Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Small ; 20(25): e2308925, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38268229

RESUMEN

III-VI metal chalcogenides have garnered considerable research attention as a novel group of layered van der Waals materials because of their exceptional physical properties and potential technological applications. Here, the epitaxial growth and stacking sequences of InTe is reported, an essential and intriguing material from III-VI metal chalcogenides. Aberration-corrected scanning transmission electron microscopy (STEM) is utilized to directly reveal the interlayer stacking modes and atomic structure, leading to a discussion of a new polytype. Furthermore, correlations between the stacking sequences and interlayer distances are substantiated by atomic-resolution STEM analysis, which offers evidence for strong interlayer coupling of the new polytype. It is proposed that layer-by-layer deposition is responsible for the formation of the unconventional stacking order, which is supported by ab initio density functional theory calculations. The results thus establish molecular beam epitaxy as a viable approach for synthesizing novel polytypes. The experimental validation of the InTe polytype here expands the family of materials in the III-VI metal chalcogenides while suggesting the possibility of new stacking sequences for known materials in this system.

2.
Nano Lett ; 23(24): 11578-11585, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38051017

RESUMEN

We report the growth of high-quality GaN epitaxial thin films on graphene-coated c-sapphire substrates using pulsed-mode metalorganic vapor-phase epitaxy, together with the fabrication of freestanding GaN films by simple mechanical exfoliation for transferable light-emitting diodes (LEDs). High-quality GaN films grown on the graphene-coated sapphire substrates were easily lifted off by using thermal release tape and transferred onto foreign substrates. Furthermore, we revealed that the pulsed operation of ammonia flow during GaN growth was a critical factor for the fabrication of high-quality freestanding GaN films. These films, exhibiting excellent single crystallinity, were utilized to fabricate transferable GaN LEDs by heteroepitaxially growing InxGa1-xN/GaN multiple quantum wells and a p-GaN layer on the GaN films, showing their potential application in advanced optoelectronic devices.

3.
Nanotechnology ; 35(8)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37988751

RESUMEN

We report the growth of single-crystalline GaN microdisk arrays on graphene and their application in flexible light-emitting diodes (LEDs). Graphene layers were directly grown onc-sapphire substrates using chemical vapor deposition and employed as substrates for GaN growth. Position-controlled GaN microdisks were laterally overgrown on the graphene layers with a micro-patterned SiO2mask using metal-organic vapor-phase epitaxy. The as-grown GaN microdisks exhibited excellent single crystallinity with a uniform in-plane orientation. Furthermore, we fabricated flexible micro-LEDs by achieving heteroepitaxial growth ofn-GaN, InxGa1-xN/GaN multiple quantum wells, andp-GaN layers on graphene-coated sapphire substrates. The GaN micro-LED arrays were successfully transferred onto bendable substrates and displayed strong blue light emission under room illumination, demonstrating their potential for integration into flexible optoelectronic devices.

4.
Nanotechnology ; 33(48)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-35998510

RESUMEN

The strain occurs spontaneously at the heterogeneous interfaces of virtually all crystalline materials. Consequently, the analysis across multiple interfaces requires a complementary characterization scheme with a resolution that fits the deformation scale. By implementing two-photon confocal laser scanning nanoscopy with an axial resolution of 10 nm, we extract the surface strain from the photoluminescence (PL) spectra, epitomized by a 2-fold enhancement at the tapered tips in comparison to the substrate of ZnO nanorods. We firstly traced the well-established contribution from quantum confinement (QC) to PL shift in three geometrically classified regions: (I) a strongly tapered region where the diameter increases from 3 to 20 nm; (II) a weakly tapered region with a gradually increasing diameter from 20 to 58 nm; (III) round cylindrical region interfacing the sapphire substrate. The measured PL shift influenced by the deformation is significantly stronger than the attained QC effect. Particularly, surface strain at the strongly tapered region turned out to drastically increase the PL shift which matches well with the analysis based on the surface to volume ratio incorporating mechanical parameters such as the compliance tensor component, strain dislocation constant, and surface stress. The surface strain increased at a lower temperature, further disclosing its inherent dependence on the thermal expansion coefficients in clear contrast to the temperature-invariant characteristics of QC.

5.
Nat Mater ; 18(5): 448-453, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30988451

RESUMEN

Control of the interlayer twist angle in two-dimensional van der Waals (vdW) heterostructures enables one to engineer a quasiperiodic moiré superlattice of tunable length scale1-8. In twisted bilayer graphene, the simple moiré superlattice band description suggests that the electronic bandwidth can be tuned to be comparable to the vdW interlayer interaction at a 'magic angle'9, exhibiting strongly correlated behaviour. However, the vdW interlayer interaction can also cause significant structural reconstruction at the interface by favouring interlayer commensurability, which competes with the intralayer lattice distortion10-16. Here we report atomic-scale reconstruction in twisted bilayer graphene and its effect on the electronic structure. We find a gradual transition from an incommensurate moiré structure to an array of commensurate domains with soliton boundaries as we decrease the twist angle across the characteristic crossover angle, θc ≈ 1°. In the solitonic regime (θ < θc) where the atomic and electronic reconstruction become significant, a simple moiré band description breaks down and the secondary Dirac bands appear. On applying a transverse electric field, we observe electronic transport along the network of one-dimensional topological channels that surround the alternating triangular gapped domains. Atomic and electronic reconstruction at the vdW interface provide a new pathway to engineer the system with continuous tunability.

6.
Small ; 14(17): e1800240, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29611339

RESUMEN

The bottom-up integration of a 1D-2D hybrid semiconductor nanostructure into a vertical field-effect transistor (VFET) for use in flexible inorganic electronics is reported. Zinc oxide (ZnO) nanotubes on graphene film is used as an example. The VFET is fabricated by growing position- and dimension-controlled single crystal ZnO nanotubes vertically on a large graphene film. The graphene film, which acts as the substrate, provides a bottom electrical contact to the nanotubes. Due to the high quality of the single crystal ZnO nanotubes and the unique 1D device structure, the fabricated VFET exhibits excellent electrical characteristics. For example, it has a small subthreshold swing of 110 mV dec-1 , a high Imax /Imin ratio of 106 , and a transconductance of 170 nS µm-1 . The electrical characteristics of the nanotube VFETs are validated using 3D transport simulations. Furthermore, the nanotube VFETs fabricated on graphene films can be easily transferred onto flexible plastic substrates. The resulting components are reliable, exhibit high performance, and do not degrade significantly during testing.

7.
Nanotechnology ; 29(20): 205602, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29488899

RESUMEN

We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.

8.
Nanotechnology ; 28(39): 394001, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28692426

RESUMEN

ZnO radial p-n junction architecture has the potential for forward-leap of light-emitting diode (LED) technology in terms of higher efficacy and economical production. We report on ZnO radial p-n junction-based light emitting diodes prepared by full metalorganic chemical vapour deposition (MOCVD) with hydrogen-assisted p-type doping approach. The p-type ZnO(P) thin films were prepared by MOCVD with the precursors of dimethylzinc, tert-butanol, and tertiarybutylphosphine. Controlling the precursor flow for dopant results in the systematic change of doping concentration, Hall mobility, and electrical conductivity. Moreover, the approach of hydrogen-assisted phosphorous doping in ZnO expands the understanding of doping behaviour in ZnO. Ultraviolet and visible electroluminescence of ZnO radial p-n junction was demonstrated through a combination of position-controlled nano/microwire and crystalline p-type ZnO(P) radial shell growth on the wires. The reported research opens a pathway of realisation of production-compatible ZnO p-n junction LEDs.

9.
Nanotechnology ; 28(20): 205202, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28303797

RESUMEN

We report flexible resistive random access memory (ReRAM) arrays fabricated by using NiO x /GaN microdisk arrays on graphene films. The ReRAM device was created from discrete GaN microdisk arrays grown on graphene films produced by chemical vapor deposition, followed by deposition of NiO x thin layers and Au metal contacts. The microdisk ReRAM arrays were transferred to flexible plastic substrates by a simple lift-off technique. The electrical and memory characteristics of the ReRAM devices were investigated under bending conditions. Resistive switching characteristics, including cumulative probability, endurance, and retention, were measured. After 1000 bending repetitions, no significant change in the device characteristics was observed. The flexible ReRAM devices, constructed by using only inorganic materials, operated reliably at temperatures as high as 180 °C.

10.
Nanotechnology ; 27(14): 145301, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-26902885

RESUMEN

We investigated the electrical characteristics of molecular electronic devices consisting of benzenedithiolate self-assembled monolayers and a graphene electrode. We used the multilayer graphene electrode as a protective interlayer to prevent filamentary path formation during the evaporation of the top electrode in the vertical metal-molecule-metal junction structure. The devices were fabricated both on a rigid SiO2/Si substrate and on a flexible poly(ethylene terephthalate) substrate. Using these devices, we investigated the basic charge transport characteristics of benzenedithiolate molecular junctions in length- and temperature-dependent analyses. Additionally, the reliability of the electrical characteristics of the flexible benzenedithiolate molecular devices was investigated under various mechanical bending conditions, such as different bending radii, repeated bending cycles, and a retention test under bending. We also observed the inelastic electron tunneling spectra of our fabricated graphene-electrode molecular devices. Based on the results, we verified that benzenedithiolate molecules participate in charge transport, serving as an active tunneling barrier in solid-state graphene-electrode molecular junctions.

11.
Nanotechnology ; 27(47): 475201, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27767016

RESUMEN

We investigated the electrical characteristics and the charge transport mechanism of pentacene vertical hetero-structures with graphene electrodes. The devices are composed of vertical stacks of silicon, silicon dioxide, graphene, pentacene, and gold. These vertical heterojunctions exhibited distinct transport characteristics depending on the applied bias direction, which originates from different electrode contacts (graphene and gold contacts) to the pentacene layer. These asymmetric contacts cause a current rectification and current modulation induced by the gate field-dependent bias direction. We observed a change in the charge injection barrier during variable-temperature current-voltage characterization, and we also observed that two distinct charge transport channels (thermionic emission and Poole-Frenkel effect) worked in the junctions, which was dependent on the bias magnitude.

12.
Nano Lett ; 15(9): 5938-43, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26237349

RESUMEN

Visible-light filters constructed from nanostructured materials typically consist of a metallic grating and rely on the excitation of surface plasmon polaritons (SPPs). In order to operate at full efficiency, the number of grating elements needs to be maximized such that light can couple more efficiently to the SPPs through improved diffraction. Such conditions impose a limitation on the compactness of the filter since a larger number of grating elements represents a larger effective size. For emerging applications involving nanoscale transmitters or receivers, a device that can filter localized excitations is highly anticipated but is challenging to realize through grating-type filters. In this work, we present the design of an optical filter operating with a single element, marking a departure from diffractive plasmonic coupling. Our device consists of a ZnO nanorod enclosed by two layers of Ag film. For diffraction-limited light focused on the nanorod, narrow passbands can be realized and tuned via variation of the nanorod diameter across the visible spectrum. The spectral and spatial filtering originates from scattering cancellation localized at the nanorod due to the cavity and nanorod exhibiting opposite effective dipole moments. This ability to realize high-performance optical filtering at the ultimate size introduces intriguing possibilities for nanoscale near-field communication or ultrahigh resolution imaging pixels.

13.
Nanotechnology ; 25(13): 135609, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24598198

RESUMEN

We report the density- and size-controlled growth of zinc oxide (ZnO) nanorod arrays on arbitrary substrates using reduced graphene oxide (rGO) nanodot arrays. For the controlled growth of the ZnO nanorod arrays, rGO nanodot arrays with tunable density and size were designed using a monolayer of diblock copolymer micelles and oxygen plasma etching. While the diameter and number density of the ZnO nanorods were readily determined by those of the rGO nanodots, the length of the ZnO nanorods was easily controlled by changing the growth time. x-ray diffraction and electron microscopy confirmed that the vertically well-aligned ZnO nanorod arrays were heteroepitaxially grown on the rGO nanodots. Strong, sharp near-band-edge emission peaks with no carbon-related peak were observed in the photoluminescence spectra, implying that the ZnO nanostructures grown on the rGO nanodots were of high optical quality and without carbon contamination. Our approach provides a general and rational route for heteroepitaxial growth of high-quality inorganic materials with tunable number density, size, and spatial arrangement on arbitrary substrates using rGO nanodot arrays.

14.
Nano Lett ; 13(5): 2134-40, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23573911

RESUMEN

Highly efficient solid-state light-emitting devices require semiconductor architectures equipped with high quantum efficiency and integratability on conductive substrates. Surface plasmon (SP)-mediated luminescence enhancement has been considered as one of the most promising solutions, because SP resonance can greatly improve the radiative recombination rate and be achieved using metal entities compatible with the electrode fabrication process. Nevertheless, metal/semiconductor heterostructures have had several fabrication-compatible issues due to metal as a potential contaminant of the semiconductor. We present here a simple fabrication scheme for a metal-lined semiconductor nanotube heterostructure, in which a metal layer is selectively formed on the inner wall of the semiconductor nanotube. The Ag-lining process in a ZnO nanotube resulted in 7.5-fold enhancement of the photoluminescence intensity at 11 K. This SP fabrication technique looks promising for highly efficient solid-state lighting based on semiconductor nanostructures without detrimental effects.

15.
Nano Lett ; 13(6): 2782-5, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23668916

RESUMEN

Direct epitaxial growth of inorganic compound semiconductors on lattice-matched single-crystal substrates has provided an important way to fabricate light sources for various applications including lighting, displays and optical communications. Nevertheless, unconventional substrates such as silicon, amorphous glass, plastics, and metals must be used for emerging optoelectronic applications, such as high-speed photonic circuitry and flexible displays. However, high-quality film growth requires good matching of lattice constants and thermal expansion coefficients between the film and the supporting substrate. This restricts monolithic fabrication of optoelectronic devices on unconventional substrates. Here, we describe methods to grow high-quality gallium nitride (GaN) microdisks on amorphous silicon oxide layers formed on silicon using micropatterned graphene films as a nucleation layer. Highly crystalline GaN microdisks having hexagonal facets were grown on graphene dots with intermediate ZnO nanowalls via epitaxial lateral overgrowth. Furthermore, whispering-gallery-mode lasing from the GaN microdisk with a Q-factor of 1200 was observed at room temperature.

16.
Adv Healthc Mater ; 13(15): e2304140, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38444227

RESUMEN

The authors report the fabrication of highly sensitive, rapidly responding flexible force sensors using ZnO/ZnMgO coaxial nanotubes grown on graphene layers and their applications in sleep apnea monitoring. Flexible force sensors are fabricated by forming Schottky contacts to the nanotube array, followed by the mechanical release of the entire structure from the host substrate. The electrical characteristics of ZnO and ZnO/ZnMgO nanotube-based sensors are thoroughly investigated and compared. Importantly, in force sensor applications, the ZnO/ZnMgO coaxial structure results in significantly higher sensitivity and a faster response time when compared to the bare ZnO nanotube. The origin of the improved performance is thoroughly discussed. Furthermore, wireless breath sensing is demonstrated using the ZnO/ZnMgO pressure sensors with custom electronics, demonstrating the feasibility of the sensor technology for health monitoring and the potential diagnosis of sleep apnea.


Asunto(s)
Grafito , Nanotubos , Óxido de Zinc , Óxido de Zinc/química , Nanotubos/química , Grafito/química , Humanos , Pruebas Respiratorias/métodos , Pruebas Respiratorias/instrumentación , Síndromes de la Apnea del Sueño/diagnóstico
17.
Small ; 9(13): 2255-9, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23401192

RESUMEN

Highly localized dislocations in GaN/ZnO hetero-nanostructures are generated from the residual strain field by lattice mismatches at two interfaces: between the substrate and hetero-nanostructures, and between the ZnO core and GaN shell. The local strain field is measured using tranmission electron microscopy, and the relationship between the nanostructure morphology and the highly localized dislocations is analyzed by a finite element method.

18.
J Nanosci Nanotechnol ; 13(3): 1880-3, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23755611

RESUMEN

The orientation-dependent structural properties of Zn(1-x)Mg(x)O nanorods with different Mg concentrations were investigated quantitatively using polarization-dependent extended X-ray absorption fine structure (EXAFS) measurements at the Zn K edge. Vertically-aligned Zn(1-x)Mg(x)O nanorods were synthesized on Si substrates using catalyst free metal organic chemical vapor deposition. Polarization-dependent EXAFS measurements showed that Mg ions mainly occupied the Zn sites of the nanorods. EXAFS revealed that the distance between Zn-Mg pairs in all directions is - 0.2 angstroms shorter than that of Zn-Zn pairs and that there is a substantial amount of disorder in the Mg sites of the nanorods, independent of Mg concentrations.

19.
Nano Lett ; 12(2): 556-61, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22214177

RESUMEN

Excitonic phenomena, such as excitonic absorption and emission, have been used in many photonic and optoelectronic semiconductor device applications. As the sizes of these nanoscale materials have approached to exciton diffusion lengths in semiconductors, a fundamental understanding of exciton transport in semiconductors has become imperative. We present exciton transport in a single MgZnO nanorod in the spatiotemporal regime with several nanometer-scale spatial resolution and several tens of picosecond temporal resolution. This study was performed using temperature-dependent cathodoluminescence and time-resolved photoluminescence spectroscopies. The exciton diffusion length in the MgZnO nanorod decreased from 100 to 70 nm with increasing temperature in the range of 5 and 80 K. The results obtained for the temperature dependence of exciton diffusion length and luminescence lifetime revealed that the dominant exciton scattering mechanism in MgZnO nanorod is exciton-phonon assisted piezoelectric field scattering.


Asunto(s)
Magnesio/química , Nanotubos/química , Oxígeno/química , Zinc/química , Mediciones Luminiscentes , Semiconductores , Temperatura
20.
Nano Lett ; 12(11): 5829-34, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23030721

RESUMEN

Theoretically core-multishell nanowires under a cross-section of hexagonal geometry should exhibit peculiar confinement effects. Using a hard X-ray nanobeam, here we show experimental evidence for carrier localization phenomena at the hexagon corners by combining synchrotron excited optical luminescence with simultaneous X-ray fluorescence spectroscopy. Applied to single coaxial n-GaN/InGaN multiquantum-well/p-GaN nanowires, our experiment narrows the gap between optical microscopy and high-resolution X-ray imaging and calls for further studies on the underlying mechanisms of optoelectronic nanodevices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA