on spontaneous neuronal activity in PD remains unclear. The purpose of the current study was to evaluate the effects of MRgFUS thalamotomy on local fluctuations in neuronal activity as measured by the fractional amplitude of low-frequency fluctuations (fALFF) in patients with PD. METHODS: Participants with PD undergoing MRgFUS thalamotomy were recruited. Tremor scores were assessed before and 3 and 12 months after treatment using the Clinical Rating Scale for Tremor. MRI data were collected before and 1 day, 1 week, 1 month, 3 months, and 12 months after thalamotomy. The fALFF was calculated. A whole-brain voxel-wise paired t-test was used to identify significant changes in fALFF at 12 months after treatment compared to baseline. Then fALFF in the regions with significant differences were extracted from fALFF maps of patients for further one-way repeated-measures ANOVA to investigate its dynamic alterations. The association between fALFF changes induced by thalamotomy and tremor improvement were evaluated using the nonparametric Spearman rank test. RESULTS: Nine participants with PD (mean age ± SD 64.7 ± 6.1 years, 8 males) were evaluated. Voxel-based analysis showed that fALFF in the left occipital cortex (Brodmann area 17 [BA17]) significantly decreased at 12 months after thalamotomy compared to baseline (voxel p < 0.001, cluster p < 0.05 family-wise error [FWE] corrected). At baseline, fALFF in the left occipital BA17 in patients was elevated compared with that in 9 age- and gender-matched healthy subjects (p < 0.05). Longitudinal analysis displayed the dynamic changes of fALFF in this region (F (5,40) = 3.61, p = 0.009). There was a significant positive correlation between the falling trend in fALFF in the left occipital BA17 and hand tremor improvement after treatment over 3 time points (Spearman's rho = 0.44, p = 0.02). CONCLUSIONS: The present study investigated the impact of MRgFUS ventral intermediate nucleus thalamotomy on spontaneous neural activity in medication-refractory tremor-dominant PD. The visual area is, for the first time, reported as relevant to tremor improvement in PD after MRgFUS thalamotomy, suggesting a distant effect of MRgFUS thalamotomy and the involvement of specific visuomotor networks in tremor control in PD.