Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(1): 204-211, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38148285

RESUMEN

There are many flow behaviors in solid tumors, including intravascular, bloodstream, and interstitial convection. Studies have shown that tumor interstitial fluid (TIF) is an important part of tumor microenvironment regulation and affects drug delivery and metabolism between tumor cells. Magnetic resonance imaging (MRI) is suitable for detecting the flow rates of liquids in tissues. Clinical phase contrast PC-MRI technology has been designed to observe the blood flow in large vessels such as arteries and veins; however, it is not sensitive enough to deal with slow flow velocity. Our previously developed vertical plane echo PC-MRI technology, the Velocity Mapping sequence, improved the signal-to-noise ratio (SNR) for measuring slow interstitial fluid rate. In this study, this sequence was used to determine the TIF flow rate in MDA-MB-231 human breast tumor cells used in BALB/c nude male mice. Two different sizes of contrast agents were intravenously injected, and the relationship between their distribution and the TIF flow rate was studied for the first time. Combining the results of clinical scanning showed that small-molecule DTPA-Gd (diethylenetriaminepentaacetic acid-gadolinium) was distributed immediately around the tumor margin after the injection. This distribution was positively correlated to the high flow rate area of the TIF before administration. In contrast, nanoparticles NaGdF4-PEG (polyethylene glycol) entered the tumor and reached their peak at 3 h. Drug distribution was negatively correlated with the high-flow-rate region of the TIF. Investigation of the TIF velocity can help better understand the fluid behavior in tumors and its role in drug delivery.


Asunto(s)
Neoplasias de la Mama , Líquido Extracelular , Ratones , Animales , Masculino , Humanos , Líquido Extracelular/metabolismo , Imagen por Resonancia Magnética/métodos , Sistemas de Liberación de Medicamentos , Ácido Pentético , Neoplasias de la Mama/metabolismo , Medios de Contraste/metabolismo , Gadolinio DTPA/metabolismo , Microambiente Tumoral
2.
Anal Chem ; 96(29): 11742-11750, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-38980807

RESUMEN

Stroke is an acute injury of the central nervous system caused by the disorders of cerebral blood circulation, which has become one of the major causes of disability and death. Hemorrhage, particularly subarachnoid hemorrhage (SAH), is one of the poorest prognostic factors in stroke, which is related to the thrombolytic therapy, and has been considered very dangerous. In this context, the MR angiography with high sensitivity and resolution has been developed based on biocompatible paramagnetic ultrasmall NaGdF4 nanoprobes. Owing to the appropriate hydrodynamic diameter, the nanoprobe can be confined inside the blood vessels and it only extravasates at the vascular injury site when the bleeding occurs. Relying on this property, the three-dimensional (3D) anatomic structures of artery occlusion of stroke rat can be precisely visualized; reperfusion-related SAH has been successfully visualized and identified. Benefiting from the long blood half-life of the nanoprobe, the observation window of MR angiography can last for the whole period of reperfusion, thereby monitoring the probable SAH in real time during thrombolytic therapy. More importantly, through reconstruction of multiparametric MRI, the arterial occlusion, cerebral ischemic region, and SAH can be simultaneously visualized in vivo in a 3D manner for the first time. Therefore, the current study provides a novel approach for both noninvasive 3D vascular visualization and hemorrhage alert, which possesses great prospects for clinical translation.


Asunto(s)
Accidente Cerebrovascular Isquémico , Angiografía por Resonancia Magnética , Hemorragia Subaracnoidea , Animales , Hemorragia Subaracnoidea/diagnóstico por imagen , Ratas , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Ratas Sprague-Dawley , Masculino , Gadolinio/química , Reperfusión
3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 620-626, 2024 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-38932550

RESUMEN

Near-infrared fluorescence imaging technology, which possesses superior advantages including real-time and fast imaging, high spatial and temporal resolution, and deep tissue penetration, shows great potential for tumor imaging in vivo and therapy. Ⅰ-Ⅲ-Ⅵ quantum dots exhibit high brightness, broad excitation, easily tunable emission wavelength and superior stability, and do not contain highly toxic heavy metal elements such as cadmium or lead. These advantages make Ⅰ-Ⅲ-Ⅵ quantum dots attract widespread attention in biomedical field. This review summarizes the recent advances in the controlled synthesis of Ⅰ-Ⅲ-Ⅵ quantum dots and their applications in tumor imaging in vivo and therapy. Firstly, the organic-phase and aqueous-phase synthesis of Ⅰ-Ⅲ-Ⅵ quantum dots as well as the strategies for regulating the near-infrared photoluminescence are briefly introduced; secondly, representative biomedical applications of near-infrared-emitting cadmium-free quantum dots including early diagnosis of tumor, lymphatic imaging, drug delivery, photothermal and photodynamic therapy are emphatically discussed; lastly, perspectives on the future directions of developing quantum dots for biomedical application and the faced challenges are discussed. This paper may provide guidance and reference for further research and clinical translation of cadmium-free quantum dots in tumor diagnosis and treatment.


Asunto(s)
Cadmio , Neoplasias , Imagen Óptica , Puntos Cuánticos , Puntos Cuánticos/química , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Imagen Óptica/métodos , Animales , Fotoquimioterapia/métodos , Sistemas de Liberación de Medicamentos , Rayos Infrarrojos , Espectroscopía Infrarroja Corta
4.
J Nanobiotechnology ; 21(1): 197, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37340418

RESUMEN

Malignant tumors have been one of the major reasons for deaths worldwide. Timely and accurate diagnosis as well as effective intervention of tumors play an essential role in the survival of patients. Genomic instability is the important foundation and feature of cancer, hence, in vivo oncogene imaging based on novel probes provides a valuable tool for the diagnosis of cancer at early-stage. However, the in vivo oncogene imaging is confronted with great challenge, due to the extremely low copies of oncogene in tumor cells. By combining with various novel activatable probes, the molecular imaging technologies provide a feasible approach to visualize oncogene in situ, and realize accurate treatment of tumor. This review aims to declare the design of nanoprobes responded to tumor associated DNA or RNA, and summarize their applications in detection and bioimaging for tumors. The significant challenges and prospective of oncogene-targeting nanoprobes towards tumors diagnosis are revealed as well.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias , Humanos , Neoplasias/diagnóstico por imagen , Imagen Óptica/métodos , Oncogenes
5.
J Nanobiotechnology ; 21(1): 276, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37596631

RESUMEN

Central nervous system (CNS) diseases have been widely acknowledged as one of the major healthy concerns globally, which lead to serious impacts on human health. There will be about 135 million CNS diseases cases worldwide by mid-century, and CNS diseases will become the second leading cause of death after the cardiovascular disease by 2040. Most CNS diseases lack of effective diagnostic and therapeutic strategies with one of the reasons that the biological barrier extremely hampers the delivery of theranostic agents. In recent years, nanotechnology-based drug delivery is a quite promising way for CNS diseases due to excellent properties. Among them, cell membrane-based nanomaterials with natural bio-surface, high biocompatibility and biosafety, are of great significance in both the diagnosis and treatment of different CNS diseases. In this review, the state of art of the fabrication of cell membranes-based nanomaterials is introduced. The characteristics of different CNS diseases, and the application of cell membranes-based nanomaterials in the theranostics are summarized. In addition, the future prospects and limitations of cell membrane nanotechnology are anticipated. Through summarizing the state of art of the fabrication, giving examples of CNS diseases, and highlighting the applications in theranostics, the current review provides designing methods and ideas for subsequent cell membrane nanomaterials.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Nanoestructuras , Humanos , Medicina de Precisión , Membrana Celular , Nanoestructuras/uso terapéutico , Nanotecnología , Enfermedades del Sistema Nervioso Central/diagnóstico , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico
6.
J Nanobiotechnology ; 21(1): 4, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597067

RESUMEN

BACKGROUND: Although the promising advancements of current therapeutic approaches is available for the squamous cell carcinoma (SCC) patients, the clinical treatment of SCC still faces many difficulties. The surgical irreparable disfigurement and the postoperative wound infection largely hamper the recovery, and the chemo/radiotherapy leads to toxic side effects. RESULTS: Herein, a novel pH/Hyaluronidase (HAase) dual-stimuli triggered smart nanoprobe FeIIITA@HA has been designed through the biomineralization of Fe3+ and polyphenol tannic acid (TA) under the control of hyaluronic acid (HA) matrix. With the HA residues on the outer surface, FeIIITA@HA nanoprobes can specifically target the SCC cells through the over-expressed CD44, and accumulate in the carcinoma region after intravenously administration. The abundant HAase in carcinoma microenvironment will trigger the degradation of HA molecules, thereby exposing the FeIIITA complex. After ingesting by tumor cells via CD44 mediated endocytosis, the acidic lysosomal condition will further trigger the protonation of TA molecules, finally leading to the Fe3+ release of nanoprobe, and inducing a hybrid ferroptosis/apoptosis of tumor cells through peroxidase activity and glutathione depletion. In addition, Owing to the outstanding T1 magnetic resonance imaging (MRI) performance and phototermal conversion efficiency of nanoprobes, the MRI-guided photothermal therapy (PTT) can be also combined to complement the Fe3+-induced cancer therapy. Meanwhile, it was also found that the nanoprobes can promote the recruitment of CD4+ and CD8+ T cells to inhibit the tumor growth through the cytokines secretion. In addition, the FeIIITA@HA nanoprobes can be eliminated from the body and no obvious adverse side effect can be found in histological analysis, which confirmed the biosafety of them. CONCLUSION: The current FeIIITA@HA nanoprobe has huge potential in clinical translation in the field of precise diagnosis and intelligent synergistic therapy of superficial SCC. This strategy will promisingly avoid the surgical defects, and reduce the systemic side effect of traditional chemotherapy, paving a new way for the future SCC treatment.


Asunto(s)
Carcinoma de Células Escamosas , Nanopartículas , Neoplasias , Humanos , Linfocitos T CD8-positivos , Neoplasias/tratamiento farmacológico , Fototerapia/métodos , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/tratamiento farmacológico , Línea Celular Tumoral , Nanopartículas/uso terapéutico , Nanopartículas/química , Microambiente Tumoral
7.
Eur Spine J ; 31(3): 792-800, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35015138

RESUMEN

PURPOSE: To determine and compare the performance of zero echo imaging (ZTE) with conventional MRI sequences on lumbar osseous morphology in patients suspected with lumbar degeneration with multi-slice computed tomography (MSCT) as standard reference. METHODS: 22 subjects with concerned lumbar degeneration were recruited. All subjects were scanned with ZTE sequence after routine conventional MR sequences on a 3.0 T system and also received MSCT examination. Image quality was assessed. The quantitative and qualitative parameters of lumbar osseous morphology on MSCT, ZTE and MRI images were evaluated by three musculoskeletal radiologists independently. Inter-reader and inter-modality reliability and the difference between the modalities were calculated. RESULTS: There was no difference for the osseous parameters between modalities, including axial orientation (p = 0.444), IAD (p = 0.381), lateral recess (p = 0.370), pedicle width (p = 0.067), pedicle height (p = 0.056), and osteophyte grade (p = 0.052). The measurement of the foramina diameter was statistically different between conventional MRI and MSCT (p < 0.05) but not between the MSCT and ZTE (p = 0.660). Conventional MRI was more likely to miss cortical bone abnormalities. ZTE appeared blurrier in cortical bone than MSCT, especially in cases with severe lumbar degeneration. The inter-reader agreement between MSCT and ZTE-MRI was higher than between MSCT and conventional MRI. CONCLUSIONS: ZTE-MRI could offer more cortical bone details than conventional MRI images and might be a valid alternative to CT for lumbar osseous morphology assessment to some extent.


Asunto(s)
Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos X , Humanos , Región Lumbosacra , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X/métodos
8.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555379

RESUMEN

Bacterial pneumonia is one of the leading causes of death worldwide and exerts a significant burden on health-care resources. Antibiotics have long been used as first-line drugs for the treatment of bacterial pneumonia. However, antibiotic therapy and traditional antibiotic delivery are associated with important challenges, including drug resistance, low bioavailability, and adverse side effects; the existence of physiological barriers further hampers treatment. Fortunately, these limitations may be overcome by the application of nanotechnology, which can facilitate drug delivery while improving drug stability and bioavailability. This review summarizes the challenges facing the treatment of bacterial pneumonia and also highlights the types of nanoparticles that can be used for antibiotic delivery. This review places a special focus on the state-of-the-art in nanomaterial-based approaches to the delivery of antibiotics for the treatment of pneumonia.


Asunto(s)
Nanopartículas , Nanoestructuras , Neumonía , Humanos , Antibacterianos/uso terapéutico , Nanoestructuras/uso terapéutico , Sistemas de Liberación de Medicamentos , Neumonía/tratamiento farmacológico , Nanotecnología , Nanopartículas/uso terapéutico
9.
Sensors (Basel) ; 21(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808443

RESUMEN

A magnetically-guided capsule endoscope, embedding flexible force sensors, is designed to measure the capsule-tissue interaction force. The flexible force sensor is composed of eight force-sensitive elements surrounding the internal permanent magnet (IPM). The control of interaction force acting on the intestinal wall can reduce patient's discomfort and maintain the magnetic coupling between the external permanent magnet (EPM) and the IPM during capsule navigation. A flexible force sensor can achieve this control. In particular, by analyzing the signals of the force sensitive elements, we propose a method to recognize the status of the motion of the magnetic capsule, and provide corresponding formulas to evaluate whether the magnetic capsule follows the motion of the external driving magnet. Accuracy of the motion recognition in Ex Vivo tests reached 94% when the EPM was translated along the longitudinal axis. In addition, a method is proposed to realign the EPM and the IPM before the loss of their magnetic coupling. Its translational error, rotational error, and runtime are 7.04 ± 0.71 mm, 3.13 ± 0.47∘, and 11.4 ± 0.39 s, respectively. Finally, a control strategy is proposed to prevent the magnetic capsule endoscope from losing control during the magnetically-guided capsule colonoscopy.


Asunto(s)
Endoscopios en Cápsulas , Fenómenos Mecánicos , Diseño de Equipo , Humanos , Imanes , Movimiento (Física)
10.
Angew Chem Int Ed Engl ; 60(15): 8130-8138, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33283373

RESUMEN

Studies reveal that malignant tumors feature uneven distributions of some key biomarkers across the entire tumorous region. Nevertheless, only very limited progress has been made towards non-invasive and quantitative detection of tumor-specific biomarkers in vivo, especially with clinically compatible imaging modalities. Reported here is an Fe3 O4 nanoparticle-based glutathione (GSH) responsive magnetic resonance imaging (MRI) probe that can form particle aggregates within tumors in vivo to give rise to strong GSH concentration dependent interlocked relaxivities. A quantitative correlation between the interlocked MRI signals and local GSH concentration was established, and further applied for mapping the heterogeneous distribution of GSH within an intracranial tumor (2.4 mm × 1.6 mm) in vivo. This methodology will offer a practical route for quantitatively mapping tumor-specific biomarkers in vivo with unlimited detection depth, which largely challenges optical-imaging-based approaches.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Encefálicas/diagnóstico por imagen , Compuestos Férricos/química , Glutatión/análisis , Imagen por Resonancia Magnética , Nanopartículas/química , Línea Celular Tumoral , Humanos
11.
J Am Chem Soc ; 142(10): 4944-4954, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32069041

RESUMEN

Pancreatic ductal adenocarcinoma, as one of the most aggressive cancers, is characterized by rich desmoplastic stroma that forms a physical barrier for anticancer drugs. To address this issue, we herein report a two-step sequential delivery strategy for targeted therapy of pancreatic cancer with gemcitabine (GEM). In this sequential strategy, metformin (MET) was first administrated to disrupt the dense stroma, based on the fact that MET downregulated the expression of fibrogenic cytokine TGF-ß to suppress the activity of pancreatic stellate cells (PSCs), through the 5'-adenosine monophosphate-activated protein kinase pathway of PANC-1 pancreatic cancer cells. In consequence, the PSC-mediated desmoplastic reactions generating α-smooth muscle actin and collagen were inhibited, which promoted the delivery of GEM and pH (low) insertion peptide (pHLIP) comodified magnetic nanoparticles (denoted as GEM-MNP-pHLIP). In addition, pHLIP largely increased the binding affinity of the nanodrug to PANC-1 cells. The targeted delivery and effective accumulation of MET/GEM-MNP-pHLIP in vivo were confirmed by magnetic resonance imaging enhanced by the underlying magnetic nanoparticles. The tumor growth inhibition of the sequential MET and GEM-MNP-pHLIP treatment were investigated on both subcutaneous and orthotopic tumor mice models. A remarkably improved therapeutic efficacy, for example, up to 91.2% growth inhibition ratio over 30 d of treatment, well-exemplified the novel cascade treatment for pancreatic cancer and the innovative use of MET.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Nanopartículas de Magnetita/química , Metformina/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Adenocarcinoma/tratamiento farmacológico , Secuencia de Aminoácidos , Animales , Antineoplásicos/química , Línea Celular Tumoral , Desoxicitidina/química , Desoxicitidina/uso terapéutico , Portadores de Fármacos/química , Humanos , Masculino , Ratones Endogámicos BALB C , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/efectos de los fármacos , Péptidos/química , Gemcitabina
12.
Anticancer Drugs ; 31(7): 693-701, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32701250

RESUMEN

Esophageal cancer is one of the fatal cancers around the world. Dexmedetomidine (DEX) is widely used during anesthesia of esophageal cancer surgery. Nevertheless, the role of DEX in the progression of esophageal cancer remains barely known. The proliferation, apoptosis and metastasis of esophageal cancer cells were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, transwell migration and invasion assays and Western blot assay. The expression of miR-143-3p was measured by quantitative real-time PCR in esophageal cancer tissues and cells. The binding sites between miR-143-3p and epidermal growth factor receptor pathway substrate 8 (EPS8) were predicted by Starbase online software, and the combination was verified by dual-luciferase reporter assay. The murine xenograft model was established using KYSE150 cells to verify the function of DEX in vivo. DEX inhibited the proliferation and metastasis while accelerated the apoptosis of esophageal cancer cells. The abundance of miR-143-3p was lower in esophageal cancer tissues and cells than that in paring normal tissues and normal esophageal mucosal cells Het-1A. MiR-143-3p could be induced by DEX treatment in esophageal cancer cells, and miR-143-3p also suppressed the development of esophageal cancer. EPS8 was a functional target of miR-143-3p, and it played an oncogenic role in esophageal cancer. DEX inhibited the growth of tumor via miR-143-3p/EPS8 in vivo. DEX suppressed the growth and metastasis while facilitated the apoptosis of esophageal cancer cells through upregulating the abundance of miR-143-3p and reducing the level of EPS8 in vivo and in vitro, providing promising target for the treatment of esophageal cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dexmedetomidina/farmacología , Neoplasias Esofágicas/tratamiento farmacológico , MicroARNs/metabolismo , Analgésicos no Narcóticos/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Humanos , Ratones , Metástasis de la Neoplasia , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Sensors (Basel) ; 20(18)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967182

RESUMEN

The capsule endoscopy robot can only use monocular vision due to the dimensional limit. To improve the depth perception of the monocular capsule endoscopy robot, this paper proposes a photometric stereo-based depth map reconstruction method. First, based on the characteristics of the capsule endoscopy robot system, a photometric stereo framework is established. Then, by combining the specular property and Lambertian property of the object surface, the depth of the specular highlight point is estimated, and the depth map of the whole object surface is reconstructed by a forward upwind scheme. To evaluate the precision of the depth estimation of the specular highlight region and the depth map reconstruction of the object surface, simulations and experiments are implemented with synthetic images and pig colon tissue, respectively. The results of the simulations and experiments show that the proposed method provides good precision for depth map reconstruction in monocular capsule endoscopy.


Asunto(s)
Endoscopía Capsular , Procesamiento de Imagen Asistido por Computador , Animales , Porcinos
14.
Small ; 15(51): e1905344, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31762206

RESUMEN

Near-infrared lights have received increasing attention regarding imaging applications owing to their large tissue penetration depth, high spatial resolution, and outstanding signal-to-noise ratio, particularly those falling in the second near-infrared window (NIR II) of biological tissues. Rare earth nanoparticles containing Er3+ ions are promising candidates to show up-conversion luminescence in the first near-infrared window (NIR I) and down-conversion luminescence in NIR II as well. However, synthesizing particles with small size and high NIR II luminescence quantum yield (QY) remains challenging. Er3+ ions are herein innovatively combined with Yb3+ ions in a NaErF4 @NaYbF4 core/shell manner instead of being codoped into NaLnF4 matrices, to maximize the concentration of Er3+ in the emitting core. After further surface coating, NaErF4 @NaYbF4 @NaYF4 core/shell/shell particles are obtained. Spectroscopy studies are carried out to show the synergistic impacts of the intermediate NaYbF4 layer and the outer NaYF4 shell. Finally, NaErF4 @NaYbF4 @NaYF4 nanoparticles of 30 nm with NIR II luminescence QY up to 18.7% at room temperature are obtained. After covalently attaching folic acid on the particle surface, tumor-specific nanoprobes are obtained for simultaneously visualizing both subcutaneous and intraperitoneal tumor xenografts in vivo. The ultrahigh QY of down-conversion emission also allows for visualization of the biodistribution of folate receptors.


Asunto(s)
Elementos de la Serie de los Lantanoides/química , Nanopartículas/química , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/diagnóstico por imagen , Humanos , Inmunohistoquímica , Luminiscencia , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Espectroscopía Infrarroja Corta
15.
Angew Chem Int Ed Engl ; 58(32): 11088-11096, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31131511

RESUMEN

Exogenous FeIII can be used for cancer magnetic resonance (MR) imaging and potentially for cancer treatment by a ferroptosis pathway or photothermal ablation. To achieve this, effective and accurate delivery of FeIII to cancerous sites is critical, requiring a balance of release kinetics of Fe3+ in tumorous and normal tissues. A nanoprobe is described consisting of upconversion luminescence (UCL) nanoparticles as a core and a coordinatively unsaturated FeIII -containing Fe3+ /gallic acid complex as a shell. Owing to the introduction of an unsaturated coordination structure, FeIII in the nanoprobe can be released only in the tumor microenvironment in response to the lightly acidic pH. The multiple UCLs are used for quantitatively visualizing the release of Fe3+ in vivo, whilst the release resultant serves as a photothermal agent. This nanoprobe exhibited ligand-free tumor targeting ability, activatable MR imaging performance, and efficacious therapeutic effects against tumors in vivo.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Férricos/farmacología , Colorantes Fluorescentes/farmacología , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Imagen Óptica , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Férricos/química , Colorantes Fluorescentes/química , Humanos , Concentración de Iones de Hidrógeno , Nanopartículas/química , Tamaño de la Partícula , Propiedades de Superficie
16.
J Am Chem Soc ; 140(1): 211-218, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29237264

RESUMEN

The abnormal expression of tumor-associated proteases and lowered extracellular pH are important signatures strongly associated with cancer invasion, progression, and metastasis. However, their malignant effects were mainly identified using cell and tissue studies. To noninvasively visualize the heterogeneous distribution of these abnormal indicators in vivo and further disclose their collective behaviors, a target-triggered fluorescent nanoprobe composed of a ratiometric pH-sensitive dye, a near-infrared dye (Cy5.5), and biocompatible Fe3O4 nanoparticles was constructed. The pH-sensitive dye was linked through a peptide substrate of matrix metalloprotease-9 (MMP-9) with Fe3O4 nanoparticles to establish a Förster resonance energy transfer (FRET) system for sensing the pH of the tumor microenvironment. Cy5.5 served as an internal reference for forming a secondary ratiometric fluorescent system together with the activated pH dye to enable the visualization of protease activities in vivo. Extensive imaging studies using a mouse model of human colon cancer revealed that the overexpression of MMP-9 and abnormal microenvironmental pH quantitatively visualized by this dual-ratiometric probe are spatially heterogeneous and synergistically guide the tumor invasion in vivo.


Asunto(s)
Carbocianinas/química , Colorantes Fluorescentes/química , Metaloproteinasa 9 de la Matriz/metabolismo , Microambiente Tumoral , Animales , Materiales Biocompatibles/química , Transferencia Resonante de Energía de Fluorescencia , Concentración de Iones de Hidrógeno , Nanopartículas de Magnetita/química , Ratones , Estructura Molecular , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Imagen Óptica , Tamaño de la Partícula , Espectrometría de Fluorescencia
17.
J Investig Med ; : 10815589241254044, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38715211

RESUMEN

Spinal cord ischemia-reperfusion injury (SCIRI) is a major contributor to neurological damage and mortality associated with spinal cord dysfunction. This study aims to explore the possible mechanism of Propofol and G-protein-coupled receptor-interacting protein 1 (GIT1) in regulating SCIRI in rat models. SCIRI rat models were established and injected with Propofol, over expression of GIT1 (OE-GIT1), or PI3K inhibitor (LY294002). The neurological function was assessed using Tarlov scoring system, and Hematoxylin & Eosin (H&E) staining was applied to observe morphology changes in spinal cord tissues. Cell apoptosis, blood-spinal cord barriers (BSCB) permeability, and inflammatory cytokines were determined by TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, evans blue (EB) staining, and enzyme-linked immuno sorbent assay (ELISA), respectively. Reverse transcription-quantitative polymerase chain reaction and western blot were used to detect the expression levels of GIT1, endothelial nitric oxide synthase (eNOS), PI3K/AKT signal pathway and apoptosis-related proteins. SCIRI rats had decreased expressions of GIT1 and PI3K/AKT-related proteins, whose expressions can be elevated in response to Propofol treatment. LY294002 can also decrease GIT1 expression levels in SCIRI rats. Propofol can attenuate neurological dysfunction induced by SCIRI, decrease spinal cord tissue injury and BSCB permeability in addition to suppressing cell apoptosis and inflammatory cytokines, whereas further treatment by LY294002 can partially reverse the protective effect of Propofol on SCIRI. Propofol can activate PI3K/AKT signal pathway to increase GIT1 expression level, thus attenuating SCIRI in rat models.

18.
ACS Nano ; 18(29): 19038-19053, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38979966

RESUMEN

Surgical intervention is the most common first-line treatment for severe traumatic brain injuries (TBIs) associated with high intracranial pressure, while the complexity of these surgical procedures often results in complications. Surgeons often struggle to comprehensively evaluate the TBI status, making it difficult to select the optimal intervention strategy. Here, we introduce a fluorescence imaging-based technology that uses high-quality silver indium selenide-based quantum dots (QDs) for integrated TBI diagnosis and surgical guidance. These engineered, poly(ethylene glycol)-capped QDs emit in the near-infrared region, are resistant to phagocytosis, and importantly, are ultrastable after the epitaxial growth of an aluminum-doped zinc sulfide shell in the aqueous phase that renders the QDs resistant to long-term light irradiation and complex physiological environments. We found that intravenous injection of QDs enabled both the precise diagnosis of TBI in a mouse model and, more importantly, the comprehensive evaluation of the TBI status before, during, and after an operation to distinguish intracranial from superficial hemorrhages, provide real-time monitoring of the secondary hemorrhage, and guide the decision making on the evacuation of intracranial hematomas. This QD-based diagnostic and monitoring system could ultimately complement existing clinical tools for treating TBI, which may help surgeons improve patient outcomes and avoid unnecessary procedures.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Puntos Cuánticos , Puntos Cuánticos/química , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Animales , Ratones , Imagen Óptica , Agua/química , Fluorescencia , Indio/química , Masculino , Polietilenglicoles/química
19.
Adv Healthc Mater ; 12(15): e2202826, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871175

RESUMEN

″Nano-metamaterials″, rationally designed novel class metamaterials with multilevel microarchitectures and both characteristic sizes and whole sizes at the nanoscale, are introduced into the area of drug delivery system (DDS), and the relationship between release profile and treatment efficacy at the single-cell level is revealed for the first time. Fe3+ -core-shell-corona nano-metamaterials (Fe3+ -CSCs) are synthesized using a dual-kinetic control strategy. The hierarchical structure of Fe3+ -CSCs, with a homogeneous interior core, an onion-like shell, and a hierarchically porous corona. A novel polytonic drug release profile occurred, which consists of three sequential stages: burst release, metronomic release, and sustained release. The Fe3+ -CSCs results in overwhelming accumulation of lipid reactive oxygen species (ROS), cytoplasm ROS, and mitochondrial ROS in tumor cells and induces unregulated cell death. This cell death modality causes cell membranes to form blebs, seriously corrupting cell membranes to significantly overcome the drug-resistance issues. It is first demonstrated that nano-metamaterials of well-defined microstructures can modulate drug release profile at the single cell level, which in turn alters the downstream biochemical reactions and subsequent cell death modalities. This concept has significant implications in the drug delivery area and can serve to assist in designing potential intelligent nanostructures for novel molecular-based diagnostics and therapeutics.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanoestructuras , Liberación de Fármacos , Especies Reactivas de Oxígeno/metabolismo , Nanoestructuras/química
20.
Exploration (Beijing) ; 3(6): 20230070, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38264683

RESUMEN

Although the extraordinary progress has been made in molecular biology, the prevention of cancer remains arduous. Most solid tumours exhibit both spatial and temporal heterogeneity, which is difficult to be mimicked in vitro. Additionally, the complex biochemical and immune features of tumour microenvironment significantly affect the tumour development. Molecular imaging aims at the exploitation of tumour-associated molecules as specific targets of customized molecular probe, thereby generating image contrast of tumour markers, and offering opportunities to non-invasively evaluate the pathological characteristics of tumours in vivo. Particularly, there are no "standard markers" as control in clinical imaging diagnosis of individuals, so the tumour pathological characteristics-responsive nanoprobe-based quantitative molecular imaging, which is able to visualize and determine the accurate content values of heterogeneous distribution of pathological molecules in solid tumours, can provide criteria for cancer diagnosis. In this context, a variety of "smart" quantitative molecular imaging nanoprobes have been designed, in order to provide feasible approaches to quantitatively visualize the tumour-associated pathological molecules in vivo. This review summarizes the recent achievements in the designs of these nanoprobes, and highlights the state-of-the-art technologies in quantitative imaging of tumour-associated pathological molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA