Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Genet ; 16(6): e1008595, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32502153

RESUMEN

The recombinase RAD51, and its meiosis-specific paralog DMC1 localize at DNA double-strand break (DSB) sites in meiotic prophase. While both proteins are required during meiotic prophase, their spatial organization during meiotic DSB repair is not fully understood. Using super-resolution microscopy on mouse spermatocyte nuclei, we aimed to define their relative position at DSB foci, and how these vary in time. We show that a large fraction of meiotic DSB repair foci (38%) consisted of a single RAD51 nanofocus and a single DMC1 nanofocus (D1R1 configuration) that were partially overlapping with each other (average center-center distance around 70 nm). The vast majority of the rest of the foci had a similar large RAD51 and DMC1 nanofocus, but in combination with additional smaller nanofoci (D2R1, D1R2, D2R2, or DxRy configuration) at an average distance of around 250 nm. As prophase progressed, less D1R1 and more D2R1 foci were observed, where the large RAD51 nanofocus in the D2R1 foci elongated and gradually oriented towards the distant small DMC1 nanofocus. D1R2 foci frequency was relatively constant, and the single DMC1 nanofocus did not elongate, but was frequently observed between the two RAD51 nanofoci in early stages. D2R2 foci were rare (<10%) and nearest neighbour analyses also did not reveal cofoci formation between D1R1 foci. However, overall, foci localized nonrandomly along the SC, and the frequency of the distance distributions peaked at 800 nm, indicating interference and/or a preferred distance between two ends of a DSB. DMC1 nanofoci where somewhat further away from the axial or lateral elements of the synaptonemal complex (SC, connecting the chromosomal axes of homologs) compared to RAD51 nanofoci. In the absence of the transverse filament of the SC, early configurations were more prominent, and RAD51 nanofocus elongation occurred only transiently. This in-depth analysis of single cell landscapes of RAD51 and DMC1 accumulation patterns at DSB repair sites at super-resolution revealed the variability of foci composition, and defined functional consensus configurations that change over time.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Profase , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Animales , Roturas del ADN de Doble Cadena , Masculino , Ratones , Espermatocitos/citología , Espermatocitos/metabolismo
2.
BMC Bioinformatics ; 20(1): 30, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30646838

RESUMEN

BACKGROUND: Single-molecule localization microscopy is a super-resolution microscopy technique that allows for nanoscale determination of the localization and organization of proteins in biological samples. For biological interpretation of the data it is essential to extract quantitative information from the super-resolution data sets. Due to the complexity and size of these data sets flexible and user-friendly software is required. RESULTS: We developed SMoLR (Single Molecule Localization in R): a flexible framework that enables exploration and analysis of single-molecule localization data within the R programming environment. SMoLR is a package aimed at extracting, visualizing and analyzing quantitative information from localization data obtained by single-molecule microscopy. SMoLR is a platform not only to visualize nanoscale subcellular structures but additionally provides means to obtain statistical information about the distribution and localization of molecules within them. This can be done for individual images or SMoLR can be used to analyze a large set of super-resolution images at once. Additionally, we describe a method using SMoLR for image feature-based particle averaging, resulting in identification of common features among nanoscale structures. CONCLUSIONS: Embedded in the extensive R programming environment, SMoLR allows scientists to study the nanoscale organization of biomolecules in cells by extracting and visualizing quantitative information and hence provides insight in a wide-variety of different biological processes at the single-molecule level.


Asunto(s)
Gráficos por Computador , Enzimas Reparadoras del ADN/metabolismo , Microscopía Fluorescente/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos , Algoritmos , Interpretación Estadística de Datos , Humanos
3.
Nat Methods ; 13(7): 557-62, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27240257

RESUMEN

The advent of fluorescent proteins (FPs) for genetic labeling of molecules and cells has revolutionized fluorescence microscopy. Genetic manipulations have created a vast array of bright and stable FPs spanning blue to red spectral regions. Common to autofluorescent FPs is their tight ß-barrel structure, which provides the rigidity and chemical environment needed for effectual fluorescence. Despite the common structure, each FP has unique properties. Thus, there is no single 'best' FP for every circumstance, and each FP has advantages and disadvantages. To guide decisions about which FP is right for a given application, we have quantitatively characterized the brightness, photostability, pH stability and monomeric properties of more than 40 FPs to enable straightforward and direct comparison between them. We focus on popular and/or top-performing FPs in each spectral region.


Asunto(s)
Proteínas Luminiscentes/análisis , Microscopía Fluorescente/métodos , Proteínas Recombinantes de Fusión/análisis , Espectrometría de Fluorescencia/métodos , Fluorescencia , Células HeLa , Humanos
4.
Commun Biol ; 4(1): 676, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083742

RESUMEN

Myopia is the most common developmental disorder of juvenile eyes, and it has become an increasing cause of severe visual impairment. The GJD2 locus has been consistently associated with myopia in multiple independent genome-wide association studies. However, despite the strong genetic evidence, little is known about the functional role of GJD2 in refractive error development. Here, we find that depletion of gjd2a (Cx35.5) or gjd2b (Cx35.1) orthologs in zebrafish, cause changes in the biometry and refractive status of the eye. Our immunohistological and scRNA sequencing studies show that Cx35.5 (gjd2a) is a retinal connexin and its depletion leads to hyperopia and electrophysiological changes in the retina. These findings support a role for Cx35.5 (gjd2a) in the regulation of ocular biometry. Cx35.1 (gjd2b) has previously been identified in the retina, however, we found an additional lenticular role. Lack of Cx35.1 (gjd2b) led to a nuclear cataract that triggered axial elongation. Our results provide functional evidence of a link between gjd2 and refractive error.


Asunto(s)
Conexinas/genética , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Mutación , Errores de Refracción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Catarata/genética , Conexinas/metabolismo , Proteínas del Ojo/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Miopía/genética , RNA-Seq/métodos , Retina/metabolismo , Retina/patología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Análisis de la Célula Individual/métodos , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
5.
Mol Autism ; 7: 17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26933487

RESUMEN

BACKGROUND: Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated. METHODS: Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MS(E)) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy. RESULTS: Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission. CONCLUSIONS: Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/fisiopatología , Vesículas Sinápticas/metabolismo , Animales , Animales Congénicos , Células Cultivadas , Cerebelo/patología , Cerebelo/fisiopatología , Colorantes Fluorescentes , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Microscopía Intravital , Masculino , Espectrometría de Masas/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes Neurológicos , Microscopía Electrónica , Modelos Animales , Proteínas del Tejido Nervioso/análisis , Terminales Presinápticos/metabolismo , Proteoma , Células de Purkinje/fisiología , Células de Purkinje/ultraestructura , Compuestos de Piridinio , Compuestos de Amonio Cuaternario , Transducción de Señal , Transmisión Sináptica , Sinaptosomas/metabolismo
6.
J Cell Biol ; 207(5): 599-613, 2014 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-25488918

RESUMEN

Genome maintenance by homologous recombination depends on coordinating many proteins in time and space to assemble at DNA break sites. To understand this process, we followed the mobility of BRCA2, a critical recombination mediator, in live cells at the single-molecule level using both single-particle tracking and fluorescence correlation spectroscopy. BRCA2-GFP and -YFP were compared to distinguish diffusion from fluorophore behavior. Diffusive behavior of fluorescent RAD51 and RAD54 was determined for comparison. All fluorescent proteins were expressed from endogenous loci. We found that nuclear BRCA2 existed in oligomeric clusters, and exhibited heterogeneous mobility. DNA damage increased BRCA2 transient binding, presumably including binding to damaged sites. Despite its very different size, RAD51 displayed mobility similar to BRCA2, which indicates physical interaction between these proteins both before and after induction of DNA damage. We propose that BRCA2-mediated sequestration of nuclear RAD51 serves to prevent inappropriate DNA interactions and that all RAD51 is delivered to DNA damage sites in association with BRCA2.


Asunto(s)
Proteína BRCA2/metabolismo , Daño del ADN , Recombinasa Rad51/metabolismo , Animales , Células Madre Embrionarias/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Ratones , Ratones de la Cepa 129 , Microscopía Fluorescente , Microscopía por Video , Agregado de Proteínas , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA