Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Molecules ; 27(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35335397

RESUMEN

A nanofiber metal-organic framework filter, a polyacrylonitrile (PAN) nanofiber membrane composite with an iron/2-amino-terephthalic acid-based metal-organic framework (MIL101(Fe)-NH2), was prepared by one-step electrospinning. MIL101(Fe)-NH2 was combined into the polymer nanofibers in situ. PAN-MIL101(Fe)-NH2 composite nanofiber membranes (NFMs) were prepared from a homogeneous spinning stock containing MIL101(Fe)-NH2 prebody fluid and PAN. Crystallization of MIL101(Fe)-NH2 and solidification of the polymer occurred simultaneously during electrospinning. The PAN-MIL101(Fe)-NH2 composite NFM showed that MIL101(Fe)-NH2 was uniformly distributed throughout the nanofiber and was used to adsorb and separate acidic organic ionic dyes from the aqueous solution. The results of Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analysis showed that MIL101(Fe)-NH2 crystals were effectively bonded in the PAN nanofiber matrix, and the crystallinity of MIL101(Fe)-NH2 crystals remained good, while the distribution was uniform. Owing to the synergistic effect of PAN and the MIL101(Fe)-NH2 crystal, the PAN-MIL101(Fe)-NH2 composite NFM showed a fast adsorption rate for acidic ionic dyes. This study provides a reference for the rapid separation and purification of organic ionic dyes from wastewater.


Asunto(s)
Nanofibras , Resinas Acrílicas/química , Colorantes , Nanofibras/química , Agua/química
2.
Anal Chim Acta ; 1288: 342163, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220295

RESUMEN

BACKGROUND: Sulfonamides (SAs) are a class of synthetic antibacterial agents that are diffusely used in the medical industry and animal husbandry. Their prevalence in the influents and effluents of water treatment plants, as well as in rivers and groundwater, has provoked worldwide concern. Monitoring SAs in environmental water is of great significance for public health. However, most of the available detection techniques for SAs are cumbersome and time-consuming. With the increasing number of actual samples, simple, fast and environmentally friendly analytical methods are always in demand. RESULTS: Herein, we describe a highly efficient micro-solid phase extraction (µ-SPE) sample preparation technique based on a novel thiol and ionic liquid bi-functional nanofibers membrane (IL-SH-PAN NFsM) for multi-residue detection of sulfonamides (SAs) in water samples. By the synergistic effect of -SH and -IL, the as-prepared IL-SH-PAN NFsM demonstrated high adsorption capacity and excellent selectivity for SAs. The water samples can be directly used for µ-SPE without pH and ionic strength adjustment, and the eluent can be directly collected for HPLC-MS/MS analysis. Compared with other methods reported in the literature, this method required much shorter extraction time (2 min for a batch), much less amount of adsorbent (4.0 mg) and organic solvent (0.5 mL), while providing much higher sensitivity (1.4-3.9 ng L-1), and fine recoveries (88.8%-117.7%) with relative standard deviations less than 4.26%. SIGNIFICANCE AND NOVELTY: A bi-functional nanofibers membrane was prepared for efficient extraction of SAs. The adsorbent exhibited superior adsorption performance and excellent selectivity. The underlying interaction mechanisms derived from -SH and -IL were proposed, which provide a new idea for preparing versatile adsorbents. Rapid, efficient and sensitive detection of SAs in water was achieved. The novel sample preparation technique can be expected as an efficient method for routine trace SAs residue monitoring in various water samples.

3.
Nanomaterials (Basel) ; 13(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37110959

RESUMEN

As cardiac diseases, which mostly result in heart failure, are increasing rapidly worldwide, heart transplantation seems the only solution for saving lives. However, this practice is not always possible due to several reasons, such as scarcity of donors, rejection of organs from recipient bodies, or costly medical procedures. In the framework of nanotechnology, nanomaterials greatly contribute to the development of these cardiovascular scaffolds as they provide an easy regeneration of the tissues. Currently, functional nanofibers can be used in the production of stem cells and in the regeneration of cells and tissues. The small size of nanomaterials, however, leads to changes in their chemical and physical characteristics that could alter their interaction and exposure to stem cells with cells and tissues. This article aims to review the naturally occurring biodegradable nanomaterials that are used in cardiovascular tissue engineering for the development of cardiac patches, vessels, and tissues. Moreover, this article also provides an overview of cell sources used for cardiac tissue engineering, explains the anatomy and physiology of the human heart, and explores the regeneration of cardiac cells and the nanofabrication approaches used in cardiac tissue engineering as well as scaffolds.

4.
Beilstein J Nanotechnol ; 14: 141-150, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761678

RESUMEN

With the increasing application of electrospun nanofibers, the batch preparation of high-performance functional nanofibers containing nanoparticles has become a research hotspot. As the distribution uniformity of nanoparticles in functional nanofibers has a great impact on their performance, an electrospinning device with multiple air inlets, which has a copper porous spinneret, is proposed to obtain functional nanofibers with higher yield and more uniform distribution of nanoparticles. The mechanism of batch preparation of functional nanofibers containing ZnO nanoparticles by the device was studied through experiments and theoretical analysis. The experimental data are in good agreement with the theoretical analysis results, which showed that under the appropriate voltage (50 kV) and air flow (50 m3/h), the device could keep ZnO nanoparticles contained in the spinning solution evenly dispersed during the spinning process, thus obtaining functional nanofibers with more uniform distribution of ZnO nanoparticles, whose quality and yield were higher than those prepared by other high-yield electrospinning devices.

5.
Food Chem ; 391: 133239, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35609463

RESUMEN

With the increasing demand for food quality and food safety, it is urgent to develop efficient packaging strategies for prolonging the shelf life of food. Functional polymeric nanofibers have emerged as promising packaging materials and made tremendous breakthrough in food packaging field. Electrospinning technique is recognized as a versatile and high-efficiency method to produce nanofibers with multifunctional properties and adjustable structures. This review focus on electrospinning types and structural construction of nanofibers (uniaxial, core-shell and porous structures) as well as highlighted the advanced functionality of polymeric nanofibers in active packaging. Moreover, the emerging stimuli-responsive nanofibers for controlled release of active compounds were introduced in this review. Ultimately, the existing challenges, future prospects and development directions of nanofiber-based packaging materials were also discussed, which will facilitate the utilization of electrospinning nanotechnology in food industry.


Asunto(s)
Nanofibras , Embalaje de Alimentos/métodos , Calidad de los Alimentos , Nanofibras/química , Nanotecnología , Polímeros/química
6.
Polymers (Basel) ; 12(5)2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32397603

RESUMEN

: Micro- and nanofibers are historically-known materials that are continuously reinvented due to their valuable properties. They display promise for applications in many fields, from tissue engineering to catalysis or sensors. In the first application, micro- and nanofibers are mainly produced from a limited library of biomaterials with properties that need alteration before use. Post-modification is a very effective method for attaining on-demand features and functions of nonwovens. This review summarizes and presents methods of functionalization of nonwovens produced by electrostatic means. The reviewed modifications are grouped into physical methods, chemical modification, and mixed methods.

7.
ACS Appl Mater Interfaces ; 12(41): 45673-45701, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937068

RESUMEN

Functional polymeric micro-/nanofibers have emerged as promising materials for the construction of structures potentially useful in biomedical fields. Among all kinds of technologies to produce polymer fibers, spinning methods have gained considerable attention. Herein, we provide a recent review on advances in the design of micro- and nanofibrous platforms via spinning techniques for biomedical applications. Specifically, we emphasize electrospinning, solution blow spinning, centrifugal spinning, and microfluidic spinning approaches. We first introduce the fundamentals of these spinning methods and then highlight the potential biomedical applications of such micro- and nanostructured fibers for drug delivery, tissue engineering, regenerative medicine, disease modeling, and sensing/biosensing. Finally, we outline the current challenges and future perspectives of spinning techniques for the practical applications of polymer fibers in the biomedical field.


Asunto(s)
Materiales Biocompatibles/química , Técnicas Biosensibles , Técnicas Analíticas Microfluídicas , Nanofibras/química , Polímeros/química , Ingeniería de Tejidos , Animales , Sistemas de Liberación de Medicamentos , Humanos , Tamaño de la Partícula , Propiedades de Superficie
8.
ACS Appl Mater Interfaces ; 11(27): 24544-24551, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31199611

RESUMEN

The present work proposes a versatile and efficient method to fabricate rubber nanofiber membranes with a controlled morphology and tailored functionality, based on the application of photoinduced thiol-ene cross-linking reactions to electrospun mats. Besides preventing the polymer cold flow and freezing the structure obtained by electrospinning, the photocuring step finely controls the morphology of the nanofiber mats, in terms of the fiber diameter up to the nanometer range and of the membrane porosity. Nanofiber membranes are also made chemically resistant, while retaining their flexibility. Finally, the proposed approach allows imparting specific functionalities to the rubber nanofibers: the type and concentration of the functional groups can be precisely tuned by changing process parameters (i.e., thiol/ene stoichiometric ratio and irradiation dose). Active chemical groups that remain available on the surface of the nanofibers can be used for further material modifications, as here proven by two target reactions. This key result is also demonstrated with electrospun membranes embedded into a microfluidic chip, opening the way to advanced functional flexible devices.

9.
Nano Converg ; 6(1): 36, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31701255

RESUMEN

Tissue engineering uses a combination of cell biology, chemistry, and biomaterials to fabricate three dimensional (3D) tissues that mimic the architecture of extracellular matrix (ECM) comprising diverse interwoven nanofibrous structure. Among several methods for producing nanofibrous scaffolds, electrospinning has gained intense interest because it can make nanofibers with a porous structure and high specific surface area. The processing and solution parameters of electrospinning can considerably affect the assembly and structural morphology of the fabricated nanofibers. Electrospun nanofibers can be made from natural or synthetic polymers and blending them is a straightforward way to tune the functionality of the nanofibers. Furthermore, the electrospun nanofibers can be functionalized with various surface modification strategies. In this review, we highlight the latest achievements in fabricating electrospun nanofibers and describe various ways to modify the surface and structure of scaffolds to promote their functionality. We also summarize the application of advanced polymeric nanofibrous scaffolds in the regeneration of human bone, cartilage, vascular tissues, and tendons/ligaments.

10.
Polymers (Basel) ; 9(12)2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30965998

RESUMEN

A novel poly(lactic-co-glycolic acid) (PLGA)-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) composite nanofiber wound dressing was prepared through electrospinning and the entrapment-graft technique as an antibacterial dressing for cutaneous wound healing. HACC with 30% degrees of substitution (DS) was immobilized onto the surface of PLGA membranes via the reaction between carboxyl groups in PLGA after alkali treatment and the reactive groups (⁻NH2) in HACC molecules. The naked PLGA and chitosan graft PLGA (PLGA-CS) membranes served as controls. The surface immobilization was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and energy dispersive X-ray spectrometry (EDX). The morphology studies showed that the membranes remain uniform after the immobilization process. The effects of the surface modification by HACC and CS on the biological properties of the membranes were also investigated. Compared with PLGA and PLGA-CS, PLGA-HACC exhibited more effective antibacterial activity towards both Gram-positive (S. aureus) and Gram-negative (P. aeruginosa) bacteria. The newly developed fibrous membranes were evaluated in vitro for their cytotoxicity using human dermal fibroblasts (HDFs) and human keratinocytes (HaCaTs) and in vivo using a wound healing mice model. It was revealed that PLGA-HACC fibrous membranes exhibited favorable cytocompatibility and significantly stimulated adhesion, spreading and proliferation of HDFs and HaCaTs. PLGA-HACC exhibited excellent wound healing efficacy, which was confirmed using a full thickness excision wound model in S. aureus-infected mice. The experimental results in this work suggest that PLGA-HACC is a strong candidate for use as a therapeutic biomaterial in the treatment of infected wounds.

11.
Materials (Basel) ; 9(1)2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-28787847

RESUMEN

In this work, biotin surface functionalized hydrophilic non-water-soluble biocompatible poly(lactic acid) (PLA) nanofibers are created for their potential use as biosensors. Varying concentrations of biotin (up to 18 weight total percent (wt %)) were incorporated into PLA fibers together with poly(lactic acid)-block-poly(ethylene glycol) (PLA-b-PEG) block polymers. While biotin provided surface functionalization, PLA-b-PEG provided hydrophilicity to the final fibers. Morphology and surface-available biotin of the final fibers were studied by Field Emission Scanning Electron Microscopy (FESEM) and competitive colorimetric assays. The incorporation of PLA-b-PEG block copolymers not only decreased fiber diameters but also dramatically increased the amount of biotin available at the fiber surface able to bind avidin. Finally, fiber water stability tests revealed that both biotin and PLA-b-PEG, migrated to the aqueous phase after relatively extended periods of water exposure. The functional hydrophilic nanofiber created in this work shows a potential application as a biosensor for point-of-care diagnostics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA