Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(1): e2311402121, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147555

RESUMEN

The planetesimals in the solar system exhibit varying degrees of moderately volatile elements (MVEs) depletion compared to the protosolar composition. Revealing the relevant mechanisms is crucial for exploring early solar system evolution. Most volatile-depleted materials in the solar system exhibit enrichments in the heavier isotopes of MVEs, which have traditionally been attributed to the loss of volatiles through partial evaporation. Angrites are so far an exception as they are enriched in the lighter isotopes of K. This has been interpreted as reflecting condensation processes. Here, we present Rb isotopic data of angrites and find that they have lighter Rb isotopic compositions than Vesta, Mars, and the Moon. The δ87Rb value of the angrite parent body (APB) is estimated to range between -1.19‰ and -0.67‰. The extremely light Rb isotopic composition of the APB is likely a result of the kinetic recondensation of Rb after near-complete evaporation during the magma ocean stage. This finding provides further support for the partial recondensation model to explain the light Rb and K isotopic compositions of the APB. In addition, the APB, alongside other terrestrial planetary bodies (e.g., Earth, Mars, Moon, and Vesta), exhibit a strong correlation between their Rb and K isotopic compositions. This coupling of Rb and K isotopes is indicative of a volatility-driven isotopic fractionation rather than nucleosynthetic anomalies. The extremely light Rb-K isotopic signatures of the APB suggest that beyond evaporation, condensation plays an equally significant role in shaping the planetary-scale distributions of volatile elements.

2.
Proc Natl Acad Sci U S A ; 121(23): e2306995121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805273

RESUMEN

Magmatic iron-meteorite parent bodies are the earliest planetesimals in the Solar System, and they preserve information about conditions and planet-forming processes in the solar nebula. In this study, we include comprehensive elemental compositions and fractional-crystallization modeling for iron meteorites from the cores of five differentiated asteroids from the inner Solar System. Together with previous results of metallic cores from the outer Solar System, we conclude that asteroidal cores from the outer Solar System have smaller sizes, elevated siderophile-element abundances, and simpler crystallization processes than those from the inner Solar System. These differences are related to the formation locations of the parent asteroids because the solar protoplanetary disk varied in redox conditions, elemental distributions, and dynamics at different heliocentric distances. Using highly siderophile-element data from iron meteorites, we reconstruct the distribution of calcium-aluminum-rich inclusions (CAIs) across the protoplanetary disk within the first million years of Solar-System history. CAIs, the first solids to condense in the Solar System, formed close to the Sun. They were, however, concentrated within the outer disk and depleted within the inner disk. Future models of the structure and evolution of the protoplanetary disk should account for this distribution pattern of CAIs.

3.
Proc Natl Acad Sci U S A ; 120(41): e2307149120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37748080

RESUMEN

The search for definitive biosignatures-unambiguous markers of past or present life-is a central goal of paleobiology and astrobiology. We used pyrolysis-gas chromatography coupled to mass spectrometry to analyze chemically disparate samples, including living cells, geologically processed fossil organic material, carbon-rich meteorites, and laboratory-synthesized organic compounds and mixtures. Data from each sample were employed as training and test subsets for machine-learning methods, which resulted in a model that can identify the biogenicity of both contemporary and ancient geologically processed samples with ~90% accuracy. These machine-learning methods do not rely on precise compound identification: Rather, the relational aspects of chromatographic and mass peaks provide the needed information, which underscores this method's utility for detecting alien biology.


Asunto(s)
Carbono , Emigrantes e Inmigrantes , Humanos , Exobiología , Fósiles , Aprendizaje Automático
4.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836612

RESUMEN

The age of iron meteorites implies that accretion of protoplanets began during the first millions of years of the solar system. Due to the heat generated by 26Al decay, many early protoplanets were fully differentiated with an igneous crust produced during the cooling of a magma ocean and the segregation at depth of a metallic core. The formation and nature of the primordial crust generated during the early stages of melting is poorly understood, due in part to the scarcity of available samples. The newly discovered meteorite Erg Chech 002 (EC 002) originates from one such primitive igneous crust and has an andesite bulk composition. It derives from the partial melting of a noncarbonaceous chondritic reservoir, with no depletion in alkalis relative to the Sun's photosphere and at a high degree of melting of around 25%. Moreover, EC 002 is, to date, the oldest known piece of an igneous crust with a 26Al-26Mg crystallization age of 4,565.0 million years (My). Partial melting took place at 1,220 °C up to several hundred kyr before, implying an accretion of the EC 002 parent body ca. 4,566 My ago. Protoplanets covered by andesitic crusts were probably frequent. However, no asteroid shares the spectral features of EC 002, indicating that almost all of these bodies have disappeared, either because they went on to form the building blocks of larger bodies or planets or were simply destroyed.

5.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753516

RESUMEN

During the formation of terrestrial planets, volatile loss may occur through nebular processing, planetesimal differentiation, and planetary accretion. We investigate iron meteorites as an archive of volatile loss during planetesimal processing. The carbon contents of the parent bodies of magmatic iron meteorites are reconstructed by thermodynamic modeling. Calculated solid/molten alloy partitioning of C increases greatly with liquid S concentration, and inferred parent body C concentrations range from 0.0004 to 0.11 wt%. Parent bodies fall into two compositional clusters characterized by cores with medium and low C/S. Both of these require significant planetesimal degassing, as metamorphic devolatilization on chondrite-like precursors is insufficient to account for their C depletions. Planetesimal core formation models, ranging from closed-system extraction to degassing of a wholly molten body, show that significant open-system silicate melting and volatile loss are required to match medium and low C/S parent body core compositions. Greater depletion in C relative to S is the hallmark of silicate degassing, indicating that parent body core compositions record processes that affect composite silicate/iron planetesimals. Degassing of bare cores stripped of their silicate mantles would deplete S with negligible C loss and could not account for inferred parent body core compositions. Devolatilization during small-body differentiation is thus a key process in shaping the volatile inventory of terrestrial planets derived from planetesimals and planetary embryos.

6.
Microsc Microanal ; 30(4): 660-670, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39107248

RESUMEN

Quantifying light elements such as carbon, nitrogen, and oxygen in a transmission electron microscope (TEM) is a challenging however essential task in biology, materials, or earth and planetary sciences. We have developed an approach that allows precise quantification by energy-dispersive X-ray spectroscopy (EDXS), using sensitive windowless silicon drift detectors and homemade Python routines for hyperspectral data processing. K-factors were determined using wedge-shaped focused ion beam sections. To correct for X-ray absorption within the sample, the sample mass thickness is determined by the-revisited-two-lines method (Morris, 1980). No beam current measurement is required. Applying this method to the K and L lines of iron, we found that the tabulated mass absorption coefficient at the energy of the iron L lines was too low. This is due to X-ray self-absorption at the iron edge. Using reference material, we experimentally determined an absorption coefficient that gave the expected results. We then analyzed the complex phyllosilicate mixture of the Orgueil meteorite. We show that the N/C ratio of organics can be obtained with an accuracy better than 5 at.% and that oxygen can be quantified accurately enough to infer the hydroxyl content of phyllosilicates.

7.
Proc Natl Acad Sci U S A ; 117(14): 7645-7649, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32205433

RESUMEN

Meteorites can contain a wide range of material phases due to the extreme environments found in space and are ideal candidates to search for natural superconductivity. However, meteorites are chemically inhomogeneous, and superconducting phases in them could potentially be minute, rendering detection of these phases difficult. To alleviate this difficulty, we have studied meteorite samples with the ultrasensitive magnetic field modulated microwave spectroscopy (MFMMS) technique [J. G. Ramírez, A. C. Basaran, J. de la Venta, J. Pereiro, I. K. Schuller, Rep. Prog. Phys. 77, 093902 (2014)]. Here, we report the identification of superconducting phases in two meteorites, Mundrabilla, a group IAB iron meteorite [R. Wilson, A. Cooney, Nature 213, 274-275 (1967)] and GRA 95205, a ureilite [J. N. Grossman, Meteorit. Planet. Sci. 33, A221-A239 (1998)]. MFMMS measurements detected superconducting transitions in samples from each, above 5 K. By subdividing and remeasuring individual samples, grains containing the largest superconducting fraction were isolated. The superconducting grains were then characterized with a series of complementary techniques, including vibrating-sample magnetometry (VSM), energy-dispersive X-ray spectroscopy (EDX), and numerical methods. These measurements and analysis identified the likely phases as alloys of lead, indium, and tin.

8.
Proc Natl Acad Sci U S A ; 117(49): 30973-30979, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33199613

RESUMEN

Combining U-Pb ages with Lu-Hf data in zircon provides insights into the magmatic history of rocky planets. The Northwest Africa (NWA) 7034/7533 meteorites are samples of the southern highlands of Mars containing zircon with ages as old as 4476.3 ± 0.9 Ma, interpreted to reflect reworking of the primordial Martian crust by impacts. We extracted a statistically significant zircon population (n = 57) from NWA 7533 that defines a temporal record spanning 4.2 Gyr. Ancient zircons record ages from 4485.5 ± 2.2 Ma to 4331.0 ± 1.4 Ma, defining a bimodal distribution with groupings at 4474 ± 10 Ma and 4442 ± 17 Ma. We interpret these to represent intense bombardment episodes at the planet's surface, possibly triggered by the early migration of gas giant planets. The unradiogenic initial Hf-isotope composition of these zircons establishes that Mars's igneous activity prior to ∼4.3 Ga was limited to impact-related reworking of a chemically enriched, primordial crust. A group of younger detrital zircons record ages from 1548.0 ± 8.8 Ma to 299.5 ± 0.6 Ma. The only plausible sources for these grains are the temporally associated Elysium and Tharsis volcanic provinces that are the expressions of deep-seated mantle plumes. The chondritic-like Hf-isotope compositions of these zircons require the existence of a primitive and convecting mantle reservoir, indicating that Mars has been in a stagnant-lid tectonic regime for most of its history. Our results imply that zircon is ubiquitous on the Martian surface, providing a faithful record of the planet's magmatic history.

9.
Proc Natl Acad Sci U S A ; 117(4): 1884-1889, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31932423

RESUMEN

We determined interstellar cosmic ray exposure ages of 40 large presolar silicon carbide grains extracted from the Murchison CM2 meteorite. Our ages, based on cosmogenic Ne-21, range from 3.9 ± 1.6 Ma to ∼3 ± 2 Ga before the start of the Solar System ∼4.6 Ga ago. A majority of the grains have interstellar lifetimes of <300 Ma, which is shorter than theoretical estimates for large grains. These grains condensed in outflows of asymptotic giant branch stars <4.9 Ga ago that possibly formed during an episode of enhanced star formation ∼7 Ga ago. A minority of the grains have ages >1 Ga. Longer lifetimes are expected for large grains. We determined that at least 12 of the analyzed grains were parts of aggregates in the interstellar medium: The large difference in nuclear recoil loss of cosmic ray spallation products 3He and 21Ne enabled us to estimate that the irradiated objects in the interstellar medium were up to 30 times larger than the analyzed grains. Furthermore, we estimate that the majority of the grains acquired the bulk of their cosmogenic nuclides in the interstellar medium and not by exposure to an enhanced particle flux of the early active sun.

10.
Proc Natl Acad Sci U S A ; 117(15): 8353-8359, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32229558

RESUMEN

Recent isotopic and paleomagnetic data point to a possible connection between carbonaceous chondrites and differentiated planetary materials, suggesting the existence, perhaps ephemeral, of transitional objects with a layered structure whereby a metal-rich core is enclosed by a silicate mantle, which is itself overlain by a crust containing an outermost layer of primitive solar nebula materials. This idea has not received broad support, mostly because of a lack of samples in the meteoritic record that document incipient melting at the onset of planetary differentiation. Here, we report the discovery and the petrologic-isotopic characterization of UH154-11, a ferroan trachybasalt fragment enclosed in a Renazzo-type carbonaceous chondrite (CR). Its chemical and oxygen isotopic compositions are consistent with very-low-degree partial melting of a Vigarano-type carbonaceous chondrite (CV) from the oxidized subgroup at a depth where fluid-assisted metamorphism enhanced the Na content. Its microdoleritic texture indicates crystallization at an increasing cooling rate, such as would occur during magma ascent through a chondritic crust. This represents direct evidence of magmatic activity in a carbonaceous asteroid on the verge of differentiating and demonstrates that some primitive outer Solar System objects related to icy asteroids and comets underwent a phase of magmatic activity early in the Solar System. With its peculiar petrology, UH154-11 can be considered the long-sought first melt produced during partial differentiation of a carbonaceous chondritic planetary body, bridging a previously persistent gap in differentiation processes from icy cometary bodies to fully melted iron meteorites with isotopic affinities to carbonaceous chondrites.

11.
Proc Natl Acad Sci U S A ; 117(38): 23426-23435, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900966

RESUMEN

Dynamic models of the protoplanetary disk indicate there should be large-scale material transport in and out of the inner Solar System, but direct evidence for such transport is scarce. Here we show that the ε50Ti-ε54Cr-Δ17O systematics of large individual chondrules, which typically formed 2 to 3 My after the formation of the first solids in the Solar System, indicate certain meteorites (CV and CK chondrites) that formed in the outer Solar System accreted an assortment of both inner and outer Solar System materials, as well as material previously unidentified through the analysis of bulk meteorites. Mixing with primordial refractory components reveals a "missing reservoir" that bridges the gap between inner and outer Solar System materials. We also observe chondrules with positive ε50Ti and ε54Cr plot with a constant offset below the primitive chondrule mineral line (PCM), indicating that they are on the slope ∼1.0 in the oxygen three-isotope diagram. In contrast, chondrules with negative ε50Ti and ε54Cr increasingly deviate above from PCM line with increasing δ18O, suggesting that they are on a mixing trend with an ordinary chondrite-like isotope reservoir. Furthermore, the Δ17O-Mg# systematics of these chondrules indicate they formed in environments characterized by distinct abundances of dust and H2O ice. We posit that large-scale outward transport of nominally inner Solar System materials most likely occurred along the midplane associated with a viscously evolving disk and that CV and CK chondrules formed in local regions of enhanced gas pressure and dust density created by the formation of Jupiter.

12.
Molecules ; 28(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38138495

RESUMEN

Experimental studies of the degradation of two ribonucleosides (guanosine and uridine) were carried out by making use of mechanochemistry. Mechanochemical experiments reveal the decomposition of guanosine and uridine, promoted by nickel(II) and carbonate ions, into guanine and uracil, respectively. These nucleobases were identified by HPLC and 1H NMR spectroscopy (this applied only to uracil). Additionally, density-functional theory (DFT) methodologies were used to probe the energetic viability of several degradation pathways, including in the presence of the abovementioned ions. Three mechanisms were analysed via ribose ring-opening: dry, single-molecule water-assisted, and metal-assisted, wherein the last two mechanisms confirmed the mechanochemical degradation of both ribonucleosides into respective nucleobase moieties. These results can contribute to an astrobiological interpretation of the extraterrestrial sample's contents.

13.
Anal Bioanal Chem ; 414(12): 3643-3651, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35267058

RESUMEN

Search for organic bioindicators in the solar system is a fundamental challenge for the space research community. If tremendous improvements have been achieved in detection, little or no research has been dedicated to extraction of the targets from the studied mineral matrices. Apart from thermodesorption, no extraction step was ever performed in situ within the context of biomarker detection experiments. This work presents an extraction protocol compatible with in situ space constraints. Two extraction methods, i.e., microwave-assisted extraction (MAE) and focused ultrasonic extraction (FUSE), were optimized with the aim of extracting molecules having an astrobiological interest (amino acids, nucleobases, polyaromatic carboxylic acids) and that are included in mineral matrices representative of the Martian soil. Higher efficiency was obtained with the FUSE method (20 kHz, amplitude 80%, pulse and relaxation 1 s each, for 10 min) with yields ranging from 30 to 95%. It was then applied on an Atacama Desert soil sample and Aguas Zarcas meteorite fragment. Both water-soluble and organic-soluble compounds present at trace levels were extracted using this short extraction time, and small amounts of sample and solvent compliant with in situ requirements (50 mg, 500 µL). This unique FUSE/derivatization-GC-MS approach gave similar yields to usual 24 h hot water extraction and increased the recovery of the target molecules compared to the derivatization-GC-MS method already used for in situ space experiments by a factor from 2 to 8. The data highlighted the suitability of a focused ultrasonic method for the extraction of trace organic compounds from extraterrestrial samples.


Asunto(s)
Marte , Microondas , Medio Ambiente Extraterrestre , Suelo/química , Agua
14.
Proc Natl Acad Sci U S A ; 116(47): 23461-23466, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685614

RESUMEN

Chondritic meteorites are composed of primitive components formed during the evolution of the Solar protoplanetary disk. The oldest of these components formed by condensation, yet little is known about their formation mechanism because of secondary heating processes that erased their primordial signature. Amoeboid Olivine Aggregates (AOAs) have never been melted and underwent minimal thermal annealing, implying they might have retained the conditions under which they condensed. We performed a multiisotope (O, Si, Mg) characterization of AOAs to constrain the conditions under which they condensed and the information they bear on the structure and evolution of the Solar protoplanetary disk. High-precision silicon isotopic measurements of 7 AOAs from weakly metamorphosed carbonaceous chondrites show large, mass-dependent, light Si isotope enrichments (-9‰ < δ30Si < -1‰). Based on physical modeling of condensation within the protoplanetary disk, we attribute these isotopic compositions to the rapid condensation of AOAs over timescales of days to weeks. The same AOAs show slightly positive δ25Mg that suggest that Mg isotopic homogenization occurred during thermal annealing without affecting Si isotopes. Such short condensation times for AOAs are inconsistent with disk transport timescales, indicating that AOAs, and likely other high-temperature condensates, formed during brief localized high-temperature events.

15.
Proc Natl Acad Sci U S A ; 116(3): 753-758, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30602454

RESUMEN

Organic matter in carbonaceous chondrites is distributed in fine-grained matrix. To understand pre- and postaccretion history of organic matter and its association with surrounding minerals, microscopic techniques are mandatory. Infrared (IR) spectroscopy is a useful technique, but the spatial resolution of IR is limited to a few micrometers, due to the diffraction limit. In this study, we applied the high spatial resolution IR imaging method to CM2 carbonaceous chondrites Murchison and Bells, which is based on an atomic force microscopy (AFM) with its tip detecting thermal expansion of a sample resulting from absorption of infrared radiation. We confirmed that this technique permits ∼30 nm spatial resolution organic analysis for the meteorite samples. The IR imaging results are consistent with the previously reported association of organic matter and phyllosilicates, but our results are at much higher spatial resolution. This observation of heterogeneous distributions of the functional groups of organic matter revealed its association with minerals at ∼30 nm spatial resolution in meteorite samples by IR spectroscopy.

16.
Annu Rev Earth Planet Sci ; 48: 233-258, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-33380754

RESUMEN

At present, meteorites collected in Antarctica dominate the total number of the world's known meteorites. We focus here on the scientific advances in cosmochemistry and planetary science that have been enabled by access to, and investigations of, these Antarctic meteorites. A meteorite recovered during one of the earliest field seasons of systematic searches, Elephant Moraine (EET) A79001, was identified as having originated on Mars based on the composition of gases released from shock melt pockets in this rock. Subsequently, the first lunar meteorite, Allan Hills (ALH) 81005, was also recovered from the Antarctic. Since then, many more meteorites belonging to these two classes of planetary meteorites, as well as other previously rare or unknown classes of meteorites (particularly primitive chondrites and achondrites), have been recovered from Antarctica. Studies of these samples are providing unique insights into the origin and evolution of the Solar System and planetary bodies.

17.
Am Mineral ; 106(3): 325-350, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33867542

RESUMEN

Information-rich attributes of minerals reveal their physical, chemical, and biological modes of origin in the context of planetary evolution, and thus they provide the basis for an evolutionary system of mineralogy. Part III of this system considers the formation of 43 different primary crystalline and amorphous phases in chondrules, which are diverse igneous droplets that formed in environments with high dust/gas ratios during an interval of planetesimal accretion and differentiation between 4566 and 4561 Ma. Chondrule mineralogy is complex, with several generations of initial droplet formation via various proposed heating mechanisms, followed in many instances by multiple episodes of reheating and partial melting. Primary chondrule mineralogy thus reflects a dynamic stage of mineral evolution, when the diversity and distribution of natural condensed solids expanded significantly.

18.
Proc Natl Acad Sci U S A ; 115(29): 7497-7502, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967181

RESUMEN

Calcium-aluminum-rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs), a refractory component of chondritic meteorites, formed in a high-temperature region of the protoplanetary disk characterized by approximately solar chemical and oxygen isotopic (Δ17O ∼ -24‰) compositions, most likely near the protosun. Here we describe a 16O-rich (Δ17O ∼ -22 ± 2‰) AOA from the carbonaceous Renazzo-type (CR) chondrite Yamato-793261 containing both (i) an ultrarefractory CAI and (ii) forsterite, low-Ca pyroxene, and silica, indicating formation by gas-solid reactions over a wide temperature range from ∼1,800 to ∼1,150 K. This AOA provides direct evidence for gas-solid condensation of silica in a CAI/AOA-forming region. In a gas of solar composition, the Mg/Si ratio exceeds 1, and, therefore, silica is not predicted to condense under equilibrium conditions, suggesting that the AOA formed in a parcel of gas with fractionated Mg/Si ratio, most likely due to condensation of forsterite grains. Thermodynamic modeling suggests that silica formed by condensation of nebular gas depleted by ∼10× in H and He that cooled at 50 K/hour at total pressure of 10-4 bar. Condensation of silica from a hot, chemically fractionated gas could explain the origin of silica identified from infrared spectroscopy of remote protostellar disks.

19.
Proc Natl Acad Sci U S A ; 115(34): 8547-8552, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30082398

RESUMEN

Chondrites and their main components, chondrules, are our guides into the evolution of the Solar System. Investigating the history of chondrules, including their volatile element history and the prevailing conditions of their formation, has implications not only for the understanding of chondrule formation and evolution but for that of larger bodies such as the terrestrial planets. Here we have determined the bulk chemical composition-rare earth, refractory, main group, and volatile element contents-of a suite of chondrules previously dated using the Pb-Pb system. The volatile element contents of chondrules increase with time from ∼1 My after Solar System formation, likely the result of mixing with a volatile-enriched component during chondrule recycling. Variations in the Mn/Na ratios signify changes in redox conditions over time, suggestive of decoupled oxygen and volatile element fugacities, and indicating a decrease in oxygen fugacity and a relative increase in the fugacities of in-fluxing volatiles with time. Within the context of terrestrial planet formation via pebble accretion, these observations corroborate the early formation of Mars under relatively oxidizing conditions and the protracted growth of Earth under more reducing conditions, and further suggest that water and volatile elements in the inner Solar System may not have arrived pairwise.

20.
Acta Biotheor ; 69(4): 783-798, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33839964

RESUMEN

Lithopanspermia is a theory proposing a natural exchange of organisms between solar system bodies as a result of asteroidal or cometary impactors. Research has examined not only the physics of the stages themselves but also the survival probabilities for life in each stage. However, although life is the primary factor of interest in lithopanspermia, this life is mainly treated as a passive cargo. Life, however, does not merely passively receive an onslaught of stress from surroundings; instead, it reacts. Thus, planetary ejection, interplanetary transport, and planetary entry are only the first three factors in the equation. The other factors are the quality, quantity, and evolutionary strategy of the transported organisms. Thus, a reduction in organism quantity in stage 1 might increase organism quality towards a second stress challenge in stage 3. Thus, robustness towards a stressor might in fact be higher in the bacterial population surviving after transport in stage 3 than at the beginning in stage 1. Therefore, the stages of lithopanspermia can themselves facilitate evolutionary processes that enhance the ability of the collected organisms to survive stresses such as pressure and heat shock. Thus, the multiple abiotic pressures that the population encounters through the three stages can potentially lead to very robust bacteria with survival capacities considerably higher than might otherwise be expected. This analysis details an outcome that is possible but probably rare. However, in addition to lithopanspermia, spacecraft mediated panspermia may also exist. The analogous stages in a spacecraft would result in a greater likelihood of increasing the stress tolerance of hitchhiking organisms. Furthermore, missions seeking life elsewhere will frequently be sent to places where the possibility of life as we know it is assumed to exist. Thus, we not only can transport terrestrial organisms to places where they are potentially more likely to survive but also may increase their invasive potential along the way. This analysis highlights further requirements that planetary protection protocols must implement and also provides a framework for analyses of ecological scenarios regarding the transmission of life, natural or artificial, between worlds in a solar system.


Asunto(s)
Medio Ambiente Extraterrestre , Sistema Solar , Evolución Biológica , Nave Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA