Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Haematol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934404

RESUMEN

Glomerular hyperfiltration and albuminuria are frequent kidney abnormalities in children with sickle cell anaemia (SCA). However, little is known about their persistence in African SCA children. This prospective study included 600 steady-state SCA children aged 2-18 years from the Democratic Republic of Congo. Participants were genotyped for apolipoprotein L1 (APOL1) risk variants (RVs) and haem oxygenase-1 (HMOX1) GT-dinucleotide repeats. Kidney abnormalities were defined as albuminuria, hyperfiltration or decreased estimated creatinine-based glomerular filtration rate (eGFRcr). At baseline, 247/600 (41.2%) participants presented with kidney abnormalities: 82/592 (13.8%) with albuminuria, 184/587 (31.3%) with hyperfiltration and 15/587 (2.6%) with decreased eGFRcr. After a median follow-up of 5 months, repeated testing was performed in 180/247 (72.9%) available participants. Persistent hyperfiltration and persistent albuminuria (PA) were present in 29.2% (38/130) and 39.7% (23/58) respectively. eGFR normalized in all participants with a baseline decreased eGFRcr. Haemoglobinuria (p = 0.017) and male gender (p = 0.047) were significantly associated with PA and persistent hyperfiltration respectively. APOL1 RVs (G1G1/G2G2/G1G2) were borderline associated with PA (p = 0.075), while HMOX1 long repeat was not associated with any persistent kidney abnormality. This study reveals that a single screening can overestimate the rate of kidney abnormalities in children with SCA and could lead to overtreatment.

2.
Mov Disord ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38685873

RESUMEN

BACKGROUND: The MRPS36 gene encodes a recently identified component of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the Krebs cycle catalyzing the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. Defective OGDHC activity causes a clinically variable metabolic disorder characterized by global developmental delay, severe neurological impairment, liver failure, and early-onset lactic acidosis. METHODS: We investigated the molecular cause underlying Leigh syndrome with bilateral striatal necrosis in two siblings through exome sequencing. Functional studies included measurement of the OGDHC enzymatic activity and MRPS36 mRNA levels in fibroblasts, assessment of protein stability in transfected cells, and structural analysis. A literature review was performed to define the etiological and phenotypic spectrum of OGDHC deficiency. RESULTS: In the two affected brothers, exome sequencing identified a homozygous nonsense variant (c.283G>T, p.Glu95*) of MRPS36. The variant did not affect transcript processing and stability, nor protein levels, but resulted in a shorter protein lacking nine residues that contribute to the structural and functional organization of the OGDHC complex. OGDHC enzymatic activity was significantly reduced. The review of previously reported cases of OGDHC deficiency supports the association of this enzymatic defect with Leigh phenotypic spectrum and early-onset movement disorder. Slightly elevated plasma levels of glutamate and glutamine were observed in our and literature patients with OGDHC defect. CONCLUSIONS: Our findings point to MRPS36 as a new disease gene implicated in Leigh syndrome. The slight elevation of plasma levels of glutamate and glutamine observed in patients with OGDHC deficiency represents a candidate metabolic signature of this neurometabolic disorder. © 2024 International Parkinson and Movement Disorder Society.

3.
Pediatr Nephrol ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546762

RESUMEN

BACKGROUND: The Schwartz equation is the most widely used serum creatinine (SCr)-based formula to estimate the glomerular filtration rate (GFR) in children of European descent, but whether this applies to African children is unclear. METHODS: In a cross-sectional study, 513 apparently healthy African children aged 6 to 16 years were randomly recruited in school area of Kinshasa, the Democratic Republic of Congo (DRC). SCr was measured using calibrated enzymatic method. SCr was normalized using Q-values designed for European descent children, due to the absence of Q-values for African children. Commonly used eGFR equations were applied in this population. RESULTS: Normalization of SCr using Q-values for European descent children was effective in this cohort. The majority of African children (93.4%) have normalized SCr (SCr/Q) values within the reference interval (0.67-1.33) of children of European descent. The bedside-Schwartz equation was associated with significant age and sex dependency. However, the FAS-Age formula showed no sex and age dependency. The new CKiDU25 equation did not show a significant sex dependency. The recently introduced EKFC and LMR18 equations also showed no age and sex dependency, although the distribution of eGFR-values was not symmetrical. On the other hand, the FAS-Height and the Schwartz-Lyon equations showed significant sex dependency but no age dependency. CONCLUSIONS: The reference interval for SCr designed for European descent children can be applied to African children. Of all the equations studied, FAS-Age performed best and is most suitable because no height measurements are required. Establishment of specific Q-values for the widespread Jaffe-measured creatinine in Africa can further broaden applicability.

4.
Nephrol Dial Transplant ; 38(2): 362-371, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35238929

RESUMEN

BACKGROUND: Eculizumab is a lifesaving yet expensive drug for atypical haemolytic uraemic syndrome (aHUS). Current guidelines advise a fixed-dosing schedule, which can be suboptimal and inflexible in the individual patient. METHODS: We evaluated the pharmacokinetics (PK) and pharmacodynamics (PD) [classical pathway (CP) activity levels] of eculizumab in 48 patients, consisting of 849 time-concentration data and 569 CP activity levels. PK-PD modelling was performed with non-linear mixed-effects modelling. The final model was used to develop improved dosing strategies. RESULTS: A PK model with parallel linear and non-linear elimination rates best described the data with the parameter estimates clearance 0.163 L/day, volume of distribution 6.42 L, maximal rate 29.6 mg/day and concentration for 50% of maximum rate 37.9 mg/L. The PK-PD relation between eculizumab concentration and CP activity was described using an inhibitory Emax model with the parameter estimates baseline 101%, maximal inhibitory effect 95.9%, concentration for 50% inhibition 22.0 mg/L and  Hill coefficient 5.42. A weight-based loading dose, followed by PK-guided dosing was found to improve treatment. On day 7, we predict 99.95% of the patients to reach the efficacy target (CP activity <10%), compared with 94.75% with standard dosing. Comparable efficacy was predicted during the maintenance phase, while the dosing interval could be prolonged in ∼33% of the population by means of individualized dosing. With a fixed-dose 4-week dosing interval to allow for holidays, treatment costs will increase by 7.1% and we predict 91% of the patients will reach the efficacy target. CONCLUSIONS: A patient-friendly individualized dosing strategy of eculizumab has the potential to improve treatment response at reduced costs.


Asunto(s)
Síndrome Hemolítico Urémico Atípico , Humanos , Síndrome Hemolítico Urémico Atípico/tratamiento farmacológico , Análisis Costo-Beneficio , Anticuerpos Monoclonales Humanizados/uso terapéutico
5.
J Immunol ; 207(10): 2465-2472, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34635587

RESUMEN

The complement system is an important part of innate immunity. Complement activation leads to formation of convertase enzymes, switch of their specificity from C3 to C5 cleavage, and generation of lytic membrane attack complexes (C5b-9) on surfaces of pathogens. Most C5 cleavage occurs via the complement alternative pathway (AP). The regulator properdin promotes generation and stabilization of AP convertases. However, its role in C5 activation is not yet understood. In this work, we showed that serum properdin is essential for LPS- and zymosan-induced C5b-9 generation and C5b-9-mediated lysis of rabbit erythrocytes. Furthermore, we demonstrated its essential role in C5 cleavage by AP convertases. To this end, we developed a hemolytic assay in which AP convertases were generated on rabbit erythrocytes by using properdin-depleted serum in the presence of C5 inhibitor (step 1), followed by washing and addition of purified C5-C9 components to allow C5b-9 formation (step 2). In this assay, addition of purified properdin to properdin-depleted serum during convertase formation (step 1) was required to restore C5 cleavage and C5b-9-mediated hemolysis. Importantly, C5 convertase activity was also fully restored when properdin was added together with C5b-9 components (step 2), thus after convertase formation. Moreover, with C3-depleted serum, not capable of forming new convertases but containing properdin, in step 2 of the assay, again full C5b-9 formation was observed and blocked by addition of properdin inhibitor Salp20. Thus, properdin is essential for the convertase specificity switch toward C5, and this function is independent of properdin's role in new convertase formation.


Asunto(s)
Activación de Complemento/fisiología , Convertasas de Complemento C3-C5/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Vía Alternativa del Complemento/fisiología , Properdina/metabolismo , Animales , Conejos
6.
Pediatr Nephrol ; 38(8): 2509-2521, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36472655

RESUMEN

HIV infection remains one of the leading causes of morbidity and mortality worldwide, especially in children living in resource-limited settings. Although the World Health Organization (WHO) recently recommended antiretroviral therapy (ART) initiation upon diagnosis regardless of the number of CD4, ART access remains limited, especially in children living in sub-Saharan Africa (SSA). HIV-infected children who do not receive appropriate ART are at increased risk of developing HIV-associated nephropathy (HIVAN). Although due to genetic susceptibility, SSA is recognized to be the epicenter of HIVAN, limited information is available regarding the burden of HIVAN in children living in Africa. The present review discusses the information available to date on the prevalence, pathogenesis, risk factors, diagnosis, and management of HIVAN in children, focusing on related challenges in a resource-limited setting.


Asunto(s)
Nefropatía Asociada a SIDA , Infecciones por VIH , Humanos , Niño , Nefropatía Asociada a SIDA/diagnóstico , Nefropatía Asociada a SIDA/epidemiología , Nefropatía Asociada a SIDA/etiología , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Configuración de Recursos Limitados , Factores de Riesgo , África del Sur del Sahara/epidemiología
7.
Pediatr Nephrol ; 38(8): 2529-2547, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36472656

RESUMEN

Glomerular hyperfiltration (GHF) is a phenomenon that can occur in various clinical conditions affecting the kidneys such as sickle cell disease, diabetes mellitus, autosomal dominant polycystic kidney disease, and solitary functioning kidney. Yet, the pathophysiological mechanisms vary from one disease to another and are not well understood. More so, it has been demonstrated that GHF may occur at the single-nephron in some clinical conditions while in others at the whole-kidney level. In this review, we explore the pathophysiological mechanisms of GHF in relation to various clinical conditions in the pediatric population. In addition, we discuss the role and mechanism of action of important factors such as gender, low birth weight, and race in the pathogenesis of GHF. Finally, in this current review, we further highlight the consequences of GHF in the progression of kidney disease.


Asunto(s)
Relevancia Clínica , Riñón Poliquístico Autosómico Dominante , Niño , Humanos , Tasa de Filtración Glomerular/fisiología , Glomérulos Renales , Riñón , Riñón Poliquístico Autosómico Dominante/diagnóstico , Riñón Poliquístico Autosómico Dominante/genética
8.
Br J Haematol ; 196(1): 204-214, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34545573

RESUMEN

Clinical and genetic factors have been reported as influencing the development of sickle cell nephropathy (SCN). However, such data remain limited in the paediatric population. In this cross-sectional study, we enrolled 361 sickle cell disease children from the Democratic Republic of Congo. Participants were genotyped for the beta (ß)-globin gene, apolipoprotein L1 (APOL1) risk variants, and haem oxygenase-1 (HMOX1) GT-dinucleotide repeats. As markers of kidney damage, albuminuria, hyperfiltration and decreased estimated glomerular filtration with creatinine (eGFRcr) were measured. An association of independent clinical and genetic factors with these markers of kidney damage were assessed via regression analysis. Genetic sequencing confirmed sickle cell anaemia in 326 participants. Albuminuria, hyperfiltration and decreased eGFRcr were present in 65 (20%), 52 (16%) and 18 (5·5%) patients, respectively. Regression analysis revealed frequent blood transfusions, indirect bilirubin and male gender as clinical predictors of SCN. APOL1 high-risk genotype (G1/G1, G2/G2 and G1/G2) was significantly associated with albuminuria (P = 0·04) and hyperfiltration (P = 0·001). HMOX1 GT-dinucleotide long repeats were significantly associated with lower eGFRcr. The study revealed a high burden of kidney damage among Congolese children and provided evidence of the possible role of APOL1 and HMOX1 in making children more susceptible to kidney complications.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/epidemiología , Población Negra , Susceptibilidad a Enfermedades , Enfermedades Renales/epidemiología , Enfermedades Renales/etiología , Adolescente , Anemia de Células Falciformes/diagnóstico , Anemia de Células Falciformes/genética , Apolipoproteína L1/genética , Niño , Preescolar , Estudios Transversales , Índices de Eritrocitos , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Tasa de Filtración Glomerular , Hemo-Oxigenasa 1/genética , Humanos , Enfermedades Renales/diagnóstico , Pruebas de Función Renal , Masculino , Mutación , Globinas beta/metabolismo
9.
J Inherit Metab Dis ; 45(4): 769-781, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35279850

RESUMEN

Congenital disorders of glycosylation type 1 (CDG-I) comprise a group of 27 genetic defects with heterogeneous multisystem phenotype, mostly presenting with nonspecific neurological symptoms. The biochemical hallmark of CDG-I is a partial absence of complete N-glycans on transferrin. However, recent findings of a diagnostic N-tetrasaccharide for ALG1-CDG and increased high-mannose N-glycans for a few other CDG suggested the potential of glycan structural analysis for CDG-I gene discovery. We analyzed the relative abundance of total plasma N-glycans by high resolution quadrupole time-of-flight mass spectrometry in a large cohort of 111 CDG-I patients with known (n = 75) or unsolved (n = 36) genetic cause. We designed single-molecule molecular inversion probes (smMIPs) for sequencing of CDG-I candidate genes on the basis of specific N-glycan signatures. Glycomics profiling in patients with known defects revealed novel features such as the N-tetrasaccharide in ALG2-CDG patients and a novel fucosylated N-pentasaccharide as specific glycomarker for ALG1-CDG. Moreover, group-specific high-mannose N-glycan signatures were found in ALG3-, ALG9-, ALG11-, ALG12-, RFT1-, SRD5A3-, DOLK-, DPM1-, DPM3-, MPDU1-, ALG13-CDG, and hereditary fructose intolerance. Further differential analysis revealed high-mannose profiles, characteristic for ALG12- and ALG9-CDG. Prediction of candidate genes by glycomics profiling in 36 patients with thus far unsolved CDG-I and subsequent smMIPs sequencing led to a yield of solved cases of 78% (28/36). Combined plasma glycomics profiling and targeted smMIPs sequencing of candidate genes is a powerful approach to identify causative mutations in CDG-I patient cohorts.


Asunto(s)
Trastornos Congénitos de Glicosilación , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/genética , Glicómica , Glicosilación , Humanos , Manosa , Manosiltransferasas/genética , N-Acetilglucosaminiltransferasas , Oligosacáridos , Polisacáridos/genética
10.
Pediatr Nephrol ; 37(6): 1231-1243, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34050806

RESUMEN

The life expectancy of individuals with sickle cell disease has increased over the years, majorly due to an overall improvement in diagnosis and medical care. Nevertheless, this improved longevity has resulted in an increased prevalence of chronic complications such as sickle cell nephropathy (SCN), which poses a challenge to the medical care of the patient, shortening the lifespan of patients by 20-30 years. Clinical presentation of SCN is age-dependent, with kidney dysfunction slowly beginning to develop from childhood, progressing to chronic kidney disease and kidney failure during the third and fourth decades of life. This review explores the epidemiology, pathology, pathophysiology, clinical presentation, and management of SCN by focusing on the pediatric population. It also discusses the factors that can modify SCN susceptibility.


Asunto(s)
Anemia de Células Falciformes , Insuficiencia Renal Crónica , Enfermedades Vasculares , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/epidemiología , Anemia de Células Falciformes/terapia , Niño , Humanos , Prevalencia , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/etiología
11.
Exp Cell Res ; 405(2): 112712, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34181939

RESUMEN

Parietal epithelial cells (PECs) are epithelial cells in the kidney, surrounding Bowman's space. When activated, PECs increase in cell volume, proliferate, migrate to the glomerular tuft and excrete extracellular matrix. Activated PECs are crucially involved in the formation of sclerotic lesions, seen in focal segmental glomerulosclerosis (FSGS). In FSGS, a number of glomeruli show segmental sclerotic lesions. Further disease progression will lead to increasing number of involved glomeruli and gradual destruction of the affected glomeruli. Although the involvement of PECs in FSGS has been acknowledged, little is known about the molecular processes driving PEC activation. To get more insights in this process, accurate in vivo and in vitro models are needed. Here, we describe the development and characterization of a novel conditionally immortalized human PEC (ciPEC) line. We demonstrated that ciPECs are differentiated when grown under growth-restrictive conditions and express important PEC-specific markers, while lacking podocyte and endothelial markers. In addition, ciPECs showed PEC-like morphology and responded to IL-1ß treatment. We therefore conclude that we have successfully generated a novel PEC line, which can be used for future studies on the role of PECs in FSGS.


Asunto(s)
Células Epiteliales/citología , Matriz Extracelular/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomérulos Renales/citología , Humanos , Receptores de Hialuranos/metabolismo , Riñón/citología , Podocitos/citología
12.
Pediatr Nephrol ; 37(3): 601-612, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34476601

RESUMEN

BACKGROUND: C3 glomerulopathy (C3G) is a rare kidney disorder characterized by predominant glomerular depositions of complement C3. C3G can be subdivided into dense deposit disease (DDD) and C3 glomerulonephritis (C3GN). This study describes the long-term follow-up with extensive complement analysis of 29 Dutch children with C3G. METHODS: Twenty-nine C3G patients (19 DDD, 10 C3GN) diagnosed between 1992 and 2014 were included. Clinical and laboratory findings were collected at presentation and during follow-up. Specialized assays were used to detect rare variants in complement genes and measure complement-directed autoantibodies and biomarkers in blood. RESULTS: DDD patients presented with lower estimated glomerular filtration rate (eGFR). C3 nephritic factors (C3NeFs) were detected in 20 patients and remained detectable over time despite immunosuppressive treatment. At presentation, low serum C3 levels were detected in 84% of all patients. During follow-up, in about 50% of patients, all of them C3NeF-positive, C3 levels remained low. Linear mixed model analysis showed that C3GN patients had higher soluble C5b-9 (sC5b-9) and lower properdin levels compared to DDD patients. With a median follow-up of 52 months, an overall benign outcome was observed with only six patients with eGFR below 90 ml/min/1.73 m2 at last follow-up. CONCLUSIONS: We extensively described clinical and laboratory findings including complement features of an exclusively pediatric C3G cohort. Outcome was relatively benign, persistent low C3 correlated with C3NeF presence, and C3GN was associated with higher sC5b-9 and lower properdin levels. Prospective studies are needed to further elucidate the pathogenic mechanisms underlying C3G and guide personalized medicine with complement therapeutics.


Asunto(s)
Glomerulonefritis Membranoproliferativa , Glomerulonefritis , Enfermedades Renales , Niño , Complemento C3 , Factor Nefrítico del Complemento 3 , Vía Alternativa del Complemento , Femenino , Estudios de Seguimiento , Glomerulonefritis Membranoproliferativa/patología , Humanos , Masculino , Properdina
13.
J Am Soc Nephrol ; 31(5): 1092-1106, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32273301

RESUMEN

BACKGROUND: Nephropathic cystinosis, a hereditary lysosomal storage disorder caused by dysfunction of the lysosomal cotransporter cystinosin, leads to cystine accumulation and cellular damage in various organs, particularly in the kidney. Close therapeutic monitoring of cysteamine, the only available disease-modifying treatment, is recommended. White blood cell cystine concentration is the current gold standard for therapeutic monitoring, but the assay is technically demanding and is available only on a limited basis. Because macrophage-mediated inflammation plays an important role in the pathogenesis of cystinosis, biomarkers of macrophage activation could have potential for the therapeutic monitoring of cystinosis. METHODS: We conducted a 2-year prospective, longitudinal study in which 61 patients with cystinosis who were receiving cysteamine therapy were recruited from three European reference centers. Each regular care visit included measuring four biomarkers of macrophage activation: IL-1ß, IL-6, IL-18, and chitotriosidase enzyme activity. RESULTS: A multivariate linear regression analysis of the longitudinal data for 57 analyzable patients found chitotriosidase enzyme activity and IL-6 to be significant independent predictors for white blood cell cystine levels in patients of all ages with cystinosis; a receiver operating characteristic analysis ranked chitotriosidase as superior to IL-6 in distinguishing good from poor therapeutic control (on the basis of white blood cell cystine levels of <2 nmol 1/2 cystine/mg protein or ≥2 nmol 1/2 cystine/mg protein, respectively). Moreover, in patients with at least one extrarenal complication, chitotriosidase significantly correlated with the number of extrarenal complications and was superior to white blood cell cystine levels in predicting the presence of multiple extrarenal complications. CONCLUSIONS: Chitotriosidase enzyme activity holds promise as a biomarker for use in therapeutic monitoring of nephropathic cystinosis.


Asunto(s)
Cisteamina/uso terapéutico , Cistinosis/sangre , Monitoreo de Drogas/métodos , Hexosaminidasas/sangre , Activación de Macrófagos/efectos de los fármacos , Adolescente , Adulto , Biomarcadores , Niño , Cisteamina/farmacología , Cistina/sangre , Cistinosis/tratamiento farmacológico , Femenino , Humanos , Inflamación , Interleucina-18/sangre , Interleucina-1beta/sangre , Interleucina-6/sangre , Leucocitos/química , Masculino , Cumplimiento de la Medicación , Fragmentos de Péptidos/sangre , Estudios Prospectivos , Adulto Joven
14.
Hum Mol Genet ; 27(17): 3029-3045, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29878199

RESUMEN

Genomics methodologies have significantly improved elucidation of Mendelian disorders. The combination with high-throughput functional-omics technologies potentiates the identification and confirmation of causative genetic variants, especially in singleton families of recessive inheritance. In a cohort of 99 individuals with abnormal Golgi glycosylation, 47 of which being unsolved, glycomics profiling was performed of total plasma glycoproteins. Combination with whole-exome sequencing in 31 cases revealed a known genetic defect in 15 individuals. To identify additional genetic factors, hierarchical clustering of the plasma glycomics data was done, which indicated a subgroup of four patients that shared a unique glycomics signature of hybrid type N-glycans. In two siblings, compound heterozygous mutations were found in SLC10A7, a gene of unknown function in human. These included a missense mutation that disrupted transmembrane domain 4 and a mutation in a splice acceptor site resulting in skipping of exon 9. The two other individuals showed a complete loss of SLC10A7 mRNA. The patients' phenotype consisted of amelogenesis imperfecta, skeletal dysplasia, and decreased bone mineral density compatible with osteoporosis. The patients' phenotype was mirrored in SLC10A7 deficient zebrafish. Furthermore, alizarin red staining of calcium deposits in zebrafish morphants showed a strong reduction in bone mineralization. Cell biology studies in fibroblasts of affected individuals showed intracellular mislocalization of glycoproteins and a defect in post-Golgi transport of glycoproteins to the cell membrane. In contrast to yeast, human SLC10A7 localized to the Golgi. Our combined data indicate an important role for SLC10A7 in bone mineralization and transport of glycoproteins to the extracellular matrix.


Asunto(s)
Enfermedades del Desarrollo Óseo/etiología , Calcificación Fisiológica , Trastornos Congénitos de Glicosilación/complicaciones , Genómica , Glicómica , Mutación , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Simportadores/genética , Adulto , Animales , Enfermedades del Desarrollo Óseo/metabolismo , Enfermedades del Desarrollo Óseo/patología , Células Cultivadas , Estudios de Cohortes , Exoma , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Glicosilación , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Humanos , Lactante , Masculino , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Linaje , Fenotipo , Transporte de Proteínas , Simportadores/metabolismo , Adulto Joven , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
15.
Mol Genet Metab ; 131(3): 285-288, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33004274

RESUMEN

Quantitative estimates for the global impact of COVID-19 on the diagnosis and management of patients with inborn errors of metabolism (IEM) are lacking. We collected relevant data from 16 specialized medical centers treating IEM patients in Europe, Asia and Africa. The median decline of reported IEM related services in March 1st-May 31st 2020 compared to the same period in 2019 were as high as 60-80% with a profound impact on patient management and care for this vulnerable patient group. More representative data along with outcome data and guidelines for managing IEM disorders under such extraordinary circumstances are needed.


Asunto(s)
COVID-19/prevención & control , Atención a la Salud/estadística & datos numéricos , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/terapia , África/epidemiología , Asia/epidemiología , COVID-19/epidemiología , COVID-19/virología , Comorbilidad , Atención a la Salud/métodos , Atención a la Salud/tendencias , Europa (Continente)/epidemiología , Humanos , Recién Nacido , Tamizaje Masivo/métodos , Tamizaje Masivo/estadística & datos numéricos , Errores Innatos del Metabolismo/epidemiología , Tamizaje Neonatal/métodos , Pandemias , Fenilcetonurias/diagnóstico , Fenilcetonurias/epidemiología , Fenilcetonurias/terapia , SARS-CoV-2/fisiología
16.
J Immunol ; 200(7): 2464-2478, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29500241

RESUMEN

Atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G) are associated with dysregulation and overactivation of the complement alternative pathway. Typically, gene analysis for aHUS and C3G is undertaken in small patient numbers, yet it is unclear which genes most frequently predispose to aHUS or C3G. Accordingly, we performed a six-center analysis of 610 rare genetic variants in 13 mostly complement genes (CFH, CFI, CD46, C3, CFB, CFHR1, CFHR3, CFHR4, CFHR5, CFP, PLG, DGKE, and THBD) from >3500 patients with aHUS and C3G. We report 371 novel rare variants (RVs) for aHUS and 82 for C3G. Our new interactive Database of Complement Gene Variants was used to extract allele frequency data for these 13 genes using the Exome Aggregation Consortium server as the reference genome. For aHUS, significantly more protein-altering rare variation was found in five genes CFH, CFI, CD46, C3, and DGKE than in the Exome Aggregation Consortium (allele frequency < 0.01%), thus correlating these with aHUS. For C3G, an association was only found for RVs in C3 and the N-terminal C3b-binding or C-terminal nonsurface-associated regions of CFH In conclusion, the RV analyses showed nonrandom distributions over the affected proteins, and different distributions were observed between aHUS and C3G that clarify their phenotypes.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/genética , Complemento C3/genética , Factor H de Complemento/genética , Vía Alternativa del Complemento/genética , Glomerulonefritis Membranoproliferativa/genética , Síndrome Hemolítico Urémico Atípico/patología , Complemento C3/metabolismo , Vía Alternativa del Complemento/fisiología , Femenino , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Glomerulonefritis Membranoproliferativa/patología , Humanos , Masculino , Mutación Missense/genética
17.
Pediatr Nephrol ; 35(8): 1363-1372, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-30820702

RESUMEN

Nephrotic syndrome is a heterogeneous disease, and one of the most frequent glomerular disorders among children. Depending on the etiology, it may result in end-stage renal disease and the need for renal replacement therapy. A dysfunctional glomerular filtration barrier, comprising of endothelial cells, the glomerular basement membrane and podocytes, characterizes nephrotic syndrome. Podocytes are often the primary target cells in the pathogenesis, in which not only the podocyte function but also their crosstalk with other glomerular cell types can be disturbed due to a myriad of factors. The pathophysiology of nephrotic syndrome is highly complex and studying molecular mechanisms in vitro requires state-of-the-art cell-based models resembling the in vivo situation and preferably a fully functional glomerular filtration barrier. Current advances in stem cell biology and microfluidic platforms have heralded a new era of three-dimensional (3D) cultures that might have the potential to recapitulate the glomerular filtration barrier in vitro. Here, we highlight the molecular basis of nephrotic syndrome and discuss requirements to accurately study nephrotic syndrome in vitro, including an overview of specific podocyte markers, cutting-edge stem cell organoids, and the implementation of microfluidic platforms. The development of (patho) physiologically relevant glomerular models will accelerate the identification of molecular targets involved in nephrotic syndrome and may be the harbinger of a new era of therapeutic avenues.


Asunto(s)
Membrana Basal Glomerular/patología , Síndrome Nefrótico/patología , Animales , Niño , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Mutación , Síndrome Nefrótico/genética , Podocitos/metabolismo , Podocitos/patología
18.
Am J Hum Genet ; 98(2): 310-21, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26833332

RESUMEN

Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal glycosylation in plasma.


Asunto(s)
Aparato de Golgi/genética , Homeostasis , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Secuencia de Aminoácidos , Niño , Preescolar , Clonación Molecular , Retículo Endoplásmico/metabolismo , Exoma , Femenino , Fibroblastos/citología , Glicosilación , Aparato de Golgi/metabolismo , Células HeLa , Heterocigoto , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Linaje , Fenotipo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
Mol Genet Metab ; 126(1): 43-52, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30470562

RESUMEN

Succinate-CoA ligase (SUCL) is a heterodimer consisting of an alpha subunit encoded by SUCLG1, and a beta subunit encoded by either SUCLA2 or SUCLG2 catalyzing an ATP- or GTP-forming reaction, respectively, in the mitochondrial matrix. The deficiency of this enzyme represents an encephalomyopathic form of mtDNA depletion syndromes. We describe the fatal clinical course of a female patient with a pathogenic mutation in SUCLG1 (c.626C > A, p.Ala209Glu) heterozygous at the genomic DNA level, but homozygous at the transcriptional level. The patient exhibited early-onset neurometabolic abnormality culminating in severe brain atrophy and dystonia leading to death by the age of 3.5 years. Urine and plasma metabolite profiling was consistent with SUCL deficiency which was confirmed by enzyme analysis and lack of mitochondrial substrate-level phosphorylation (mSLP) in skin fibroblasts. Oxygen consumption- but not extracellular acidification rates were altered only when using glutamine as a substrate, and this was associated with mild mtDNA depletion and no changes in ETC activities. Immunoblot analysis revealed no detectable levels of SUCLG1, while SUCLA2 and SUCLG2 protein expressions were largely reduced. Confocal imaging of triple immunocytochemistry of skin fibroblasts showed that SUCLG2 co-localized only partially with the mitochondrial network which otherwise exhibited an increase in fragmentation compared to control cells. Our results outline the catastrophic consequences of the mutated SUCLG1 leading to strongly reduced SUCL activity, mSLP impairment, mislocalization of SUCLG2, morphological alterations in mitochondria and clinically to a severe neurometabolic disease, but in the absence of changes in mtDNA levels or respiratory complex activities.


Asunto(s)
Mitocondrias/patología , Enfermedades Mitocondriales/diagnóstico , Mutación , Succinato-CoA Ligasas/genética , Preescolar , ADN Mitocondrial/genética , Resultado Fatal , Femenino , Heterocigoto , Homocigoto , Humanos , Mitocondrias/metabolismo , Fosforilación , Succinato-CoA Ligasas/sangre , Succinato-CoA Ligasas/orina
20.
Pediatr Nephrol ; 34(8): 1349-1367, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30141176

RESUMEN

Properdin is known as the only positive regulator of the complement system. Properdin promotes the activity of this defense system by stabilizing its key enzymatic complexes: the complement alternative pathway (AP) convertases. Besides, some studies have indicated a role for properdin as an initiator of complement activity. Though the AP is a powerful activation route of the complement system, it is also involved in a wide variety of autoimmune and inflammatory diseases, many of which affect the kidneys. The role of properdin in regulating complement in health and disease has not received as much appraisal as the many negative AP regulators, such as factor H. Historically, properdin deficiency has been strongly associated with an increased risk for meningococcal disease. Yet only recently had studies begun to link properdin to other complement-related diseases, including renal diseases. In the light of the upcoming complement-inhibiting therapies, it is interesting whether properdin can be a therapeutic target to attenuate AP-mediated injury. A full understanding of the basic concepts of properdin biology is therefore needed. Here, we first provide an overview of the function of properdin in health and disease. Then, we explore its potential as a therapeutic target for the AP-associated renal diseases C3 glomerulopathy, atypical hemolytic uremic syndrome, and proteinuria-induced tubulointerstitial injury. Considering current knowledge, properdin-inhibiting therapy seems promising in certain cases. However, knowing the complexity of properdin's role in renal pathologies in vivo, further research is required to clarify the exact potential of properdin-targeted therapy in complement-mediated renal diseases.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/inmunología , Vía Alternativa del Complemento , Glomerulonefritis Membranoproliferativa/inmunología , Nefritis Intersticial/inmunología , Properdina/metabolismo , Síndrome Hemolítico Urémico Atípico/tratamiento farmacológico , Complemento C3/inmunología , Complemento C3/metabolismo , C3 Convertasa de la Vía Alternativa del Complemento/metabolismo , Glomerulonefritis Membranoproliferativa/tratamiento farmacológico , Humanos , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Nefritis Intersticial/complicaciones , Nefritis Intersticial/tratamiento farmacológico , Nefritis Intersticial/orina , Properdina/antagonistas & inhibidores , Estabilidad Proteica/efectos de los fármacos , Proteinuria/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA