Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(9): 1429-1445.e8, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37044098

RESUMEN

Microhomology-mediated end joining (MMEJ) is an intrinsically mutagenic pathway of DNA double-strand break (DSB) repair essential for proliferation of homologous recombination (HR)-deficient tumors. Although targeting MMEJ has emerged as a powerful strategy to eliminate HR-deficient (HRD) cancers, this is limited by an incomplete understanding of the mechanism and factors required for MMEJ repair. Here, we identify the APE2 nuclease as an MMEJ effector. We show that loss of APE2 inhibits MMEJ at deprotected telomeres and at intra-chromosomal DSBs and is epistatic with Pol Theta for MMEJ activity. Mechanistically, we demonstrate that APE2 possesses intrinsic flap-cleaving activity, that its MMEJ function in cells depends on its nuclease activity, and further identify an uncharacterized domain required for its recruitment to DSBs. We conclude that this previously unappreciated role of APE2 in MMEJ contributes to the addiction of HRD cells to APE2, which could be exploited in the treatment of cancer.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Recombinación Homóloga
2.
Mol Cell ; 78(6): 1152-1165.e8, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32516598

RESUMEN

The APEX2 gene encodes APE2, a nuclease related to APE1, the apurinic/apyrimidinic endonuclease acting in base excision repair. Loss of APE2 is lethal in cells with mutated BRCA1 or BRCA2, making APE2 a prime target for homologous recombination-defective cancers. However, because the function of APE2 in DNA repair is poorly understood, it is unclear why BRCA-deficient cells require APE2 for viability. Here we present the genetic interaction profiles of APE2, APE1, and TDP1 deficiency coupled to biochemical and structural dissection of APE2. We conclude that the main role of APE2 is to reverse blocked 3' DNA ends, problematic lesions that preclude DNA synthesis. Our work also suggests that TOP1 processing of genomic ribonucleotides is the main source of 3'-blocking lesions relevant to APEX2-BRCA1/2 synthetic lethality. The exquisite sensitivity of BRCA-deficient cells to 3' blocks indicates that they represent a tractable vulnerability in homologous recombination-deficient tumor cells.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Endonucleasas/metabolismo , Enzimas Multifuncionales/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/genética , Línea Celular , ADN/metabolismo , Daño del ADN , Reparación del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Endonucleasas/genética , Genes BRCA1/fisiología , Humanos , Enzimas Multifuncionales/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo
3.
J Biol Chem ; 300(6): 107337, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705397

RESUMEN

APE2 plays important roles in the maintenance of genomic and epigenomic stability including DNA repair and DNA damage response. Accumulating evidence has suggested that APE2 is upregulated in multiple cancers at the protein and mRNA levels and that APE2 upregulation is correlative with higher and lower overall survival of cancer patients depending on tumor type. However, it remains unknown how APE2 protein abundance is maintained and regulated in cells. Here, we provide the first evidence of APE2 regulation via the posttranslational modification ubiquitin. APE2 is poly-ubiquitinated via K48-linked chains and degraded via the ubiquitin-proteasome system where K371 is the key residue within APE2 responsible for its ubiquitination and degradation. We further characterize MKRN3 as the E3 ubiquitin ligase for APE2 ubiquitination in cells and in vitro. In summary, this study offers the first definition of the APE2 proteostasis network and lays the foundation for future studies pertaining to the posttranslational modification regulation and functions of APE2 in genome integrity and cancer etiology/treatment.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , Ubiquitinación , Humanos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Ubiquitina/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Células HEK293 , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Proteolisis , Endonucleasas , Enzimas Multifuncionales
4.
Epilepsy Behav ; 154: 109737, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518672

RESUMEN

PURPOSE: Immune-mediated seizures are rare but are increasingly recognized as an etiology of seizures resistant to anti-seizure medications (ASMs). Antibody Prevalence in Epilepsy 2 (APE2) and Response to Immunotherapy in Epilepsy 2 (RITE2) scores were developed recently to identify patients who may be seropositive for serum central nervous system (CNS) specific antibodies (Ab) and may benefit from immunotherapy (Dubey et al. 2018). The goal of this study was to apply APE2 and RITE2 scores to an independent cohort of patients with seizures secondary to autoimmune encephalitis (AE) and to further verify the sensitivity and specificity of the scores. PRINCIPAL RESULTS: We conducted a retrospective study at Stanford University Hospital between 2008 and 2021 and included patients who had acute seizures and AE using diagnostic criteria from Graus (n = 34 definite AE, 10 probable AE, and 12 possible AE) (Graus et al. 2016). Patients were excluded if they did not have a serum Ab panel investigated or had alternate diagnoses (n = 55). APE2 and RITE2 scores were calculated based on clinical and diagnostic data (n = 56). Serum Ab were positive in 73 % of patients, in which 63 % cases carried CNS specific Ab. An APE2 score ≥ 4 had a sensitivity of 97 % and specificity of 14 % to predict a positive serum CNS specific Ab. A RITE2 score ≥ 7 had a sensitivity of 93 % and specificity of 60 % to predict seizure responsiveness to immunotherapy. CONCLUSION: APE2 and RITE2 scores had high sensitivities but low specificities to predict seropositivity and seizure responsiveness to immunotherapy in patients with autoimmune encephalitis with seizures.


Asunto(s)
Encefalitis , Convulsiones , Humanos , Femenino , Masculino , Adulto , Convulsiones/sangre , Convulsiones/etiología , Convulsiones/diagnóstico , Persona de Mediana Edad , Estudios Retrospectivos , Encefalitis/complicaciones , Encefalitis/sangre , Encefalitis/inmunología , Encefalitis/diagnóstico , Enfermedad de Hashimoto/complicaciones , Enfermedad de Hashimoto/sangre , Anciano , Sensibilidad y Especificidad , Autoanticuerpos/sangre , Adulto Joven , Inmunoterapia/métodos , Adolescente
5.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203235

RESUMEN

Apurinic/apyrimidinic (AP) sites are abundant DNA lesions generated both by spontaneous base loss and as intermediates of base excision DNA repair. In human cells, they are normally repaired by an essential AP endonuclease, APE1, encoded by the APEX1 gene. Other enzymes can cleave AP sites by either hydrolysis or ß-elimination in vitro, but it is not clear whether they provide the second line of defense in living cells. Here, we studied AP site repairs in APEX1 knockout derivatives of HEK293FT cells using a reporter system based on transcriptional mutagenesis in the enhanced green fluorescent protein gene. Despite an apparent lack of AP site-processing activity in vitro, the cells efficiently repaired the tetrahydrofuran AP site analog resistant to ß-elimination. This ability persisted even when the second AP endonuclease homolog, APE2, was also knocked out. Moreover, APEX1 null cells were able to repair uracil, a DNA lesion that is removed via the formation of an AP site. If AP site hydrolysis was chemically blocked, the uracil repair required the presence of NTHL1, an enzyme that catalyzes ß-elimination. Our results suggest that human cells possess at least two back-up AP site repair pathways, one of which is NTHL1-dependent.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , ADN , Humanos , Daño del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Endonucleasas , Reparación por Escisión , Uracilo
6.
BMC Plant Biol ; 22(1): 576, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36503409

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) and other epigenetic modifications play fundamental roles in all eukaryotic biological processes. DNA damage repair is a key process for maintaining the genomic integrity of different organisms exposed to diverse stresses. However, the reaction of miRNAs in the DNA damage repair process is unclear. RESULTS: In this study, we found that the simultaneous mutation of zinc finger DNA 3'-phosphoesterase (ZDP) and AP endonuclease 2 (APE2), two genes that play overlapping roles in active DNA demethylation and base excision repair (BER), led to genome-wide alteration of miRNAs. The transcripts of newly transcribed miRNA-encoding genes (MIRs) decreased significantly in zdp/ape2, indicating that the mutation of ZDP and APE2 affected the accumulation of miRNAs at the transcriptional level. In addition, the introduction of base damage with the DNA-alkylating reagent methyl methanesulfonate (MMS) accelerated the reduction of miRNAs in zdp/ape2. Further mutation of FORMAMIDOPYRIMIDINE DNA GLYCOSYLASE (FPG), a bifunctional DNA glycosylase/lyase, rescued the accumulation of miRNAs in zdp/ape2, suggesting that the accumulation of DNA damage repair intermediates induced the transcriptional repression of miRNAs. CONCLUSIONS: Our investigation indicates that the accumulation of DNA damage repair intermediates inhibit miRNAs accumulation by inhibiting MIR transcriptions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/genética , Daño del ADN , Reparación del ADN/genética , Transcripción Genética , MicroARNs/genética , Endonucleasas/genética , Proteínas de Arabidopsis/genética
7.
BMC Neurol ; 22(1): 503, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581882

RESUMEN

BACKGROUND: Approximately 60% of patients with autoimmune encephalitis (AE) exhibit secondary acute symptomatic seizures and showed highly sensitive to immunotherapy. However, it is difficult for many patients to receive early immunotherapy since the early identification of the cause in AE is more complex. This study aimed to investigate the early predictors of initial immune-related seizures and to guide the evaluation of treatment and prognosis. METHODS: One hundred and fifty-four patients with new-onset "unknown etiology" seizures with a course of disease less than 6 months were included. Serum and/or cerebrospinal fluid neuron-specific autoantibodies (NSAbs), including N-methyl-D-aspartate receptor (NMDAR), α-amino-3-hydroxy-5- Methyl-4-isoxazole propionic acid receptor 1 (AMPAR1), AMPAR2, anti-leucine rich glioma inactivated 1 antibody (LGI1), anti-gamma-aminobutyric acid type B receptor (GABABR), anti-contact protein-related protein-2 (CASPR2) were used to screen for immune etiology of the seizures. In addition, patients with epilepsy and encephalopathy were also examined via brain MRI, long-term video EEG, antibody prevalence in epilepsy and encephalopathy (APE2) score, and modified Rankin Scale (mRS). A logistic regression model was used to analyze the early predictors of immune etiology. RESULTS: Thirty-four cases (22.1%) were positive for NSAbs. Among all 154 patients, 23 cases of autoimmune encephalitis (AE) (21 cases of NSAbs positive), 1 case of ganglionic glioma (NSAbs positive), 130 cases of epilepsy or seizures (12 cases of NSAbs positive) were recorded. Also, there were 17 patients (11.0%) with APE2 ≥ 4 points, and all of them met the clinical diagnosis of AE. The sensitivity and specificity of APE2 ≥ 4 points for predicting AE were 73.9% and 100%. The results of multivariate analysis showed that the NSAbs and APE2 scores independently influenced the early prediction of initial immune-related seizures (P < 0.05). CONCLUSION: NSAbs and APE2 scores could act as early predictors of initial immune-related seizures.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Epilepsia , Humanos , Convulsiones/etiología , Epilepsia/etiología , Autoanticuerpos , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Estudios Retrospectivos
8.
J Biol Chem ; 295(41): 14222-14235, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32817342

RESUMEN

The DNA glycosylase NEIL3 has been implicated in DNA repair pathways including the base excision repair and the interstrand cross-link repair pathways via its DNA glycosylase and/or AP lyase activity, which are considered canonical roles of NEIL3 in genome integrity. Compared with the other DNA glycosylases NEIL1 and NEIL2, Xenopus laevis NEIL3 C terminus has two highly conserved zinc finger motifs containing GRXF residues (designated as Zf-GRF). It has been demonstrated that the minor AP endonuclease APE2 contains only one Zf-GRF motif mediating interaction with single-strand DNA (ssDNA), whereas the major AP endonuclease APE1 does not. It appears that the two NEIL3 Zf-GRF motifs (designated as Zf-GRF repeat) are dispensable for its DNA glycosylase and AP lyase activity; however, the potential function of the NEIL3 Zf-GRF repeat in genome integrity remains unknown. Here, we demonstrate evidence that the NEIL3 Zf-GRF repeat was associated with a higher affinity for shorter ssDNA than one single Zf-GRF motif. Notably, our protein-protein interaction assays show that the NEIL3 Zf-GRF repeat but not one Zf-GRF motif interacted with APE1 but not APE2. We further reveal that APE1 endonuclease activity on ssDNA but not on dsDNA is compromised by a NEIL3 Zf-GRF repeat, whereas one Zf-GRF motif within NEIL3 is not sufficient to prevent such activity of APE1. In addition, COMET assays show that excess NEIL3 Zf-GRF repeat reduces DNA damage in oxidative stress in Xenopus egg extracts. Together, our results suggest a noncanonical role of NEIL3 in genome integrity via its distinct Zf-GRF repeat in suppressing APE1 endonuclease-mediated ssDNA breakage.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN-(Sitio Apurínico o Apirimidínico) Liasa , N-Glicosil Hidrolasas , Estrés Oxidativo , Proteínas de Xenopus , Secuencias de Aminoácidos , Animales , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Óvulo/enzimología , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
9.
Biochem J ; 476(24): 3791-3804, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31808793

RESUMEN

Oxidative DNA damage represents one of the most abundant DNA lesions. It remains unclear how DNA repair and DNA damage response (DDR) pathways are co-ordinated and regulated following oxidative stress. While XRCC1 has been implicated in DNA repair, it remains unknown how exactly oxidative DNA damage is repaired and sensed by XRCC1. In this communication, we have demonstrated evidence that XRCC1 is dispensable for ATR-Chk1 DDR pathway following oxidative stress in Xenopus egg extracts. Whereas APE2 is essential for SSB repair, XRCC1 is not required for the repair of defined SSB and gapped plasmids with a 5'-OH or 5'-P terminus, suggesting that XRCC1 and APE2 may contribute to SSB repair via different mechanisms. Neither Polymerase beta nor Polymerase alpha is important for the repair of defined SSB structure. Nonetheless, XRCC1 is important for the repair of DNA damage following oxidative stress. Our observations suggest distinct roles of XRCC1 for genome integrity in oxidative stress in Xenopus egg extracts.


Asunto(s)
Extractos Celulares/química , Genoma , Óvulo/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Xenopus/metabolismo , Animales , Cromatina , Daño del ADN , Reparación del ADN , Regulación de la Expresión Génica , Masculino , Óvulo/química , Estrés Oxidativo , Plásmidos , Espermatozoides , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/química , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Xenopus/genética
10.
Proc Natl Acad Sci U S A ; 114(2): 304-309, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028224

RESUMEN

The Xenopus laevis APE2 (apurinic/apyrimidinic endonuclease 2) nuclease participates in 3'-5' nucleolytic resection of oxidative DNA damage and activation of the ATR-Chk1 DNA damage response (DDR) pathway via ill-defined mechanisms. Here we report that APE2 resection activity is regulated by DNA interactions in its Zf-GRF domain, a region sharing high homology with DDR proteins Topoisomerase 3α (TOP3α) and NEIL3 (Nei-like DNA glycosylase 3), as well as transcription and RNA regulatory proteins, such as TTF2 (transcription termination factor 2), TFIIS, and RPB9. Biochemical and NMR results establish the nucleic acid-binding activity of the Zf-GRF domain. Moreover, an APE2 Zf-GRF X-ray structure and small-angle X-ray scattering analyses show that the Zf-GRF fold is typified by a crescent-shaped ssDNA binding claw that is flexibly appended to an APE2 endonuclease/exonuclease/phosphatase (EEP) catalytic core. Structure-guided Zf-GRF mutations impact APE2 DNA binding and 3'-5' exonuclease processing, and also prevent efficient APE2-dependent RPA recruitment to damaged chromatin and activation of the ATR-Chk1 DDR pathway in response to oxidative stress in Xenopus egg extracts. Collectively, our data unveil the APE2 Zf-GRF domain as a nucleic acid interaction module in the regulation of a key single-strand break resection function of APE2, and also reveal topologic similarity of the Zf-GRF to the zinc ribbon domains of TFIIS and RPB9.


Asunto(s)
Daño del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Estrés Oxidativo/genética , Animales , ADN Glicosilasas/metabolismo , Reparación del ADN/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Endonucleasas/metabolismo , Dominios Proteicos/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
11.
Int J Mol Sci ; 19(8)2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110897

RESUMEN

DNA single-strand breaks (SSBs) occur more than 10,000 times per mammalian cell each day, representing the most common type of DNA damage. Unrepaired SSBs compromise DNA replication and transcription programs, leading to genome instability. Unrepaired SSBs are associated with diseases such as cancer and neurodegenerative disorders. Although canonical SSB repair pathway is activated to repair most SSBs, it remains unclear whether and how unrepaired SSBs are sensed and signaled. In this review, we propose a new concept of SSB end resection for genome integrity. We propose a four-step mechanism of SSB end resection: SSB end sensing and processing, as well as initiation, continuation, and termination of SSB end resection. We also compare different mechanisms of SSB end resection and DSB end resection in DNA repair and DNA damage response (DDR) pathways. We further discuss how SSB end resection contributes to SSB signaling and repair. We focus on the mechanism and regulation by APE2 in SSB end resection in genome integrity. Finally, we identify areas of future study that may help us gain further mechanistic insight into the process of SSB end resection. Overall, this review provides the first comprehensive perspective on SSB end resection in genome integrity.


Asunto(s)
Roturas del ADN de Cadena Simple , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Inestabilidad Genómica , Transducción de Señal , Animales , Endonucleasas , Humanos , Enzimas Multifuncionales
12.
Bioorg Med Chem ; 23(2): 314-21, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25515956

RESUMEN

The successful preventing and effective treatment of invasive Candida albicans infections required research focused on synthesis of new classes of agents and antifungal activity studies. Bromodichloromethyl-4-chloro-3-nitrophenyl sulfone (named compound 6); dichloromethyl-4-chloro-3-nitrophenyl sulfone (named 7); and chlorodibromomethyl-4-hydrazino-3-nitrophenyl sulfone (named 11) on inhibition of planktonic cells' growth, leucine arylamidase APE2 gene expression, and adhesion to epithelial cells were investigated. In vitro anti-Candida activities were determined against wild-types, and the morphogenesis mutants: Δefg1 and Δcph1. MICs of compounds 6, 7 and 11 (concentrated at 0.25-16µg/ml) were determined using the Clinical and Laboratory Standards Institute Broth Microdilution Method (M27-A3 Document). APE2 expression was analyzed using RT-PCR; relative quantification was normalized against ACT1 in cells growth in YEPD and on Caco-2 cell line. Adherence assay of C. albicans to Caco-2 was performed in 24-well-plate. The structure activity relationship suggested that sulfone containing hydrazine function at C-1 (compound 11) showed higher antifungal activity (cell inhibition%=100 at 1-16µg/ml) than the remaining sulfones with chlorine at C-1. Δcph1/Δefg1 was highly sensitive to compound 11, while the sensitivity was reduced in Δcph1/Δefg1::EFG1 (%=100 at 16-fold higher concentration). Compound 11 significantly affected adherence to epithelium (P ⩽0.05) and hyphae formation. The APE2 up-regulation plays role in sulfones' resistance on MAP kinase pathway. Either CPH1 or EFG1 play a role in the resistance mechanism in sulfones. The strain-dependent phenomenon is a factor in the sulfone resistance mechanism. Sulfones' mode of action was attributed to reduced virulence arsenal in terms of adhesiveness and pathogenic potential related to the APE2 expression and morphogenesis.


Asunto(s)
Antifúngicos/síntesis química , Candida albicans/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Sulfonas/química , Antifúngicos/química , Antifúngicos/farmacología , Células CACO-2 , Candida albicans/enzimología , Candida albicans/genética , Adhesión Celular/efectos de los fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Hidrazinas/química , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Sulfonas/síntesis química , Sulfonas/farmacología
13.
Rinsho Shinkeigaku ; 64(4): 272-279, 2024 Apr 24.
Artículo en Japonés | MEDLINE | ID: mdl-38508734

RESUMEN

We analyzed 20 patients diagnosed with autoimmune neurological diseases with seizure predominance. In these patients, we examined the usefulness of Antibody Prevalence in Epilepsy and Encephalopathy (APE2) score and Antibodies Contributing to Focal Epilepsy Signs and Symptoms (ACES) score in autoimmune encephalitis (AE) for facilitating early treatment. APE2 score was positive in 19 of 20 patients. ACES score was positive in 15 of 20 patients, and 4 of 5 of the patients with negative ACES score did not have AE. Comprehensive assessment including the use of the above scores is desirable in the early stage of AE.


Asunto(s)
Autoanticuerpos , Encefalitis , Convulsiones , Humanos , Autoanticuerpos/sangre , Masculino , Femenino , Persona de Mediana Edad , Encefalitis/inmunología , Encefalitis/diagnóstico , Encefalitis/terapia , Adulto , Anciano , Convulsiones/etiología , Convulsiones/inmunología , Enfermedad de Hashimoto/inmunología , Enfermedad de Hashimoto/diagnóstico , Enfermedad de Hashimoto/complicaciones , Biomarcadores/sangre , Intervención Médica Temprana , Adulto Joven , Adolescente , Anciano de 80 o más Años , Índice de Severidad de la Enfermedad
14.
DNA Repair (Amst) ; 142: 103751, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39180935

RESUMEN

Since the report of "DNA untwisting" activity in 1972, ∼50 years of research has revealed seven topoisomerases in humans (TOP1, TOP1mt, TOP2α, TOP2ß, TOP3α, TOP3ß and Spo11). These conserved regulators of DNA topology catalyze controlled breakage to the DNA backbone to relieve the torsional stress that accumulates during essential DNA transactions including DNA replication, transcription, and DNA repair. Each topoisomerase-catalyzed reaction involves the formation of a topoisomerase cleavage complex (TOPcc), a covalent protein-DNA reaction intermediate formed between the DNA phosphodiester backbone and a topoisomerase catalytic tyrosine residue. A variety of perturbations to topoisomerase reaction cycles can trigger failure of the enzyme to re-ligate the broken DNA strand(s), thereby generating topoisomerase DNA-protein crosslinks (TOP-DPC). TOP-DPCs pose unique threats to genomic integrity. These complex lesions are comprised of structurally diverse protein components covalently linked to genomic DNA, which are bulky DNA adducts that can directly impact progression of the transcription and DNA replication apparatus. A variety of genome maintenance pathways have evolved to recognize and resolve TOP-DPCs. Eukaryotic cells harbor tyrosyl DNA phosphodiesterases (TDPs) that directly reverse 3'-phosphotyrosyl (TDP1) and 5'-phoshotyrosyl (TDP2) protein-DNA linkages. The broad specificity Mre11-Rad50-Nbs1 and APE2 nucleases are also critical for mitigating topoisomerase-generated DNA damage. These DNA-protein crosslink metabolizing enzymes are further enabled by proteolytic degradation, with the proteasome, Spartan, GCNA, Ddi2, and FAM111A proteases implicated thus far. Strategies to target, unfold, and degrade the protein component of TOP-DPCs have evolved as well. Here we survey mechanisms for addressing Topoisomerase 1 (TOP1) and Topoisomerase 2 (TOP2) DPCs, highlighting systems for which molecular structure information has illuminated function of these critical DNA damage response pathways.

15.
Biomolecules ; 12(7)2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35883419

RESUMEN

Molecular chaperones such as Hsp70 and Hsp90 help fold and activate proteins in important signal transduction pathways that include DNA damage response (DDR). Previous studies have suggested that the levels of the mammalian APE2 exonuclease, a protein critical for DNA repair, may be dependent on chaperone activity. In this study, we demonstrate that the budding yeast Apn2 exonuclease interacts with molecular chaperones Ssa1 and Hsp82 and the co-chaperone Ydj1. Although Apn2 does not display a binding preference for any specific cytosolic Hsp70 or Hsp90 paralog, Ssa1 is unable to support Apn2 stability when present as the sole Ssa in the cell. Demonstrating conservation of this mechanism, the exonuclease APE2 also binds to Hsp70 and Hsp90 in mammalian cells. Inhibition of chaperone function via specific small molecule inhibitors results in a rapid loss of APE2 in a range of cancer cell lines. Taken together, these data identify APE2 and Apn2 as clients of the chaperone system in yeast and mammalian cells and suggest that chaperone inhibition may form the basis of novel anticancer therapies that target APE2-mediated processes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfatasas , Animales , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Exodesoxirribonucleasas , Exonucleasas/metabolismo , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Mamíferos/metabolismo , Chaperonas Moleculares/metabolismo , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
J Appl Lab Med ; 7(1): 36-45, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34996088

RESUMEN

BACKGROUND: Autoimmune encephalitis (AE) is a rare collection of disorders that present with a diverse and often nebulous set of clinical symptoms. Indiscriminate use of multi-antibody panels decreases their overall utility and predictive value. Application of a standardized scoring system may help reduce the number of specimens that generate misleading or uninformative results. METHODS: The results of autoimmune encephalopathy, epilepsy, or dementia autoantibody panels performed on serum (n = 251) or cerebrospinal fluid (CSF) (n = 235) specimens from October 9th, 2016 to October 11th, 2019 were collected. Retrospective chart review was performed to calculate the Antibody Prevalence in Epilepsy and Encephalopathy (APE2) score for patients with an antibody above the assay-specific reference interval and to classify results as true or false positive. RESULTS: Of the 486 specimens, 60 (12.3%) generated positive results for any AE antibody (6 CSF and 54 serum). After removing 2 duplicate specimens collected from a single patient, 10 of the remaining 58 were determined to be true positives and 8 contained neural-specific antibodies. Application of the APE2 score revealed that 89% of all true positives and 86% of specimens with neural-specific antibodies had a score ≥4. In contrast, 76% of false positives, 74% of clinically nonspecific antibodies, and 85% of the negative specimens had an APE2 score <4. CONCLUSION: The APE2 score can improve the diagnostic utility of autoimmune encephalopathy evaluation panels.


Asunto(s)
Encefalopatías , Epilepsia , Enfermedad de Hashimoto , Epilepsia/diagnóstico , Epilepsia/epidemiología , Humanos , Prevalencia , Estudios Retrospectivos
17.
Cell Rep ; 41(1): 111448, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198268

RESUMEN

Topoisomerase 1 (Top1) incises DNA containing ribonucleotides to generate complex DNA lesions that are resolved by APE2 (Apn2 in yeast). How Apn2 engages and processes this DNA damage is unclear. Here, we report X-ray crystal structures and biochemical analysis of Apn2-DNA complexes to demonstrate how Apn2 frays and cleaves 3' DNA termini via a wedging mechanism that facilitates 1-6 nucleotide endonucleolytic cleavages. APN2 deletion and DNA-wedge mutant Saccharomyces cerevisiae strains display mutator phenotypes, cell growth defects, and sensitivity to genotoxic stress in a ribonucleotide excision repair (RER)-defective background harboring a high density of Top1-incised ribonucleotides. Our data implicate a wedge-and-cut mechanism underpinning the broad-specificity Apn2 nuclease activity that mitigates mutagenic and genome instability phenotypes caused by Top1 incision at genomic ribonucleotides incorporated by DNA polymerase epsilon.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , ADN , Daño del ADN , ADN Polimerasa II/genética , Reparación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Ribonucleótidos/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Front Cell Dev Biol ; 9: 738502, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34796173

RESUMEN

The maintenance of genome integrity and fidelity is vital for the proper function and survival of all organisms. Recent studies have revealed that APE2 is required to activate an ATR-Chk1 DNA damage response (DDR) pathway in response to oxidative stress and a defined DNA single-strand break (SSB) in Xenopus laevis egg extracts. However, it remains unclear whether APE2 is a general regulator of the DDR pathway in mammalian cells. Here, we provide evidence using human pancreatic cancer cells that APE2 is essential for ATR DDR pathway activation in response to different stressful conditions including oxidative stress, DNA replication stress, and DNA double-strand breaks. Fluorescence microscopy analysis shows that APE2-knockdown (KD) leads to enhanced γH2AX foci and increased micronuclei formation. In addition, we identified a small molecule compound Celastrol as an APE2 inhibitor that specifically compromises the binding of APE2 but not RPA to ssDNA and 3'-5' exonuclease activity of APE2 but not APE1. The impairment of ATR-Chk1 DDR pathway by Celastrol in Xenopus egg extracts and human pancreatic cancer cells highlights the physiological significance of Celastrol in the regulation of APE2 functionalities in genome integrity. Notably, cell viability assays demonstrate that APE2-KD or Celastrol sensitizes pancreatic cancer cells to chemotherapy drugs. Overall, we propose APE2 as a general regulator for the DDR pathway in genome integrity maintenance.

19.
Mutat Res Rev Mutat Res ; 787: 108347, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34083046

RESUMEN

APE2 is a rising vital player in the maintenance of genome and epigenome integrity. In the past several years, a series of studies have shown the critical roles and functions of APE2. We seek to provide the first comprehensive review on several aspects of APE2 in genome and epigenome integrity. We first summarize the distinct functional domains or motifs within APE2 including EEP (endonuclease/exonuclease/phosphatase) domain, PIP box and Zf-GRF motifs from eight species (i.e., Homo sapiens, Mus musculus, Xenopus laevis, Ciona intestinalis, Arabidopsis thaliana, Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Trypanosoma cruzi). Then we analyze various APE2 nuclease activities and associated DNA substrates, including AP endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-5' exonuclease activities. We also examine several APE2 interaction proteins, including PCNA, Chk1, APE1, Myh1, and homologous recombination (HR) factors such as Rad51, Rad52, BRCA1, BRCA2, and BARD1. Furthermore, we provide insights into the roles of APE2 in various DNA repair pathways (base excision repair, single-strand break repair, and double-strand break repair), DNA damage response (DDR) pathways (ATR-Chk1 and p53-dependent), immunoglobulin class switch recombination and somatic hypermutation, as well as active DNA demethylation. Lastly, we summarize critical functions of APE2 in growth, development, and diseases. In this review, we provide the first comprehensive perspective which dissects all aspects of the multiple-function protein APE2 in genome and epigenome integrity.


Asunto(s)
Proteínas de Arabidopsis/genética , Endonucleasas/genética , Animales , Proteínas de Arabidopsis/metabolismo , Daño del ADN/genética , Daño del ADN/fisiología , Desmetilación del ADN , Reparación del ADN/genética , Reparación del ADN/fisiología , Epigenoma/genética , Humanos , Inmunidad/genética , Inmunidad/fisiología , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
20.
Front Neurol ; 12: 601761, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054682

RESUMEN

Objective: Autoimmune encephalitis (AE) is a severe but treatable autoimmune disorder that is diagnosed by antibody (Ab) testing. However, it is unrealistic to obtain an early diagnosis in some areas since the Ab status cannot be immediately determined due to time and technology restrictions. In our study, we aimed to validate the Antibody Prevalence in Epilepsy and Encephalopathy (APE2) score among patients diagnosed with possible AE as a predictive model to screen AE patients with antibodies to cell-surface proteins expressed in neurons. Methods: A total of 180 inpatients were recruited, and antibodies were detected through serological and/or cerebrospinal fluid (CSF) evaluations. The APE2 score was used to validate the predictive models of AE with autoantibodies. Results: The mean APE2 score in the Ab-positive cases was 7.25, whereas the mean APE2 score in the Ab-negative cases was 3.18 (P < 0.001). The APE2 score had a receiver operating characteristic (ROC) area under the curve of 0.924 [P < 0.0001, 95% confidence interval (CI) = 0.875-0.973]. With a cutoff score of 5, the APE2 score had the best psychometric properties, with a sensitivity of 0.875 and a specificity of 0.791. Conclusion: The APE2 score is a predictive model for AE with autoantibodies to cell-surface proteins expressed in neurons and was validated and shown to have high sensitivity and specificity in our study. We suggest that such a model should be used in patients with a suspected diagnosis of AE, which could increase the detection rate of Abs, reduce testing costs, and help patients to benefit from treatment quickly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA