Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2403188121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990950

RESUMEN

The kinetoplastid parasite, Trypanosoma brucei, undergoes a complex life cycle entailing slender and stumpy bloodstream forms in mammals and procyclic and metacyclic forms (MFs) in tsetse fly hosts. The numerous gene regulatory events that underlie T. brucei differentiation between hosts, as well as between active and quiescent stages within each host, take place in the near absence of transcriptional control. Rather, differentiation is controlled by RNA-binding proteins (RBPs) that associate with mRNA 3' untranslated regions (3'UTRs) to impact RNA stability and translational efficiency. DRBD18 is a multifunctional T. brucei RBP, shown to impact mRNA stability, translation, export, and processing. Here, we use single-cell RNAseq to characterize transcriptomic changes in cell populations that arise upon DRBD18 depletion, as well as to visualize transcriptome-wide alterations to 3'UTR length. We show that in procyclic insect stages, DRBD18 represses expression of stumpy bloodstream form and MF transcripts. Additionally, DRBD18 regulates the 3'UTR lengths of over 1,500 transcripts, typically promoting the use of distal polyadenylation sites, and thus the inclusion of 3'UTR regulatory elements. Remarkably, comparison of polyadenylation patterns in DRBD18 knockdowns with polyadenylation patterns in stumpy bloodstream forms shows numerous similarities, revealing a role for poly(A) site selection in developmental gene regulation, and indicating that DRBD18 controls this process for a set of transcripts. RNA immunoprecipitation supports a direct role for DRBD18 in poly(A) site selection. This report highlights the importance of alternative polyadenylation in T. brucei developmental control and identifies a critical RBP in this process.


Asunto(s)
Regiones no Traducidas 3' , Estadios del Ciclo de Vida , Proteínas Protozoarias , Proteínas de Unión al ARN , Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Estadios del Ciclo de Vida/genética , Regiones no Traducidas 3'/genética , Animales , Transcriptoma , ARN Mensajero/genética , ARN Mensajero/metabolismo , Poli A/metabolismo , Poli A/genética , Poliadenilación
3.
Acta Neuropathol ; 137(4): 637-655, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30770999

RESUMEN

Histone H3 K27M mutation is the defining molecular feature of the devastating pediatric brain tumor, diffuse intrinsic pontine glioma (DIPG). The prevalence of histone H3 K27M mutations indicates a critical role in DIPGs, but the contribution of the mutation to disease pathogenesis remains unclear. We show that knockdown of this mutation in DIPG xenografts restores K27M-dependent loss of H3K27me3 and delays tumor growth. Comparisons of matched DIPG xenografts with and without K27M knockdown allowed identification of mutation-specific effects on the transcriptome and epigenome. The resulting transcriptional changes recapitulate expression signatures from K27M primary DIPG tumors and are strongly enriched for genes associated with nervous system development. Integrated analysis of ChIP-seq and expression data showed that genes upregulated by the mutation are overrepresented in apparently bivalent promoters. Many of these targets are associated with more immature differentiation states. Expression profiles indicate K27M knockdown decreases proliferation and increases differentiation within lineages represented in DIPG. These data suggest that K27M-mediated loss of H3K27me3 directly regulates a subset of genes by releasing poised promoters, and contributes to tumor phenotype and growth by limiting differentiation. The delayed tumor growth associated with knockdown of H3 K27M provides evidence that this highly recurrent mutation is a relevant therapeutic target.


Asunto(s)
Neoplasias del Tronco Encefálico/genética , Diferenciación Celular/genética , Glioma Pontino Intrínseco Difuso/genética , Histonas/genética , Mutación , Animales , Neoplasias del Tronco Encefálico/patología , Línea Celular Tumoral , Glioma Pontino Intrínseco Difuso/patología , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Ratones
4.
N Engl J Med ; 373(24): 2336-2346, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26580448

RESUMEN

BACKGROUND: The prevalence and spectrum of predisposing mutations among children and adolescents with cancer are largely unknown. Knowledge of such mutations may improve the understanding of tumorigenesis, direct patient care, and enable genetic counseling of patients and families. METHODS: In 1120 patients younger than 20 years of age, we sequenced the whole genomes (in 595 patients), whole exomes (in 456), or both (in 69). We analyzed the DNA sequences of 565 genes, including 60 that have been associated with autosomal dominant cancer-predisposition syndromes, for the presence of germline mutations. The pathogenicity of the mutations was determined by a panel of medical experts with the use of cancer-specific and locus-specific genetic databases, the medical literature, computational predictions, and second hits identified in the tumor genome. The same approach was used to analyze data from 966 persons who did not have known cancer in the 1000 Genomes Project, and a similar approach was used to analyze data from an autism study (from 515 persons with autism and 208 persons without autism). RESULTS: Mutations that were deemed to be pathogenic or probably pathogenic were identified in 95 patients with cancer (8.5%), as compared with 1.1% of the persons in the 1000 Genomes Project and 0.6% of the participants in the autism study. The most commonly mutated genes in the affected patients were TP53 (in 50 patients), APC (in 6), BRCA2 (in 6), NF1 (in 4), PMS2 (in 4), RB1 (in 3), and RUNX1 (in 3). A total of 18 additional patients had protein-truncating mutations in tumor-suppressor genes. Of the 58 patients with a predisposing mutation and available information on family history, 23 (40%) had a family history of cancer. CONCLUSIONS: Germline mutations in cancer-predisposing genes were identified in 8.5% of the children and adolescents with cancer. Family history did not predict the presence of an underlying predisposition syndrome in most patients. (Funded by the American Lebanese Syrian Associated Charities and the National Cancer Institute.).


Asunto(s)
Genes Relacionados con las Neoplasias , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neoplasias/genética , Adolescente , Trastorno Autístico/genética , Niño , Femenino , Genes Dominantes , Genoma Humano , Humanos , Masculino , Programa de VERF , Análisis de Secuencia de ADN/métodos , Adulto Joven
5.
ACS ES T Water ; 3(4): 954-962, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37406038

RESUMEN

The sequencing of human virus genomes from wastewater samples is an efficient method for tracking viral transmission and evolution at the community level. However, this requires the recovery of viral nucleic acids of high quality. We developed a reusable tangential-flow filtration system to concentrate and purify viruses from wastewater for genome sequencing. A pilot study was conducted with 94 wastewater samples from four local sewersheds, from which viral nucleic acids were extracted, and the whole genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was sequenced using the ARTIC V4.0 primers. Our method yielded a high probability (0.9) of recovering complete or near-complete SARS-CoV-2 genomes (>90% coverage at 10× depth) from wastewater when the COVID-19 incidence rate exceeded 33 cases per 100 000 people. The relative abundances of sequenced SARS-CoV-2 variants followed the trends observed from patient-derived samples. We also identified SARS-CoV-2 lineages in wastewater that were underrepresented or not present in the clinical whole-genome sequencing data. The developed tangential-flow filtration system can be easily adopted for the sequencing of other viruses in wastewater, particularly those at low concentrations.

6.
Methods ; 51(1): 92-100, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20211730

RESUMEN

Transposon-mediated integration strategies in Xenopus offer simple and robust methods for the generation of germline transgenic animals. Co-injection of fertilized one-cell embryos with plasmid DNA harboring a transposon transgene and synthetic mRNA encoding the cognate transposase enzyme results in mosaic integration of the transposon at early cleavage stages that are frequently passed through the germline in the adult animal. Micro-injection of fertilized embryos is a routine procedure used by many laboratories that use Xenopus as a developmental model and, as such, the transposon transgenesis method can be performed without additional equipment or specialized methodologies. The methods for injecting Xenopus embryos are well documented in the literature so here we provide a step-by-step guide to other aspects of transposon transgenesis, including screening mosaic founders for germline transmission of the transgene and general husbandry considerations related to management of populations of transgenic frogs.


Asunto(s)
Elementos Transponibles de ADN , Xenopus/metabolismo , Animales , Animales Modificados Genéticamente , Bacteriófagos/metabolismo , Cruzamientos Genéticos , ADN/metabolismo , Silenciador del Gen , Oocitos/metabolismo , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , Transgenes , Transposasas/metabolismo
7.
Nat Protoc ; 16(8): 3954-3980, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34215863

RESUMEN

Naive human pluripotent stem cells (hPSCs) can be used to generate mature human cells of all three germ layers in mouse-human chimeric embryos. Here, we describe a protocol for generating mouse-human chimeric embryos by injecting naive hPSCs converted from the primed state. Primed hPSCs are treated with a mammalian target of rapamycin inhibitor (Torin1) for 3 h and dissociated to single cells, which are plated on mouse embryonic fibroblasts in 2iLI medium, a condition essentially the same for culturing mouse embryonic stem cells. After 3-4 d, bright, dome-shaped colonies with mouse embryonic stem cell morphology are passaged in 2iLI medium. Established naive hPSCs are injected into mouse blastocysts, which produce E17.5 mouse embryos containing 0.1-4.0% human cells as quantified by next-generation sequencing of 18S ribosomal DNA amplicons. The protocol is suitable for studying the development of hPSCs in mouse embryos and may facilitate the generation of human cells, tissues and organs in animals.


Asunto(s)
Quimera/embriología , Embrión de Mamíferos/fisiología , Células Madre Embrionarias/fisiología , Fibroblastos/fisiología , Células Madre Pluripotentes/fisiología , Amidas/farmacología , Animales , Embrión de Mamíferos/citología , Células Madre Embrionarias/efectos de los fármacos , Femenino , Humanos , Ratones , Naftiridinas/farmacología , Células Madre Pluripotentes/efectos de los fármacos , Piridinas/farmacología
8.
BMC Dev Biol ; 10: 11, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20096115

RESUMEN

BACKGROUND: The Class II DNA transposons are mobile genetic elements that move DNA sequence from one position in the genome to another. We have previously demonstrated that the naturally occurring Tol2 element from Oryzias latipes efficiently integrates its corresponding non-autonomous transposable element into the genome of the diploid frog, Xenopus tropicalis. Tol2 transposons are stable in the frog genome and are transmitted to the offspring at the expected Mendelian frequency. RESULTS: To test whether Tol2 transposons integrated in the Xenopus tropicalis genome are substrates for remobilization, we injected in vitro transcribed Tol2 mRNA into one-cell embryos harbouring a single copy of a Tol2 transposon. Integration site analysis of injected embryos from two founder lines showed at least one somatic remobilization event per embryo. We also demonstrate that the remobilized transposons are transmitted through the germline and re-integration can result in the generation of novel GFP expression patterns in the developing tadpole. Although the parental line contained a single Tol2 transposon, the resulting remobilized tadpoles frequently inherit multiple copies of the transposon. This is likely to be due to the Tol2 transposase acting in discrete blastomeres of the developing injected embryo during the cell cycle after DNA synthesis but prior to mitosis. CONCLUSIONS: In this study, we demonstrate that single copy Tol2 transposons integrated into the Xenopus tropicalis genome are effective substrates for excision and random re-integration and that the remobilized transposons are transmitted through the germline. This is an important step in the development of 'transposon hopping' strategies for insertional mutagenesis, gene trap and enhancer trap screens in this highly tractable developmental model organism.


Asunto(s)
Elementos Transponibles de ADN , Mutagénesis Insercional/métodos , Xenopus/genética , Animales , Embrión no Mamífero/metabolismo , Mutación de Línea Germinal , Modelos Animales , Xenopus/embriología
9.
J Orthop Res ; 38(12): 2731-2739, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32644213

RESUMEN

Many surgeons continue to face the clinical dilemma of interpreting a positive aspiration or unexpected positive Cutibacterium acnes (C. acnes) culture. There are factors that complicate the interpretation of positive cultures including variations in both frequency of false positive cultures and virulence properties. As indices of virulence, hemolytic strains, from previously confirmed clinically infected shoulders, were compared with non-hemolytic isolates determined to be contaminants, by RNA-sequencing (RNA-Seq). Six C. acnes isolates from patients who underwent revision total shoulder arthroplasty (TSA) were identified based on previously described infection criteria. Three C. acnes isolates from each group underwent RNA-Seq. Differential gene expression analysis, principal component analysis (PCA), and heatmap analysis were used to determine the gene variation and patterning between the definite infection and probable contaminant isolates. Differential gene expression analysis identified genes that were differentially expressed between the isolates classified as definite infection and isolates classified as probable contaminants. PCA using a 500 gene subset of identified genes was able to find combinations of these genes that separated out the definite infection and probable contaminants isolates. The heatmap demonstrated similar gene expression in the three Definite Infections isolates, and significantly different expression when compared with the probable contaminant isolates. Clinical significance: C. acnes revision TSA isolates classified as definite infection and probable contaminant demonstrated a similar gene expression pattern to each respective group and different gene expression pattern when compared between groups. These findings indicate distinct differences in C. acnes strains associated with clinically relevant orthopedic TSA infections.


Asunto(s)
Artritis Infecciosa/microbiología , Propionibacteriaceae/patogenicidad , Infecciones Relacionadas con Prótesis/microbiología , Articulación del Hombro/microbiología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Propionibacteriaceae/aislamiento & purificación , Propionibacteriaceae/metabolismo , Estudios Retrospectivos
10.
Mol Cancer Res ; 17(4): 895-906, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30651371

RESUMEN

To investigate the genomic evolution of metastatic pediatric osteosarcoma, we performed whole-genome and targeted deep sequencing on 14 osteosarcoma metastases and two primary tumors from four patients (two to eight samples per patient). All four patients harbored ancestral (truncal) somatic variants resulting in TP53 inactivation and cell-cycle aberrations, followed by divergence into relapse-specific lineages exhibiting a cisplatin-induced mutation signature. In three of the four patients, the cisplatin signature accounted for >40% of mutations detected in the metastatic samples. Mutations potentially acquired during cisplatin treatment included NF1 missense mutations of uncertain significance in two patients and a KIT G565R activating mutation in one patient. Three of four patients demonstrated widespread ploidy differences between samples from the sample patient. Single-cell seeding of metastasis was detected in most metastatic samples. Cross-seeding between metastatic sites was observed in one patient, whereas in another patient a minor clone from the primary tumor seeded both metastases analyzed. These results reveal extensive clonal heterogeneity in metastatic osteosarcoma, much of which is likely cisplatin-induced. IMPLICATIONS: The extent and consequences of chemotherapy-induced damage in pediatric cancers is unknown. We found that cisplatin treatment can potentially double the mutational burden in osteosarcoma, which has implications for optimizing therapy for recurrent, chemotherapy-resistant disease.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Cisplatino/uso terapéutico , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Antineoplásicos/farmacología , Neoplasias Óseas/patología , Cisplatino/farmacología , Evolución Clonal/efectos de los fármacos , Análisis Mutacional de ADN , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Masculino , Modelos Genéticos , Mutagénesis/efectos de los fármacos , Metástasis de la Neoplasia , Osteosarcoma/patología , Secuenciación Completa del Genoma
11.
Gene Expr Patterns ; 6(4): 420-5, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16378761

RESUMEN

Cytokine signaling plays an important role in the survival and differentiation of vertebrate hematopoietic cells. In red blood cells, erythropoietin is a key component of the differentiation program and maintains the homeostasis of the erythroid compartment. In the adult, anemia stimulates high levels of circulating erythropoietin that drives erythropoiesis to restore normal levels of red blood cells in circulation. Erythropoietin activates the erythropoietin receptor on immature red blood cell precursors to promote their survival and differentiation. Although extensively studied in mammalian systems, a complete understanding of the function of the erythropoietin receptor during primitive erythropoiesis has been lacking. To address this problem, we have cloned the Xenopus laevis erythropoietin receptor in order to further understand the development of primitive erythropoiesis. The amphibian erythropoietin receptor shares 33% amino acid sequence identity with the mammalian erythropoietin receptors and contains the conserved extracellular ligand binding and fibronectin domains, the WSXWS motif common to cytokine receptors, and several tyrosine phosphorylation sites located on the intracellular domain of the receptor. Expression of the erythropoietin receptor is first detected by in situ hybridization in the ventral blood island during tailbud stages.


Asunto(s)
Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Xenopus/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Northern Blotting , Codón Iniciador , Cisteína/química , Bases de Datos Factuales , Embrión no Mamífero , Exones , Etiquetas de Secuencia Expresada , Hibridación in Situ , Intrones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , ARN Mensajero , Receptores de Eritropoyetina/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Tirosina/química , Xenopus/embriología , Xenopus/crecimiento & desarrollo
12.
Methods Mol Biol ; 917: 111-27, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22956084

RESUMEN

The class II DNA "cut-and-paste" transposons have been used to efficiently modify the Xenopus genome for transgenesis applications. Once integrated, the transposon is an effective substrate for excision and re-integration (remobilization) elsewhere in the genome by simply supplying the transposase enzyme in trans. We have used two methods to remobilize transposons resident in the frog genome: micro-injection of transposase mRNA at the one-cell stage and expression of the enzyme in the germline from a transgene. Double-transgenic frogs (hoppers) that harbor transgenes for both the substrate transposon and the transposase enzyme are outcrossed to wild-type animals and the progeny are scored for changes in reporter gene expression. Although both methods work effectively to remobilize transposons, the breeding-mediated strategy eliminates the time-consuming micro-injection step; novel integration events are produced by simply outcrossing the hopper frogs. As each outcross of Xenopus tropicalis typically produces 2,000, or more, progeny, this method can be used to perform large-scale insertional mutagenesis screens in this highly tractable developmental model system.


Asunto(s)
Elementos Transponibles de ADN/genética , Pruebas Genéticas/métodos , Mutagénesis Insercional , Xenopus/genética , Crianza de Animales Domésticos , Sistemas de Identificación Animal , Animales , Animales Modificados Genéticamente , Cruzamiento , ADN/aislamiento & purificación , Femenino , Genoma , Técnicas de Genotipaje , Larva/genética , Masculino , Piel/química
13.
Methods Mol Biol ; 917: 231-43, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22956092

RESUMEN

The generation of transgenic animals is an essential tool for many genetic strategies. DNA "cut-and-paste" transposon systems can be used to efficiently modify the Xenopus genome. The DNA transposon substrate, harbored on a circularized plasmid, is co-injected into fertilized Xenopus embryos at the one-cell stage together with mRNA encoding the cognate transposase enzyme. The cellular machinery rapidly translates the exogenous mRNA to produce active transposase enzyme that catalyzes excision of the transposon substrate from the plasmid and stable integration into the genomic DNA.


Asunto(s)
Elementos Transponibles de ADN/genética , Mutagénesis Insercional , Xenopus/genética , Alimentación Animal , Crianza de Animales Domésticos , Animales , Animales Modificados Genéticamente/genética , Gonadotropina Coriónica/administración & dosificación , Técnicas de Cultivo , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Femenino , Masculino , Microinyecciones , Plásmidos , ARN Mensajero/genética , Sustancias para el Control de la Reproducción/administración & dosificación
14.
Mob DNA ; 2: 15, 2011 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-22115366

RESUMEN

BACKGROUND: The Sleeping Beauty (SB) transposon system has been used for germline transgenesis of the diploid frog, Xenopus tropicalis. Injecting one-cell embryos with plasmid DNA harboring an SB transposon substrate together with mRNA encoding the SB transposase enzyme resulted in non-canonical integration of small-order concatemers of the transposon. Here, we demonstrate that SB transposons stably integrated into the frog genome are effective substrates for remobilization. RESULTS: Transgenic frogs that express the SB10 transposase were bred with SB transposon-harboring animals to yield double-transgenic 'hopper' frogs. Remobilization events were observed in the progeny of the hopper frogs and were verified by Southern blot analysis and cloning of the novel integrations sites. Unlike the co-injection method used to generate founder lines, transgenic remobilization resulted in canonical transposition of the SB transposons. The remobilized SB transposons frequently integrated near the site of the donor locus; approximately 80% re-integrated with 3 Mb of the donor locus, a phenomenon known as 'local hopping'. CONCLUSIONS: In this study, we demonstrate that SB transposons integrated into the X. tropicalis genome are effective substrates for excision and re-integration, and that the remobilized transposons are transmitted through the germline. This is an important step in the development of large-scale transposon-mediated gene- and enhancer-trap strategies in this highly tractable developmental model system.

15.
Dev Dyn ; 238(7): 1727-43, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19517568

RESUMEN

Transposon-based integration systems have been widely used for genetic manipulation of invertebrate and plant model systems. In the past decade, these powerful tools have begun to be used in vertebrates for transgenesis, insertional mutagenesis, and gene therapy applications. Sleeping Beauty (SB) is a member of Tc1/mariner class of transposases and is derived from an inactive form of the gene isolated from Atlantic salmon. SB has been used extensively in human cell lines and in whole animal vertebrate model systems such as the mouse, rat, and zebrafish. In this study, we describe the use of SB in the diploid frog Xenopus tropicalis to generate stable transgenic lines. SB transposon transgenes integrate into the X. tropicalis genome by a noncanonical process and are passed through the germline. We compare the activity of SB in this model organism with that of Tol2, a hAT (hobo, Ac1, TAM)-like transposon system.


Asunto(s)
Transposasas/genética , Xenopus/embriología , Xenopus/genética , Animales , Elementos Transponibles de ADN/fisiología , Embrión no Mamífero , Femenino , Técnicas de Transferencia de Gen , Mutación de Línea Germinal/fisiología , Humanos , Masculino , Modelos Biológicos , Mutagénesis Insercional/fisiología , Transposasas/fisiología , Xenopus/crecimiento & desarrollo
16.
Genome Biol ; 8 Suppl 1: S11, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18047688

RESUMEN

The study of amphibian embryogenesis has provided important insight into the mechanisms of vertebrate development. The frog Xenopus laevis has been an important model of vertebrate cell biology and development for many decades. Genetic studies in this organism are not practical because of the tetraploid nature of the genome and the long generation time of this species. Recently, a closely related frog, namely Xenopus tropicalis, has been proposed as an alternative system; it shares all of the physical characteristics that make X. laevis a useful model but has the advantage of a diploid genome and short generation time. The rapid accumulation of genetic resources for this animal and the success of pilot mutagenesis screens have helped propel this model system forward. Transposable elements will provide invaluable tools for manipulating the frog genome. These integration systems are ideally suited to transgenesis and insertional mutagenesis strategies in the frog. The high fecundity of the frog combined with the ability to remobilize transposon transgenes integrated into frog genome will allow large-scale insertional mutagenesis screens to be performed in laboratories with modest husbandry capacities.


Asunto(s)
Elementos Transponibles de ADN/genética , Genoma , Xenopus/genética , Animales , Técnicas de Transferencia de Gen , Modelos Animales , Mutagénesis Insercional
17.
Nat Protoc ; 2(11): 2975-86, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18007633

RESUMEN

The generation of transgenic lines is vital to many genetic strategies and provides useful reagents for cell labeling and lineage-tracing experiments. Transposon-based systems offer simple, yet robust, platforms for transgenesis in the frog. Here, we provide a protocol for a microinjection-based transposon transgenesis method using a 'natural breeding' strategy for the collection of Xenopus tropicalis embryos. This method uses co-injection of a plasmid containing a transposon substrate together with synthetic mRNA encoding the transposase to achieve efficient integration of the transgene in the frog genome. We also describe a modified extension primer tag selection linker-mediated PCR technique to identify transposon integration sites within the host genome. This cloning strategy allows rapid identification of genomic sequences flanking the integration sites and multiple independently segregating transposon integration events in a single tadpole can be cloned simultaneously.


Asunto(s)
Animales Modificados Genéticamente , Elementos Transponibles de ADN , Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Xenopus/genética , Animales , Clonación Molecular , Cartilla de ADN , Microinyecciones , Plásmidos/genética , Reacción en Cadena de la Polimerasa , ARN Mensajero , Transgenes , Transposasas/genética , Xenopus/embriología
18.
Genesis ; 44(9): 438-45, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16906529

RESUMEN

The diploid frog Xenopus tropicalis is becoming a powerful developmental genetic model system. Sequencing of the X. tropicalis genome is nearing completion and several labs are embarking on mutagenesis screens. We are interested in developing insertional mutagenesis strategies in X. tropicalis. Transposon-mediated insertional mutagenesis, once used exclusively in plants and invertebrate systems, is now more widely applicable to vertebrates. The first step in developing transposons as tools for mutagenesis is to demonstrate that these mobile elements function efficiently in the target organism. Here, we show that the Medaka fish transposon, Tol2, is able to stably integrate into the X. tropicalis genome and will serve as a powerful tool for insertional mutagenesis strategies in the frog.


Asunto(s)
Elementos Transponibles de ADN/genética , Técnicas de Transferencia de Gen , Xenopus/genética , Animales , Secuencia de Bases , Gonadotropina Coriónica/farmacología , Cisteína/farmacología , ADN/química , ADN/genética , Embrión no Mamífero/metabolismo , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microinyecciones , Modelos Genéticos , Datos de Secuencia Molecular , Mutagénesis Insercional , Oryzias/genética , Plásmidos/administración & dosificación , Plásmidos/genética , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Transgenes , Transposasas/genética , Xenopus/clasificación , Xenopus/embriología
19.
Dev Biol ; 283(1): 97-112, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15890331

RESUMEN

The Antarctic icefishes (family Channichthyidae, suborder Notothenioidei) constitute the only vertebrate taxon that fails to produce red blood cells. These fishes can be paired with closely related, but erythrocyte-producing, notothenioids to discover erythropoietic genes via representational difference analysis. Using a B30.2-domain-encoding DNA probe so derived from the hematopoietic kidney (pronephros) of a red-blooded Antarctic rockcod, Notothenia coriiceps, we discovered a related, novel gene, bloodthirsty (bty), that encoded a 547-residue protein that contains sequential RING finger, B Box, coiled-coil, and B30.2 domains. bty mRNA was expressed by the pronephric kidney of N. coriiceps at a steady-state level 10-fold greater than that found in the kidney of the icefish Chaenocephalus aceratus. To test the function of bty, we cloned the orthologous zebrafish gene from a kidney cDNA library. Whole-mount in situ hybridization of zebrafish embryos showed that bty mRNA was present throughout development and, after the mid-blastula transition, was expressed in the head and in or near the site of primitive erythropoiesis in the tail just prior to red cell production. One- to four-cell embryos injected with two distinct antisense morpholino oligonucleotides (MOs) targeted to the 5'-end of the bty mRNA failed to develop red cells, whereas embryos injected with 4- and 5-bp mismatch control MOs produced wild-type quantities of erythrocytes. The morphant phenotype was rescued by co-injection of synthetic bty mRNA containing an artificial 5'-untranslated region (UTR) with the antisense MO that bound the 5'-UTR of the wild-type bty transcript. Furthermore, the expression of genes that mark terminal erythroid differentiation was greatly reduced in the antisense-MO-treated embryos. We conclude that bty is likely to play a role in differentiation of the committed red cell progenitor.


Asunto(s)
Proteínas Portadoras/genética , Embrión no Mamífero/fisiología , Eritropoyesis/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Portadoras/química , Diferenciación Celular , Cartilla de ADN , ADN Complementario/genética , Hibridación in Situ , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Transcripción Genética , Proteínas de Pez Cebra/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA