Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Physiol Endocrinol Metab ; 313(3): E303-E313, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28611026

RESUMEN

The blood vasculature responds to insulin, influencing hemodynamic changes in the periphery, which promotes tissue nutrient and oxygen delivery and thus metabolic function. The lymphatic vasculature regulates fluid and lipid homeostasis, and impaired lymphatic function can contribute to atherosclerosis and obesity. Recent studies have suggested a role for endothelial cell (EC) mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) in developmental angiogenesis and lymphangiogenesis as well as atherosclerosis. Here, we show that inducible EC Map4k4 deletion in adult mice ameliorates metabolic dysfunction in obesity despite the development of chylous ascites and a concomitant striking increase in adipose tissue lymphocyte content. Despite these defects, animals lacking endothelial Map4k4 were protected from skeletal muscle microvascular rarefaction in obesity, and primary ECs lacking Map4k4 displayed reduced senescence and increased metabolic capacity. Thus endothelial Map4k4 has complex and opposing functions in the blood and lymphatic endothelium postdevelopment. Whereas blood endothelial Map4k4 promotes vascular dysfunction and impairs glucose homeostasis in adult animals, lymphatic endothelial Map4k4 is required to maintain lymphatic vascular integrity and regulate immune cell trafficking in obesity.


Asunto(s)
Aterosclerosis/genética , Ascitis Quilosa/genética , Células Endoteliales/metabolismo , Metabolismo Energético/genética , Resistencia a la Insulina/genética , Linfangiogénesis/genética , Obesidad/genética , Proteínas Serina-Treonina Quinasas/genética , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Aterosclerosis/metabolismo , Glucemia/metabolismo , Senescencia Celular/genética , Citometría de Flujo , Prueba de Tolerancia a la Glucosa , Linfocitos , Ratones , Ratones Noqueados , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica/genética , Obesidad/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Quinasa de Factor Nuclear kappa B
2.
FASEB J ; 29(7): 2959-69, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25805830

RESUMEN

Obesity promotes insulin resistance associated with liver inflammation, elevated glucose production, and type 2 diabetes. Although insulin resistance is attenuated in genetic mouse models that suppress systemic inflammation, it is not clear whether local resident macrophages in liver, denoted Kupffer cells (KCs), directly contribute to this syndrome. We addressed this question by selectively silencing the expression of the master regulator of inflammation, NF-κB, in KCs in obese mice. We used glucan-encapsulated small interfering RNA particles (GeRPs) that selectively silence gene expression in macrophages in vivo. Following intravenous injections, GeRPs containing siRNA against p65 of the NF-κB complex caused loss of NF-κB p65 expression in KCs without disrupting NF-κB in hepatocytes or macrophages in other tissues. Silencing of NF-κB expression in KCs in obese mice decreased cytokine secretion and improved insulin sensitivity and glucose tolerance without affecting hepatic lipid accumulation. Importantly, GeRPs had no detectable toxic effect. Thus, KCs are key contributors to hepatic insulin resistance in obesity and a potential therapeutic target for metabolic disease.


Asunto(s)
Resistencia a la Insulina/fisiología , Macrófagos del Hígado/metabolismo , Obesidad/metabolismo , Factor de Transcripción ReIA/antagonistas & inhibidores , Animales , Citocinas/metabolismo , Sistemas de Liberación de Medicamentos , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Silenciador del Gen , Prueba de Tolerancia a la Glucosa , Humanos , Técnicas In Vitro , Inyecciones Intravenosas , Macrófagos del Hígado/patología , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/genética , Obesidad/patología , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Factor de Transcripción ReIA/genética
3.
Mol Pharm ; 13(3): 964-978, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26815386

RESUMEN

Translation of siRNA technology into the clinic is limited by the need for improved delivery systems that target specific cell types. Macrophages are particularly attractive targets for RNAi therapy because they promote pathogenic inflammatory responses in a number of important human diseases. We previously demonstrated that a multicomponent formulation of ß-1,3-d-glucan-encapsulated siRNA particles (GeRPs) can specifically and potently silence genes in mouse macrophages. A major advance would be to simplify the GeRP system by reducing the number of delivery components, thus enabling more facile manufacturing and future commercialization. Here we report the synthesis and evaluation of a simplified glucan-based particle (GP) capable of delivering siRNA in vivo to selectively silence macrophage genes. Covalent attachment of small-molecule amines and short peptides containing weak bases to GPs facilitated electrostatic interaction of the particles with siRNA and aided in the endosomal release of siRNA by the proton-sponge effect. Modified GPs were nontoxic and were efficiently internalized by macrophages in vitro. When injected intraperitoneally (i.p.), several of the new peptide-modified GPs were found to efficiently deliver siRNA to peritoneal macrophages in lean, healthy mice. In an animal model of obesity-induced inflammation, i.p. administration of one of the peptide-modified GPs (GP-EP14) bound to siRNA selectively reduced the expression of target inflammatory cytokines in the visceral adipose tissue macrophages. Decreasing adipose tissue inflammation resulted in an improvement of glucose metabolism in these metabolically challenged animals. Thus, modified GPs represent a promising new simplified system for the efficient delivery of therapeutic siRNAs specifically to phagocytic cells in vivo for modulation of inflammation responses.


Asunto(s)
Aminas/química , Sistemas de Liberación de Medicamentos , Terapia Genética , Macrófagos Peritoneales/efectos de los fármacos , Osteopontina/antagonistas & inhibidores , Fragmentos de Péptidos/química , ARN Interferente Pequeño/administración & dosificación , beta-Glucanos/química , Animales , Células Cultivadas , Humanos , Inflamación/genética , Inflamación/terapia , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/terapia , Osteopontina/genética , Proteoglicanos , ARN Interferente Pequeño/genética
4.
Proc Natl Acad Sci U S A ; 110(20): 8278-83, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23630254

RESUMEN

Adipose tissue (AT) inflammation and infiltration by macrophages is associated with insulin resistance and type 2 diabetes in obese humans, offering a potential target for therapeutics. However, whether AT macrophages (ATMs) directly contribute to systemic glucose intolerance has not been determined. The reason is the lack of methods to ablate inflammatory genes expressed in macrophages specifically localized within AT depots, leaving macrophages in other tissues unaffected. Here we report that i.p. administration of siRNA encapsulated by glucan shells in obese mice selectively silences genes in epididymal ATMs, whereas macrophages within lung, spleen, kidney, heart, skeletal muscle, subcutaneous (SubQ) adipose, and liver are not targeted. Such administration of GeRPs to silence the inflammatory cytokines TNF-α or osteopontin in epididymal ATMs of obese mice caused significant improvement in glucose tolerance. These data are consistent with the hypothesis that cytokines produced by ATMs can exacerbate whole-body glucose intolerance.


Asunto(s)
Tejido Adiposo/citología , Silenciador del Gen , Intolerancia a la Glucosa/metabolismo , Macrófagos/metabolismo , Obesidad/fisiopatología , Animales , Citocinas/metabolismo , Epidídimo/citología , Epidídimo/metabolismo , Intolerancia a la Glucosa/genética , Inflamación , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Microscopía Fluorescente , Osteopontina/metabolismo , Fagocitosis , Interferencia de ARN , ARN Interferente Pequeño , Factor de Necrosis Tumoral alfa/metabolismo
5.
Am J Physiol Endocrinol Metab ; 307(4): E374-83, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24986598

RESUMEN

Proinflammatory pathways in adipose tissue macrophages (ATMs) can impair glucose tolerance in obesity, but ATMs may also be beneficial as repositories for excess lipid that adipocytes are unable to store. To test this hypothesis, we selectively targeted visceral ATMs in obese mice with siRNA against lipoprotein lipase (LPL), leaving macrophages within other organs unaffected. Selective silencing of ATM LPL decreased foam cell formation in visceral adipose tissue of obese mice, consistent with a reduced supply of fatty acids from VLDL hydrolysis. Unexpectedly, silencing LPL also decreased the expression of genes involved in fatty acid uptake (CD36) and esterification in ATMs. This deficit in fatty acid uptake capacity was associated with increased circulating serum free fatty acids. Importantly, ATM LPL silencing also caused a marked increase in circulating fatty acid-binding protein-4, an adipocyte-derived lipid chaperone previously reported to induce liver insulin resistance and glucose intolerance. Consistent with this concept, obese mice with LPL-depleted ATMs exhibited higher hepatic glucose production from pyruvate and glucose intolerance. Silencing CD36 in ATMs also promoted glucose intolerance. Taken together, the data indicate that LPL secreted by ATMs enhances their ability to sequester excess lipid in obese mice, promoting systemic glucose tolerance.


Asunto(s)
Tejido Adiposo/metabolismo , Glucemia/metabolismo , Metabolismo de los Lípidos , Macrófagos/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Animales , Células Cultivadas , Intolerancia a la Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Lipoproteína Lipasa/antagonistas & inhibidores , Lipoproteína Lipasa/genética , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Obesidad/patología , ARN Interferente Pequeño/farmacología
6.
Mol Cell Biol ; 36(12): 1740-9, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27044870

RESUMEN

The molecular mechanisms underlying lymphatic vascular development and function are not well understood. Recent studies have suggested a role for endothelial cell (EC) mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) in developmental angiogenesis and atherosclerosis. Here, we show that constitutive loss of EC Map4k4 in mice causes postnatal lethality due to chylothorax, suggesting that Map4k4 is required for normal lymphatic vascular function. Mice constitutively lacking EC Map4k4 displayed dilated lymphatic capillaries, insufficient lymphatic valves, and impaired lymphatic flow; furthermore, primary ECs derived from these animals displayed enhanced proliferation compared with controls. Yeast 2-hybrid analyses identified the Ras GTPase-activating protein Rasa1, a known regulator of lymphatic development and lymphatic endothelial cell fate, as a direct interacting partner for Map4k4. Map4k4 silencing in ECs enhanced basal Ras and extracellular signal-regulated kinase (Erk) activities, and primary ECs lacking Map4k4 displayed enhanced lymphatic EC marker expression. Taken together, these results reveal that EC Map4k4 is critical for lymphatic vascular development by regulating EC quiescence and lymphatic EC fate.


Asunto(s)
Quilotórax/mortalidad , Péptidos y Proteínas de Señalización Intracelular/genética , Vasos Linfáticos/fisiología , Proteínas Serina-Treonina Quinasas/genética , Animales , Animales Recién Nacidos , Línea Celular , Proliferación Celular , Quilotórax/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Quinasa de Factor Nuclear kappa B
7.
Nat Commun ; 6: 8995, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26688060

RESUMEN

Signalling pathways that control endothelial cell (EC) permeability, leukocyte adhesion and inflammation are pivotal for atherosclerosis initiation and progression. Here we demonstrate that the Sterile-20-like mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), which has been implicated in inflammation, is abundantly expressed in ECs and in atherosclerotic plaques from mice and humans. On the basis of endothelial-specific MAP4K4 gene silencing and gene ablation experiments in Apoe(-/-) mice, we show that MAP4K4 in ECs markedly promotes Western diet-induced aortic macrophage accumulation and atherosclerotic plaque development. Treatment of Apoe(-/-) and Ldlr(-/-) mice with a selective small-molecule MAP4K4 inhibitor also markedly reduces atherosclerotic lesion area. MAP4K4 silencing in cultured ECs attenuates cell surface adhesion molecule expression while reducing nuclear localization and activity of NFκB, which is critical for promoting EC activation and atherosclerosis. Taken together, these results reveal that MAP4K4 is a key signalling node that promotes immune cell recruitment in atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Enfermedades Vasculares/metabolismo , Aminopiridinas/farmacología , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/genética , Regulación de la Expresión Génica/fisiología , Inflamación/genética , Macrófagos , Masculino , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Enfermedades Vasculares/genética , Quinasa de Factor Nuclear kappa B
8.
Cell Metab ; 19(1): 162-171, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24374218

RESUMEN

Adipose tissue (AT) of obese mice and humans accumulates immune cells, which secrete cytokines that can promote insulin resistance. AT macrophages (ATMs) are thought to originate from bone-marrow-derived monocytes, which infiltrate the tissue from the circulation. Here, we show that a major fraction of macrophages unexpectedly undergo cell division locally within AT, as detected by Ki67 expression and 5-ethynyl-2'-deoxyuridine incorporation. Macrophages within the visceral AT (VAT), but not those in other tissues (including liver and spleen), displayed increased proliferation in obesity. Importantly, depletion of blood monocytes had no impact on ATM content, whereas their proliferation in situ continued. Treatment with monocyte chemotactic protein 1 (MCP-1) induced macrophage cell division in AT explants, whereas mcp-1 deficiency in vivo decreased ATM proliferation. These results reveal that, in addition to blood monocyte recruitment, in situ proliferation driven by MCP-1 is an important process by which macrophages accumulate in the VAT in obesity.


Asunto(s)
Tejido Adiposo/patología , Inflamación/patología , Macrófagos/patología , Obesidad/patología , Animales , Biomarcadores/metabolismo , División Celular , Proliferación Celular , Quimiocina CCL2/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA