Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Neurosci ; 20(1): 17, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31014242

RESUMEN

BACKGROUND: Reports show that stressful events before injury exacerbates post-injury pain. The mechanism underlying stress-induced heightened thermal pain is unclear. Here, we examined the effects of chronic intermittent stress (CIS) on nociceptive behaviors and brain-derived nerve growth factor (BDNF) system in the prefrontal cortex (PFC) and hypothalamus of rats with and without thermal injury. RESULTS: Unstressed rats showed transient mechanical allodynia during stress exposure. Stressed rats with thermal injury displayed persistent exacerbated mechanical allodynia (P < 0.001). Increased expression of BDNF mRNA in the PFC (P < 0.05), and elevated TrkB and p-TrkB (P < 0.05) protein levels in the hypothalamus were observed in stressed rats with thermal injury but not in stressed or thermally injured rats alone. Furthermore, administration of CTX-B significantly reduced stress-induced exacerbated mechanical allodynia in thermally injured rats (P < 0.001). CONCLUSION: These results indicate that BDNF-TrkB signaling in PFC and hypothalamus contributes to CIS-induced exacerbated mechanical allodynia in thermal injury state.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hiperalgesia/metabolismo , Dolor/fisiopatología , Estrés Fisiológico/fisiología , Animales , Quemaduras/complicaciones , Quemaduras/fisiopatología , Hiperalgesia/complicaciones , Hiperalgesia/fisiopatología , Hiperalgesia/prevención & control , Hipotálamo/metabolismo , Masculino , Dolor/complicaciones , Péptidos Cíclicos/farmacología , Fosforilación , Corteza Prefrontal/metabolismo , Ratas , Receptor trkB/metabolismo
2.
J Neurosci ; 36(31): 8149-59, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27488635

RESUMEN

UNLABELLED: Cocaine exposure alters brain-derived neurotrophic factor (BDNF) expression in the brain. BDNF signaling through TrkB receptors differentially modulates cocaine self-administration, depending on the brain regions involved. In the present study, we determined how brain-wide inhibition of TrkB signaling affects cocaine intake, the motivation for the drug, and reinstatement of drug taking after extinction. To overcome the inability of TrkB ligands to cross the blood-brain barrier, the TrkB antagonist cyclotraxin-B was fused to the nontoxic transduction domain of the tat protein from human immunodeficiency virus type 1 (tat-cyclotraxin-B). Intravenous injection of tat-cyclotraxin-B dose-dependently reduced cocaine intake, motivation for cocaine (as measured under a progressive ratio schedule of reinforcement), and reinstatement of cocaine taking in rats allowed either short or long access to cocaine self-administration. In contrast, the treatment did not affect operant responding for a highly palatable sweet solution, demonstrating that the effects of tat-cyclotraxin-B are specific for cocaine reinforcement. Cocaine self-administration increased TrkB signaling and activated the downstream Akt pathway in the nucleus accumbens, and had opposite effects in the prefrontal cortex. Pretreatment with tat-cyclotraxin-B normalized protein levels in these two dopamine-innervated brain regions. Cocaine self-administration also increased TrkB signaling in the ventral tegmental area, where the dopaminergic projections originate, but pretreatment with tat-cyclotraxin-B did not alter this effect. Altogether, our data show that systemic administration of a brain-penetrant TrkB antagonist leads to brain region-specific effects and may be a potential pharmacological strategy for the treatment of cocaine addiction. SIGNIFICANCE STATEMENT: Brain-derived neurotrophic factor (BDNF) signaling through TrkB receptors plays a well established role in cocaine reinforcement. However, local manipulation of BDNF signaling yields divergent effects, depending on the brain region, thereby questioning the viability of systemic TrkB targeting for the treatment of cocaine use disorders. Our study provides first-time evidence that systemic administration of a brain-penetrant TrkB antagonist (tat-cyclotraxin-B) reduces several behavioral measures of cocaine dependence, without altering motor performance or reinforcement by a sweet palatable solution. In addition, although cocaine self-administration produced opposite effects on TrkB signaling in the nucleus accumbens and prefrontal cortex, tat-cyclotraxin-B administration normalized these cocaine-induced changes in both brain regions.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/prevención & control , Glicoproteínas de Membrana/antagonistas & inhibidores , Núcleo Accumbens/metabolismo , Péptidos Cíclicos/administración & dosificación , Corteza Prefrontal/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Conducta Animal/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Inyecciones Intravenosas , Masculino , Glicoproteínas de Membrana/metabolismo , Núcleo Accumbens/efectos de los fármacos , Péptidos Cíclicos/farmacocinética , Corteza Prefrontal/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Ratas , Ratas Wistar , Receptor trkB , Autoadministración/métodos , Resultado del Tratamiento
3.
Breast Cancer Res ; 19(1): 51, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446206

RESUMEN

BACKGROUND: Patients with primary breast cancer that is positive for human epidermal growth factor receptor 2 (Her2+) have a high risk of developing metastases in the brain. Despite gains with systemic control of Her2+ disease using molecular therapies, brain metastases remain recalcitrant to therapeutic discovery. The clinical predilection of Her2+ breast cancer cells to colonize the brain likely relies on paracrine mechanisms. The neural niche poses unique selection pressures, and neoplastic cells that utilize the brain microenvironment may have a survival advantage. METHODS: Tropomyosin-related kinase B (TrkB), Her2, and downstream targets were analyzed in primary breast cancer, breast-to-brain metastasis (BBM) tissues, and tumor-derived cell lines using quantitative real-time PCR, western blot, and immunohistochemical assessment. TrkB function on BBM was confirmed with intracranial, intracardiac, or mammary fat pad xenografts in non-obese diabetic/severe combined immunodeficiency mice. The function of brain-derived neurotrophic factor (BDNF) on cell proliferation and TrkB/Her2 signaling and interactions were confirmed using selective shRNA knockdown and selective inhibitors. The physical interaction of Her2-TrkB was analyzed using electron microscopy, co-immunoprecipitation, and in silico analysis. Dual targeting of Her2 and TrkB was analyzed using clinically utilized treatments. RESULTS: We observed that patient tissues and cell lines derived from Her2+ human BBM displayed increased activation of TrkB, a neurotrophin receptor. BDNF, an extracellular neurotrophin, with roles in neuronal maturation and homeostasis, specifically binds to TrkB. TrkB knockdown in breast cancer cells led to decreased frequency and growth of brain metastasis in animal models, suggesting that circulating breast cancer cells entering the brain may take advantage of paracrine BDNF-TrkB signaling for colonization. In addition, we investigated a possible interaction between TrkB and Her2 receptors on brain metastatic breast cancer cells, and found that BDNF phosphorylated both its cognate TrkB receptor and the Her2 receptor in brain metastatic breast cancer cells. CONCLUSION: Collectively, our findings suggest that heterodimerization of Her2 and TrkB receptors gives breast cancer cells a survival advantage in the brain and that dual inhibition of these receptors may hold therapeutic potential.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias de la Mama/genética , Glicoproteínas de Membrana/genética , Receptor ErbB-2/genética , Receptor trkB/genética , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Factor Neurotrófico Derivado del Encéfalo/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/genética , Dimerización , Femenino , Humanos , Glicoproteínas de Membrana/química , Ratones , Receptor ErbB-2/química , Receptor trkB/química , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Front Cell Neurosci ; 17: 1237479, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645595

RESUMEN

Introduction: Protein kinase type C-ε (PKCε) plays an important role in the sensitization of primary afferent nociceptors, promoting mechanical hyperalgesia. In accordance, we showed that PKCε is present in sensory neurons of the peripheral nervous system (PNS), participating in the control of pain onset and chronification. Recently, it was found that PKCε is also implicated in the control of cell proliferation, promoting mitogenesis and metastatic invasion in some types of cancer. However, its role in the main glial cell of the PNS, the Schwann cells (SCs), was still not investigated. Methods: Rat primary SCs culture were treated with different pharmacologic approaches, including the PKCε agonist dicyclopropyl-linoleic acid (DCP-LA) 500 nM, the human recombinant brain derived neurotrophic factor (BDNF) 1 nM and the TrkB receptor antagonist cyclotraxin B 10 nM. The proliferation (by cell count), the migration (by scratch test and Boyden assay) as well as some markers of SCs differentiation and epithelial-mesenchymal transition (EMT) process (by qRT-PCR and western blot) were analyzed. Results: Overall, we found that PKCε is constitutively expressed in SCs, where it is likely involved in the switch from the proliferative toward the differentiated state. Indeed, we demonstrated that PKCε activation regulates SCs proliferation, increases their migration, and the expression of some markers (e.g., glycoprotein P0 and the transcription factor Krox20) of SCs differentiation. Through an autocrine mechanism, BDNF activates TrkB receptor, and controls SCs proliferation via PKCε. Importantly, PKCε activation likely promoted a partial EMT process in SCs. Discussion: PKCε mediates relevant actions in the neuronal and glial compartment of the PNS. In particular, we posit a novel function for PKCε in the transformation of SCs, assuming a role in the mechanisms controlling SCs' fate and plasticity.

5.
Front Pharmacol ; 9: 1143, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364099

RESUMEN

Intrathecal administration of brain derived neurotrophic factor (BDNF) induces long-term potentiation (LTP) and generates long-lasting central sensitization in spinal cord thus mimicking chronic pain, but the relevance of these observations to chronic pain mechanisms is uncertain. Since C-fiber activation by a high-frequency subcutaneous electrical stimulation (SES) protocol causes spinal release of BDNF and induces spinal cord LTP, we propose that application of such protocol would be a sufficient condition for generating long-lasting BDNF-mediated central sensitization. Results showed that application of burst-like SES to rat toes produced (i) rapid induction of hyperalgesia that lasted for more than 3 weeks, (ii) early increase of C-reflex activity followed by increased wind-up scores lasting for more than 1 week, and (iii) early increase followed by late decrease in BDNF protein levels and phosphorylated TrkB that lasted for more than 1 week. These changes were prevented by the TrkB antagonist cyclotraxin-B administered shortly before SES, while hyperalgesia was reversed by cyclotraxin-B administered 3 days after SES. Results suggest that mechanisms underlying central sensitization first involve BDNF release of probably neuronal origin, followed by brief increased expression of likely glial BDNF and pTrkB that could switch early phase sensitization into late one.

6.
Data Brief ; 6: 776-82, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26909388

RESUMEN

TrkB is a high affinity receptor for the brain derived neurotrophic factor (BDNF) and its phosphorylation stimulates activation of several intracellular signalling pathways linked to cellular growth, differentiation and maintenance. Identification of various activators and inhibitors of the TrkB receptor and greater understanding their binding mechanisms is critical to elucidate the biochemical and pharmacological pathways and analyse various protein crystallization studies. The data presented here is related to the research article entitled "Brain Derived neurotrophic factor is involved in the regulation of glycogen synthase kinase 3ß (GSK3ß) signalling" [1]. Cyclotraxin B (CTXB) is a disulphide bridge linked cyclic peptide molecule that interacts with TrkB receptor and inhibits the BDNF/TrkB downstream signalling. This article reports for the first time binding mechanism and interaction parameters of CTXB with the TrkB receptor. The molecular model of CTXB has been generated and it's docking with TrkB domain carried out to determine the critical residues involved in the protein peptide interaction.

7.
Eur Neuropsychopharmacol ; 25(11): 2118-30, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26343858

RESUMEN

Numerous reported data support the idea that Brain Derived Neurotrophic Factor (BDNF) is critically involved in both depression and comorbid pain. The possible direct effect of BDNF on pain mechanisms was assessed here and compared with behavioral/neurobiological features of neuropathic pain caused by chronic constriction injury to the sciatic nerve (CCI-SN). Sprague-Dawley male rats were either injected intrathecally with BDNF (3.0 ng i.t.) or subjected to unilateral CCI-SN. Their respective responses to anti-hyperalgesic drugs were assessed using the Randall-Selitto test and both immunohistochemical and RT-qPCR approaches were used to investigate molecular/cellular mechanisms underlying hyperalgesia in both models. Long lasting hyperalgesia and allodynia were induced by i.t. BDNF in intact healthy rats like those found after CCI-SN. Acute treatment with the BDNF-TrkB receptor antagonist cyclotraxin B completely prevented i.t. BDNF-induced hyperalgesia and partially reversed this symptom in both BDNF-pretreated and CCI-SN lesioned rats. Acute administration of the anticonvulsant pregabalin, the NMDA receptor antagonist ketamine, the opioid analgesics morphine and tapentadol or the antidepressant agomelatine also transiently reversed hyperalgesia in both i.t. BDNF injected- and CCI-SN lesioned-rats. Marked induction of microglia activation markers (OX42, Iba1, P-p38), proinflammatory cytokine IL-6, NMDA receptor subunit NR2B and BDNF was found in spinal cord and/or dorsal root ganglia of CCI-SN rats. A long lasting spinal BDNF overexpression was also observed in BDNF i.t. rats, indicating an autocrine self-induction, with downstream long lasting TrkB-mediated neuropathic-like pain. Accordingly, TrkB blockade appeared as a relevant approach to alleviate not only i.t. BDNF- but also nerve lesion-evoked neuropathic pain.


Asunto(s)
Analgésicos/farmacología , Modelos Animales de Enfermedad , Neuralgia/tratamiento farmacológico , Animales , Factor Neurotrófico Derivado del Encéfalo , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/inmunología , Ganglios Espinales/patología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Inyecciones Espinales , Ligadura , Masculino , Neuralgia/patología , Neuralgia/fisiopatología , Neuroglía/efectos de los fármacos , Neuroglía/inmunología , Neuroglía/patología , Neuroinmunomodulación/efectos de los fármacos , Neuroinmunomodulación/fisiología , Ratas Sprague-Dawley , Nervio Ciático/lesiones , Médula Espinal/efectos de los fármacos , Médula Espinal/inmunología , Médula Espinal/patología , Tacto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA