Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 102(2): 993-1024, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34486394

RESUMEN

Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers organic cation transporter 2 (OCT2) and organic anion transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation from different perspectives: phylogenetic, ontogenetic, and cell dynamic. Our aim is to identify possible molecular targets both to help prevent or compensate for the loss of transport activity in patients with kidney disease and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.


Asunto(s)
Riñón/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Transportador 2 de Cátion Orgánico/metabolismo , Animales , Humanos , Enfermedades Renales/metabolismo , Filogenia
2.
Eur J Clin Pharmacol ; 80(7): 1069-1078, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38546841

RESUMEN

PURPOSE: Adefovir (as dipivoxil) was selected as a probe drug in a previous transporter cocktail phenotyping study to assess renal organic anion transporter 1 (OAT1), with renal clearance (CLR) as the primary parameter describing renal elimination. An approximately 20% higher systemic exposure of adefovir was observed when combined with other cocktail components (metformin, sitagliptin, pitavastatin, and digoxin) compared to sole administration. The present evaluation applied a population pharmacokinetic (popPK) modeling approach to describe adefovir pharmacokinetics as a cocktail component in more detail. METHODS: Data from 24 healthy subjects were reanalyzed. After establishing a base model, covariate effects, including the impact of co-administered drugs, were assessed using forward inclusion then backward elimination. RESULTS: A one-compartment model with first-order absorption (including lag time) and a combination of nonlinear renal and linear nonrenal elimination best described the data. A significantly higher apparent bioavailability (73.6% vs. 59.0%) and a lower apparent absorption rate constant (2.29 h-1 vs. 5.18 h-1) were identified in the combined period compared to the sole administration period, while no difference was seen in renal elimination. The population estimate for the Michaelis-Menten constant (Km) of the nonlinear renal elimination was 170 nmol/L, exceeding the observed range of adefovir plasma maximum concentration, while the maximum rate (Vmax) of nonlinear renal elimination was 2.40 µmol/h at the median absolute estimated glomerular filtration rate of 105 mL/min. CONCLUSION: The popPK modeling approach indicated that the co-administration primarily affected the apparent absorption and/or prodrug conversion of adefovir dipivoxil, resulting in the minor drug-drug interaction observed for adefovir as a victim. However, renal elimination remained unaffected. The high Km value suggests that assessing renal OAT1 activity by CLR has no relevant misspecification error with the cocktail doses used.


Asunto(s)
Adenina , Modelos Biológicos , Organofosfonatos , Humanos , Organofosfonatos/farmacocinética , Organofosfonatos/sangre , Organofosfonatos/administración & dosificación , Adenina/análogos & derivados , Adenina/farmacocinética , Adenina/administración & dosificación , Masculino , Adulto , Femenino , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Proteína 1 de Transporte de Anión Orgánico/genética , Interacciones Farmacológicas , Fenotipo , Persona de Mediana Edad , Adulto Joven , Digoxina/farmacocinética , Digoxina/sangre , Digoxina/administración & dosificación , Metformina/farmacocinética , Metformina/administración & dosificación , Metformina/sangre , Fosfato de Sitagliptina/farmacocinética , Disponibilidad Biológica
3.
Drug Metab Dispos ; 51(9): 1177-1187, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37385755

RESUMEN

The proximal tubule plays an important role in the kidney and is a major site of drug interaction and toxicity. Analysis of kidney toxicity via in vitro assays is challenging, because only a few assays that reflect functions of drug transporters in renal proximal tubular epithelial cells (RPTECs) are available. In this study, we aimed to develop a simple and reproducible method for culturing RPTECs by monitoring organic anion transporter 1 (OAT1) as a selection marker. Culturing RPTECs in spherical cellular aggregates increased OAT1 protein expression, which was low in the conventional two-dimensional (2D) culture, to a level similar to that in human renal cortices. By proteome analysis, it was revealed that the expression of representative two proximal tubule markers was maintained and 3D spheroid culture improved the protein expression of approximately 7% of the 139 transporter proteins detected, and the expression of 2.3% of the 4,800 proteins detected increased by approximately fivefold that in human renal cortices. Furthermore, the expression levels of approximately 4,800 proteins in three-dimensional (3D) RPTEC spheroids (for 12 days) were maintained for over 20 days. Cisplatin and adefovir exhibited transporter-dependent ATP decreases in 3D RPTEC spheroids. These results indicate that the 3D RPTEC spheroids developed by monitoring OAT1 gene expression are a simple and reproducible in vitro experimental system with improved gene and protein expressions compared with 2D RPTECs and were more similar to that in human kidney cortices. Therefore, it can potentially be used for evaluating human renal proximal tubular toxicity and drug disposition. SIGNIFICANCE STATEMENT: This study developed a simple and reproducible spheroidal culture method with acceptable throughput using commercially available RPTECs by monitoring OAT1 gene expression. RPTECs cultured using this new method showed improved mRNA/protein expression profiles to those in 2D RPTECs and were more similar to those of human kidney cortices. This study provides a potential in vitro proximal tubule system for pharmacokinetic and toxicological evaluations during drug development.


Asunto(s)
Riñón , Proteína 1 de Transporte de Anión Orgánico , Humanos , Riñón/metabolismo , Proteína 1 de Transporte de Anión Orgánico/genética , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Túbulos Renales Proximales/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Expresión Génica , Células Epiteliales/metabolismo
4.
Drug Metab Dispos ; 51(7): 844-850, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37059471

RESUMEN

Organic anion transporters 1 and 3 (OAT1/3) occupy a key role in mediating renal elimination. Kynurenic acid (KYNA) was previously discovered as an effective endogenous biomarker to assess drug-drug interaction (DDI) for OAT inhibitors. Here, further in vitro and in vivo investigation was performed to characterize the elimination routes and feasibility of KYNA, along with other reported endogenous metabolites, as biomarkers of Oat1/3 inhibition in bile duct-cannulated (BDC) cynomolgus monkeys. Our results suggested that KYNA is a substrate of OAT1/3 and OAT2, but not OCT2, MATE1/2K, or NTCP, and that it shares comparable affinities between OAT1 and OAT3. Renal and biliary excretions and plasma concentration-time profiles of KYNA, pyridoxic acid (PDA), homovanillic acid (HVA), and coproporphyrin I (CP-I) were assessed in BDC monkeys dosed with either probenecid (PROB) at 100 mg/kg or the control vehicle. Renal excretion of KYNA, PDA, and HVA was determined to be the major elimination route. The maximum concentration and the area under the plasma concentration-time curve (Cmax and AUC0-24h) of KYNA were about 11.6- and 3.7-fold higher in the PROB group than in the vehicle group. Renal clearance of KYNA decreased by 3.2-fold, but biliary clearance (CLbile) was not altered after PROB administration. A similar trend was observed for PDA and HVA. Interestingly, an elevation of plasma concentration and reduction of CP-I CLbile were observed after PROB treatment, which suggested inhibition of the CP-I Oatp-Mrp2 transport axis by PROB. Overall, our results indicated that KYNA could potentially facilitate early and reliable assessment of DDI liabilities of Oat inhibition in monkeys. SIGNIFICANCE STATEMENT: This work reported renal excretion as the major elimination pathway for kynurenic acid, pyridoxic acid, and homovanillic acid. Administration of probenecid reduced renal clearance and increased plasma exposure of these biomarkers in monkeys, consistent with the observation in humans. These endogenous biomarkers discovered in monkeys could be potentially used to evaluate the clinical drug-drug interactions in the early phase of drug development.


Asunto(s)
Transportadores de Anión Orgánico , Probenecid , Humanos , Animales , Macaca fascicularis/metabolismo , Probenecid/farmacología , Probenecid/metabolismo , Ácido Piridóxico , Ácido Homovanílico , Estudios de Factibilidad , Ácido Quinurénico , Transportadores de Anión Orgánico/metabolismo , Biomarcadores/metabolismo , Interacciones Farmacológicas , Riñón/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo
5.
Xenobiotica ; 53(8-9): 559-571, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37885225

RESUMEN

Cisplatin is a widely used chemotherapeutic agent to treat solid tumours in clinics. However, cisplatin-induced acute kidney injury (AKI) limits its clinical application. This study investigated the effect of hyperoside (a flavonol glycoside compound) on regulating AKI.The model of cisplatin-induced AKI was established, and hyperoside was preadministered to investigate its effect on improving kidney injury.Hyperoside ameliorated renal pathological damage, reduced the accumulation of SCr, BUN, Kim-1 and indoxyl sulphate in vivo, increased the excretion of indoxyl sulphate into the urine, and upregulated the expression of renal organic anion transporter 1 (Oat1). Moreover, evaluation of rat kidney slices demonstrated that hyperoside promoted the uptake of PAH (p-aminohippurate, the Oat1 substrate), which was confirmed by transient over-expression of OAT1 in HEK-293T cells. Additionally, hyperoside upregulated the mRNA expression of Oat1 upstream regulators hepatocyte nuclear factor-1α (HNF-1α) and pregnane X receptor (PXR).These findings indicated hyperoside could protect against cisplatin-induced AKI by promoting indoxyl sulphate excretion through regulating the expression and function of Oat1, suggesting hyperoside may offer a potential tactic for cisplatin-induced AKI treatment.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Ratas , Animales , Cisplatino/efectos adversos , Cisplatino/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Proteína 1 de Transporte de Anión Orgánico/genética , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Indicán/toxicidad , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Riñón/metabolismo
6.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37895098

RESUMEN

Organic anion transporters 1 and 3 (OAT1 and OAT3) play a crucial role in kidney function by regulating the secretion of multiple renally cleared small molecules and toxic metabolic by-products. Assessing the activity of these transporters is essential for drug development purposes as they can significantly impact drug disposition and safety. OAT1 and OAT3 are amongst the most abundant drug transporters expressed in human renal proximal tubules. However, their expression is lost when cells are isolated and cultured in vitro, which is a persistent issue across all human and animal renal proximal tubule cell models, including primary cells and cell lines. Although it is well known that the overall expression of drug transporters is affected in vitro, the underlying reasons for the loss of OAT1 and OAT3 are still not fully understood. Nonetheless, research into the regulatory mechanisms of these transporters has provided insights into the molecular pathways underlying their expression and activity. In this review, we explore the regulatory mechanisms that govern the expression and activity of OAT1 and OAT3 and investigate the physiological changes that proximal tubule cells undergo and that potentially result in the loss of these transporters. A better understanding of the regulation of these transporters could aid in the development of strategies, such as introducing microfluidic conditions or epigenetic modification inhibitors, to improve their expression and activity in vitro and to create more physiologically relevant models. Consequently, this will enable more accurate assessment for drug development and safety applications.


Asunto(s)
Transportadores de Anión Orgánico Sodio-Independiente , Transportadores de Anión Orgánico , Animales , Humanos , Transportadores de Anión Orgánico Sodio-Independiente/genética , Proteína 1 de Transporte de Anión Orgánico/genética , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Células Epiteliales/metabolismo , Transportadores de Anión Orgánico/metabolismo
7.
Molecules ; 28(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36838982

RESUMEN

Bentysrepinine (Y101) is a novel phenylalanine dipeptide for the treatment of hepatitis B virus. Renal excretion played an important role in the elimination of Y101 and its metabolites, M8 and M9, in healthy Chinese subjects, although the molecular mechanisms of renal excretion and potential drug-drug interactions (DDIs) remain unclear. The present study aimed to determine the organic anion transporters (OATs) involved in the renal disposition of Y101 and to predict the potential DDI between Y101 and entecavir, the first-line agent against HBV and a substrate of OAT1/3. Pharmacokinetic studies and uptake assays using rat kidney slices, as well as hOAT1/3-HEK293 cells, were performed to evaluate potential DDI. The co-administration of probenecid (an inhibitor of OATs) significantly increased the plasma concentrations and area under the plasma concentration-time curves of M8 and M9 but not Y101, while reduced renal clearance and the cumulative urinary excretion of M8 were observed in rats. The time course of Y101 and M8 uptake via rat kidney slices was temperature-dependent. Moreover, the uptake of M8 was inhibited significantly by probenecid and benzylpenicillin, but not by p-aminohippurate or tetraethyl ammonium. M8 was found to be a substrate of hOAT3, but Y101 is not a substrate of either hOAT1 or hOAT3. Additionally, the entecavir inhibited the uptake of M8 in the hOAT3-transfected cells and rat kidney slices in vitro. Interestingly, no significant changes were observed in the pharmacokinetic parameters of Y101, M8 or entecavir, regardless of intravenous or oral co-administration of Y101 and entecavir in rats. In conclusion, M8 is a substrate of OAT3 in rats and humans. Furthermore, M8 also mediates the DDI between Y101 and entecavir in vitro, mediated by OAT3. We speculate that it would be safe to use Y101 with entecavir in clinical practice. Our results provide useful information with which to predict the DDIs between Y101 and other drugs that act as substrates of OAT3.


Asunto(s)
Proteína 1 de Transporte de Anión Orgánico , Transportadores de Anión Orgánico Sodio-Independiente , Humanos , Ratas , Animales , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Probenecid/metabolismo , Probenecid/farmacología , Ratas Wistar , Células HEK293 , Dipéptidos/metabolismo , Interacciones Farmacológicas , Riñón/metabolismo
8.
J Biol Chem ; 296: 100603, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33785360

RESUMEN

Organic anion transporter 1 (OAT1/SLC22A6) is a drug transporter with numerous xenobiotic and endogenous substrates. The Remote Sensing and Signaling Theory suggests that drug transporters with compatible ligand preferences can play a role in "organ crosstalk," mediating overall organismal communication. Other drug transporters are well known to transport lipids, but surprisingly little is known about the role of OAT1 in lipid metabolism. To explore this subject, we constructed a genome-scale metabolic model using omics data from the Oat1 knockout mouse. The model implicated OAT1 in the regulation of many classes of lipids, including fatty acids, bile acids, and prostaglandins. Accordingly, serum metabolomics of Oat1 knockout mice revealed increased polyunsaturated fatty acids, diacylglycerols, and long-chain fatty acids and decreased ceramides and bile acids when compared with wildtype controls. Some aged knockout mice also displayed increased lipid droplets in the liver when compared with wildtype mice. Chemoinformatics and machine learning analyses of these altered lipids defined molecular properties that form the structural basis for lipid-transporter interactions, including the number of rings, positive charge/volume, and complexity of the lipids. Finally, we obtained targeted serum metabolomics data after short-term treatment of rodents with the OAT-inhibiting drug probenecid to identify potential drug-metabolite interactions. The treatment resulted in alterations in eicosanoids and fatty acids, further supporting our metabolic reconstruction predictions. Consistent with the Remote Sensing and Signaling Theory, the data support a role of OAT1 in systemic lipid metabolism.


Asunto(s)
Metabolismo de los Lípidos , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Animales , Técnicas de Inactivación de Genes , Genómica , Aprendizaje Automático , Ratones , Proteína 1 de Transporte de Anión Orgánico/deficiencia , Proteína 1 de Transporte de Anión Orgánico/genética
9.
J Biol Chem ; 296: 100575, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33757768

RESUMEN

How organs sense circulating metabolites is a key question. Here, we show that the multispecific organic anion transporters of drugs, OAT1 (SLC22A6 or NKT) and OAT3 (SLC22A8), play a role in organ sensing. Metabolomics analyses of the serum of Oat1 and Oat3 knockout mice revealed changes in tryptophan derivatives involved in metabolism and signaling. Several of these metabolites are derived from the gut microbiome and are implicated as uremic toxins in chronic kidney disease. Direct interaction with the transporters was supported with cell-based transport assays. To assess the impact of the loss of OAT1 or OAT3 function on the kidney, an organ where these uptake transporters are highly expressed, knockout transcriptomic data were mapped onto a "metabolic task"-based computational model that evaluates over 150 cellular functions. Despite the changes of tryptophan metabolites in both knockouts, only in the Oat1 knockout were multiple tryptophan-related cellular functions increased. Thus, deprived of the ability to take up kynurenine, kynurenate, anthranilate, and N-formylanthranilate through OAT1, the kidney responds by activating its own tryptophan-related biosynthetic pathways. The results support the Remote Sensing and Signaling Theory, which describes how "drug" transporters help optimize levels of metabolites and signaling molecules by facilitating organ cross talk. Since OAT1 and OAT3 are inhibited by many drugs, the data implies potential for drug-metabolite interactions. Indeed, treatment of humans with probenecid, an OAT-inhibitor used to treat gout, elevated circulating tryptophan metabolites. Furthermore, given that regulatory agencies have recommended drugs be tested for OAT1 and OAT3 binding or transport, it follows that these metabolites can be used as endogenous biomarkers to determine if drug candidates interact with OAT1 and/or OAT3.


Asunto(s)
Riñón/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Triptófano/metabolismo , Animales , Riñón/citología , Ratones , Estrés Oxidativo , Transporte de Proteínas , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 116(32): 16105-16110, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31341083

RESUMEN

Membrane transporters and receptors are responsible for balancing nutrient and metabolite levels to aid body homeostasis. Here, we report that proximal tubule cells in kidneys sense elevated endogenous, gut microbiome-derived, metabolite levels through EGF receptors and downstream signaling to induce their secretion by up-regulating the organic anion transporter-1 (OAT1). Remote metabolite sensing and signaling was observed in kidneys from healthy volunteers and rats in vivo, leading to induced OAT1 expression and increased removal of indoxyl sulfate, a prototypical microbiome-derived metabolite and uremic toxin. Using 2D and 3D human proximal tubule cell models, we show that indoxyl sulfate induces OAT1 via AhR and EGFR signaling, controlled by miR-223. Concomitantly produced reactive oxygen species (ROS) control OAT1 activity and are balanced by the glutathione pathway, as confirmed by cellular metabolomic profiling. Collectively, we demonstrate remote metabolite sensing and signaling as an effective OAT1 regulation mechanism to maintain plasma metabolite levels by controlling their secretion.


Asunto(s)
Microbioma Gastrointestinal , Túbulos Renales Proximales/metabolismo , Transducción de Señal , Animales , Aniones , Receptores ErbB/metabolismo , Glutatión/metabolismo , Humanos , Metaboloma , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo
11.
Biopharm Drug Dispos ; 43(2): 57-65, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35088420

RESUMEN

Febuxostat is a second-line xanthine oxidase inhibitor that undergoes extensive hepatic metabolism to yield its major acyl-ß-D-glucuronide metabolite (febuxostat AG). It was recently reported that febuxostat inhibited organic anion transporter 3 (OAT3)-mediated uptake of enalaprilat. Here, we investigated the inhibition of febuxostat and febuxostat AG on OAT3 in transfected human embryonic kidney 293 cells. Our transporter inhibition assays confirmed the potent noncompetitive and competitive inhibition of OAT3-mediated estrone-3-sulfate transport by febuxostat and febuxostat AG with corresponding apparent Ki values of 0.55 and 6.11 µM respectively. After accounting for probe substrate-dependency and protein binding effects, mechanistic static modelling with the direct factor Xa anticoagulant rivaroxaban estimated a 1.47-fold increase in its systemic exposure when co-administered with febuxostat based on OAT3 interaction which in turn exacerbates the bleeding risk from baseline for patients with atrial fibrillation by 1.51-fold. Taken together, our results suggested that the concomitant usage of febuxostat with rivaroxaban may potentially culminate in a clinically-significant drug-drug interaction and result in an increased risk of bleeding as a result of its OAT3 inhibition.


Asunto(s)
Glucurónidos , Rivaroxabán , Interacciones Farmacológicas , Febuxostat/farmacología , Células HEK293 , Humanos , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Rivaroxabán/farmacología
12.
J Biol Chem ; 295(7): 1829-1842, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31896576

RESUMEN

The multispecific organic anion transporters, OAT1 (SLC22A6) and OAT3 (SLC22A8), the main kidney elimination pathways for many common drugs, are often considered to have largely-redundant roles. However, whereas examination of metabolomics data from Oat-knockout mice (Oat1 and Oat3KO) revealed considerable overlap, over a hundred metabolites were increased in the plasma of one or the other of these knockout mice. Many of these relatively unique metabolites are components of distinct biochemical and signaling pathways, including those involving amino acids, lipids, bile acids, and uremic toxins. Cheminformatics, together with a "logical" statistical and machine learning-based approach, identified a number of molecular features distinguishing these unique endogenous substrates. Compared with OAT1, OAT3 tends to interact with more complex substrates possessing more rings and chiral centers. An independent "brute force" approach, analyzing all possible combinations of molecular features, supported the logical approach. Together, the results suggest the potential molecular basis by which OAT1 and OAT3 modulate distinct metabolic and signaling pathways in vivo As suggested by the Remote Sensing and Signaling Theory, the analysis provides a potential mechanism by which "multispecific" kidney proximal tubule transporters exert distinct physiological effects. Furthermore, a strong metabolite-based machine-learning classifier was able to successfully predict unique OAT1 versus OAT3 drugs; this suggests the feasibility of drug design based on knockout metabolomics of drug transporters. The approach can be applied to other SLC and ATP-binding cassette drug transporters to define their nonredundant physiological roles and for analyzing the potential impact of drug-metabolite interactions.


Asunto(s)
Metabolómica , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Toxinas Biológicas/metabolismo , Adenosina Trifosfato/genética , Animales , Ácidos y Sales Biliares/metabolismo , Transporte Biológico/genética , Humanos , Inactivación Metabólica/genética , Túbulos Renales Proximales/metabolismo , Aprendizaje Automático , Ratones , Ratones Noqueados , Proteína 1 de Transporte de Anión Orgánico/genética , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transducción de Señal
13.
Drug Metab Dispos ; 49(12): 1063-1069, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34599018

RESUMEN

As an expansion investigation of drug-drug interaction (DDI) from previous clinical trials, additional plasma endogenous metabolites were quantitated in the same subjects to further identify the potential biomarkers of organic anion transporter (OAT) 1/3 inhibition. In the single dose, open label, three-phase with fixed order of treatments study, 14 healthy human volunteers orally received 1000 mg probenecid alone, or 40 mg furosemide alone, or 40 mg furosemide at 1 hour after receiving 1000 mg probenecid on days 1, 8, and 15, respectively. Endogenous metabolites including kynurenic acid, xanthurenic acid, indo-3-acetic acid, pantothenic acid, p-cresol sulfate, and bile acids in the plasma were measured by liquid chromatography-tandem mass spectrometry. The Cmax of kynurenic acids was significantly increased about 3.3- and 3.7-fold over the baseline values at predose followed by the treatment of probenecid alone or in combination with furosemide respectively. In comparison with the furosemide-alone group, the Cmax and area under the plasma concentration-time curve (AUC) up to 12 hours of kynurenic acid were significantly increased about 2.4- and 2.5-fold by probenecid alone, and 2.7- and 2.9-fold by probenecid plus furosemide, respectively. The increases in Cmax and AUC of plasma kynurenic acid by probenecid are comparable to the increases of furosemide Cmax and AUC reported previously. Additionally, the plasma concentrations of xanthurenic acid, indo-3-acetic acid, pantothenic acid, and p-cresol sulfate, but not bile acids, were also significantly elevated by probenecid treatments. The magnitude of effect size analysis for known potential endogenous biomarkers demonstrated that kynurenic acid in the plasma offers promise as a superior addition for early DDI assessment involving OAT1/3 inhibition. SIGNIFICANCE STATEMENT: This article reports that probenecid, an organic anion transporter (OAT) 1 and OAT3 inhibitor, significantly increased the plasma concentrations of kynurenic acid and several uremic acids in human subjects. Of those, the increases of plasma kynurenic acid exposure are comparable to the increases of furosemide by OAT1/3 inhibition. Effect size analysis for known potential endogenous biomarkers revealed that plasma kynurenic acid is a superior addition for early drug-drug interaction assessment involving OAT1/3 inhibition.


Asunto(s)
Biomarcadores Farmacológicos , Interacciones Farmacológicas/fisiología , Furosemida/farmacología , Ácido Quinurénico , Proteína 1 de Transporte de Anión Orgánico , Transportadores de Anión Orgánico Sodio-Independiente , Probenecid/farmacocinética , Adyuvantes Farmacéuticos/farmacocinética , Biomarcadores Farmacológicos/análisis , Biomarcadores Farmacológicos/sangre , Cromatografía Liquida/métodos , Furosemida/farmacocinética , Voluntarios Sanos , Humanos , Ácido Quinurénico/análisis , Ácido Quinurénico/sangre , Proteína 1 de Transporte de Anión Orgánico/antagonistas & inhibidores , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Espectrometría de Masas en Tándem/métodos
14.
Xenobiotica ; 51(1): 95-104, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32544367

RESUMEN

To date, relatively little is known about the interactions of pharmaceutical excipients with hepatic and renal drug uptake transporters. The present study was designed to systematically evaluate the effects of 16 commonly consumed excipients on human organic cation transporter 1 and 2 (hOCT1 and hOCT2), human organic anion transporter 1 and 3 (hOAT1 and hOAT3) and human organic anion transporting polypeptide 1B1 and 1B3 (hOATP1B1 and hOATP1B3). The inhibitory effects and mechanisms of excipients on transporters were investigated using in vitro uptake studies, cell viability assays, concentration-dependent studies, and the Lineweaver-Burk plot method. Triton X-100 is a non-competitive inhibitor for all six transporters. Tween 20 inhibits hOCT2, hOAT1, hOAT3, and hOATP1B3 in a mixed way, whereas it competitively inhibits hOATP1B1. The inhibition of Tween 80 is competitive for hOCT2, non-competitive for hOATP1B1 and hOATP1B3, and mixed for hOAT1 and hOAT3. Concentration-dependent studies identify Triton X-100 as a strong inhibitor of hOCT1 and hOCT2 with IC50 values of 20.1 and 4.54 µg/mL, respectively. Additionally, Triton X-100, Tween 20, and Tween 80 strongly inhibit hOAT3 with IC50 values ≤31.0 µg/mL. The present study is significant in understanding the excipient-drug interactions and provides valuable information for excipient selection in drug development.


Asunto(s)
Transporte Biológico/efectos de los fármacos , Excipientes/farmacología , Animales , Aniones/metabolismo , Cationes/metabolismo , Excipientes/metabolismo , Humanos , Riñón/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Transportador 1 de Catión Orgánico/metabolismo , Transportador 2 de Cátion Orgánico/metabolismo
15.
J Clin Lab Anal ; 35(8): e23859, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34251052

RESUMEN

BACKGROUND: This study aimed to evaluate the urate-lowering effects of Yi-Suan-Cha and explore its underlying mechanisms in experimental hyperuricemia induced in rats. METHODS: Forty-eight male SD rats were randomly allocated into normal control, model, allopurinol, benzbromarone, low-dose Yi-Suan-Cha (0.2 g/ml), and high-dose Yi-Suan-Cha (0.4 g/ml) groups (n = 8 rats per group). Rat models of hyperuricemia were established through intragastric administration of adenine 25 mg/kg + potassium oxalate 300 mg/kg for 3 weeks. After the last administration, serum uric acid, creatinine, and urea nitrogen levels were measured. Renal histopathology was observed by hematoxylin-eosin staining. Xanthine oxidase level in serum and liver homogenates was measured by ELISA. The protein and mRNA expression of URAT1, ABCG2, OAT1, and GLUT9 in the kidney was detected by Western blotting and RT-PCR, respectively. RESULTS: The serum uric acid levels were significantly lowered in all medication groups than in the model group. The benzbromarone and both Yi-Suan-Cha groups showed clear kidney structures with no obvious abnormalities. Compared with the normal control group, the model group showed increased URAT1/GLUT9 protein expression and decreased ABCG2/OAT1 protein expression. Compared with the model group, both Yi-Suan-Cha groups showed decreased URAT1/GLUT9 protein expression and increased ABCG2/OAT1 protein expression. Compared with that in the normal control group, URAT1/GLUT9 mRNA expression increased in the model group. Compared with the model group, the low-dose and high-dose Yi-Suan-Cha groups showed decreased URAT1/GLUT9 mRNA expression and increased ABCG2/OAT1 mRNA expression. CONCLUSION: Yi-Suan-Cha may lower uric acid level by downregulating URAT1/GLUT9 expression and upregulating ABCG2/OAT1 expression.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Hiperuricemia/tratamiento farmacológico , Riñón/efectos de los fármacos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Hiperuricemia/metabolismo , Hiperuricemia/patología , Riñón/metabolismo , Riñón/patología , Masculino , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteína 1 de Transporte de Anión Orgánico/genética , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Ratas Sprague-Dawley , Ácido Úrico/sangre , Xantina Oxidasa/sangre , Xantina Oxidasa/metabolismo
16.
Pharm Biol ; 59(1): 757-768, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34144662

RESUMEN

CONTEXT: Relinqing granules (RLQ) are being used alone or in combination with antibacterial drugs to treat urological disorders. OBJECTIVE: This study investigates the pharmacokinetics of RLQ in humans and the potential for RLQ-perpetrated interactions on transporters. MATERIALS AND METHODS: Twelve healthy subjects (six women and six men) participated to compare single- and multiple-dose pharmacokinetics of RLQ. In the single-dose study, all 12 subjects received 8 g of RLQ orally. After a 7-d washout period, the subjects received 8 g of RLQ for seven consecutive days (t.i.d.) and then a single dose. Gallic acid (GA) and protocatechuic acid (PCA) in plasma and urine samples were analysed using LC-MS/MS. The transfected cells were used to study the inhibitory effect of GA (50-5000 µg/L) and PCA (10-1000 µg/L) on transporters OAT1, OAT3, OCT2, OATP1B1, P-gp and BCRP. RESULTS: GA and PCA were absorbed into the blood within 1 h after administration and rapidly eliminated with a half-life of less than 2 h. The mean peak concentrations of GA (102 and 176 µg/L) and PCA (4.54 and 7.58 µg/L) were lower in males than females, respectively. The 24 h urine recovery rates of GA and PCA were about 10% and 5%, respectively. The steady-state was reached in 7 d without accumulation. GA was a potent inhibitor of OAT1 (IC50 = 3.73 µM) and OAT3 (IC50 = 29.41 µM), but not OCT2, OATP1B1, P-gp or BCRP. DISCUSSION AND CONCLUSIONS: GA and PCA are recommended as PK-markers in RLQ-related pharmacokinetic and drug interaction studies. We should pay more attention to the potential for RLQ-perpetrated interactions on transporters.


Asunto(s)
Interacciones Farmacológicas/fisiología , Medicamentos Herbarios Chinos/farmacocinética , Ácido Gálico/farmacocinética , Hidroxibenzoatos/farmacocinética , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Adulto , Animales , Perros , Femenino , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Masculino , Adulto Joven
17.
Mol Pharmacol ; 97(6): 384-391, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32234809

RESUMEN

Organic anion transporter 1 (OAT1), expressed at the basolateral membrane of renal proximal tubule epithelial cells, mediates the renal excretion of many clinically important drugs. Previous study in our laboratory demonstrated that ubiquitin conjugation to OAT1 leads to OAT1 internalization from the cell surface and subsequent degradation. The current study showed that the ubiquitinated OAT1 accumulated in the presence of the proteasomal inhibitors MG132 and ALLN rather than the lysosomal inhibitors leupeptin and pepstatin A, suggesting that ubiquitinated OAT1 degrades through proteasomes. Anticancer drugs bortezomib and carfilzomib target the ubiquitin-proteasome pathway. We therefore investigate the roles of bortezomib and carfilzomib in reversing the ubiquitination-induced downregulation of OAT1 expression and transport activity. We showed that bortezomib and carfilzomib extremely increased the ubiquitinated OAT1, which correlated well with an enhanced OAT1-mediated transport of p-aminohippuric acid and an enhanced OAT1 surface expression. The augmented OAT1 expression and transport activity after the treatment with bortezomib and carfilzomib resulted from a reduced rate of OAT1 degradation. Consistent with this, we found decreased 20S proteasomal activity in cells that were exposed to bortezomib and carfilzomib. In conclusion, this study identified the pathway in which ubiquitinated OAT1 degrades and unveiled a novel role of anticancer drugs bortezomib and carfilzomib in their regulation of OAT1 expression and transport activity. SIGNIFICANCE STATEMENT: Bortezomib and carfilzomib are two Food and Drug Administration-approved anticancer drugs, and proteasome is the drug target. In this study, we unveiled a new role of bortezomib and carfilzomib in enhancing OAT1 expression and transport activity by preventing the degradation of ubiquitinated OAT1 in proteasomes. This finding provides a new strategy in regulating OAT1 function that can be used to accelerate the clearance of drugs, metabolites, or toxins and reverse the decreased expression under disease conditions.


Asunto(s)
Antineoplásicos/farmacología , Transporte Biológico Activo/efectos de los fármacos , Bortezomib/farmacología , Oligopéptidos/farmacología , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Células HEK293 , Humanos , Leupeptinas/farmacología , Proteolisis , Ubiquitinación , Ácido p-Aminohipúrico/metabolismo
18.
Pflugers Arch ; 472(6): 711-719, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32451678

RESUMEN

Relation between the renal function and the membrane environment where the organic anion transporters Oat1 and Oat3 are localized is scarce. The aim of this study was to examine the Oat1 and Oat3 distribution in different cellular fractions under physiological conditions as well as the effects of extrahepatic cholestasis on membrane distribution of both proteins. Besides, the potential role of jaundice serum on the Oat1 and Oat3 expression in suspensions of renal tubular cells was evaluated. Cellular and membrane fractions of renal cortex were obtained from control rats to evaluate Oat1 and Oat3 protein expressions. Other rats were subjected to bile duct ligation (BDL) or Sham operation to determine the membrane distribution of Oat1 and Oat3 between lipid raft domains (LRD) and non-LRD. Incubation of renal cortical cells with serum from Sham and BDL were also performed to study Oat1 and Oat3 protein expressions. In physiological conditions, Oat1 and Oat3 were concentrated in LRD. The pathology induced a shift of Oat1 from LRD to non-LRD, while Oat3 showed no changes in its distribution. In cells exposed to BDL serum, Oat1 protein expression in membranes significantly increased. For Oat3, no difference between groups was observed. The Oat1 redistribution to non-LRD in BDL could be favoring the increase in renal transport of organic anions previously observed. This change was specific to Oat1. The in vitro experiment allows to conclude that some component present in BDL serum is responsible for the alterations observed in Oat1 expression in cortical membranes.


Asunto(s)
Ictericia Obstructiva/metabolismo , Corteza Renal/metabolismo , Microdominios de Membrana/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Animales , Conductos Biliares/metabolismo , Masculino , Ratas , Ratas Wistar
19.
J Pharmacol Exp Ther ; 375(3): 451-462, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32981893

RESUMEN

Halogenated tyrosine/phenylalanine derivatives have been developed for use in tumor imaging and targeted alpha therapy. 3-Fluoro-α-methyl-l-tyrosine (FAMT), targeting amino acid transporter LAT1 (SLC7A5), is a cancer-specific positron emission tomography probe that exhibits high renal accumulation, which is supposed to be mediated by organic anion transporter OAT1 (SLC22A6). In the present study, we investigated the structural requirements of FAMT essential for interaction with OAT1. OAT1 transported FAMT with a K m of 171.9 µM. In structure-activity relationship analyses, removal of either the 3-halogen or 4-hydroxyl group from FAMT or its structural analog 3-iodo-α-methyl-l-tyrosine greatly decreased the interaction with OAT1, reducing the [14C]p-aminohippurate uptake inhibition and the efflux induction. By contrast, the α-methyl group, which is essential for LAT1 specificity, contributed to a lesser degree. In fluorinated tyrosine derivatives, fluorine at any position was accepted by OAT1 when there was a hydroxyl group at the ortho-position, whereas ortho-fluorine was less interactive when a hydroxyl group was at meta- or para-positions. The replacement of the ortho-fluorine with a bulky iodine atom greatly increased the interaction. In in vivo studies, probenecid decreased the renal accumulation (P < 0.001) and urinary excretion (P = 0.0012) of FAMT, whereas the plasma concentration was increased, suggesting the involvement of OAT1-mediated transepithelial organic anion excretion. LAT1-specific 2-fluoro-α-methyltyrosine, which had lower affinity for OAT1, exhibited lower renal accumulation (P = 0.0142) and higher tumor uptake (P = 0.0192) compared with FAMT. These results would provide a basis to design tumor-specific compounds that can avoid renal accumulation for tumor imaging and targeted alpha therapy. SIGNIFICANCE STATEMENT: We revealed the structural characteristics of halogenated tyrosine derivatives essential for interaction with the organic anion transporter responsible for their renal accumulation. We have confirmed that such interactions are important for renal handling and tumor uptake. The critical contribution of hydroxyl and halogen groups and their positions as well as the role of α-methyl group found in the present study may facilitate the development of tumor-specific compounds while avoiding renal accumulation for use in tumor imaging and targeted alpha therapy.


Asunto(s)
Riñón/diagnóstico por imagen , Metiltirosinas/metabolismo , Imagen Molecular/métodos , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Animales , Línea Celular Tumoral , Humanos , Metiltirosinas/química , Metiltirosinas/farmacocinética , Ratones , Unión Proteica , Distribución Tisular
20.
Acta Pharmacol Sin ; 41(1): 129-137, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31341258

RESUMEN

Rheumatoid arthritis patients can be prescribed a combination of immunosuppressive drug leflunomide (LEF) and the antiviral drug acyclovir to reduce the high risk of infection. Acyclovir is a substrate of organic anion transporter (OAT) 1/3 and multidrug resistance-associated protein (MRP) 2. Considering the extraordinarily long half-life of LEF's active metabolite teriflunomide (TER) and the kidney injury risk of acyclovir, it is necessary to elucidate the potential impact of LEF on the disposition of acyclovir. Here we used a specific MRP inhibitor MK571 and probenecid (OAT1/3 and MRP2 inhibitor) to assess the effects of MRP2 and OAT1/3 on the pharmacokinetics and tissue distribution of acyclovir in rats. We showed that LEF and probenecid, but not MK571 significantly increased the plasma concentration of acyclovir. However, kidney and liver exposures of acyclovir were increased when coadministered with LEF, probenecid or MK571. The kidney/plasma ratio of acyclovir was increased to approximately 2-fold by LEF or probenecid, whereas it was increased to as much as 14.5-fold by MK571. Consistently, these drugs markedly decreased the urinary excretion of acyclovir. TER (0.5-100 µmol/L) dose-dependently increased the accumulation of acyclovir in MRP2-MDCK cells with an IC50 value of 4.91 µmol/L. TER (5 µmol/L) significantly inhibited the uptake of acyclovir in hOAT1/3-HEK293 cells. These results suggest that LEF/TER increased the kidney accumulation of acyclovir by inhibiting the efflux transporter MRP2, which increased its kidney/plasma ratio and renal injury risk. However, the inhibitory effects of LEF/TER on OAT1/3 reduced the tubular cells' uptake of acyclovir and increased the plasma concentration.


Asunto(s)
Aciclovir/farmacocinética , Riñón/metabolismo , Leflunamida/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteína 1 de Transporte de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Aciclovir/administración & dosificación , Aciclovir/metabolismo , Administración Intravenosa , Animales , Células Cultivadas , Crotonatos/administración & dosificación , Crotonatos/metabolismo , Crotonatos/farmacología , Perros , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Hidroxibutiratos , Leflunamida/administración & dosificación , Leflunamida/metabolismo , Células de Riñón Canino Madin Darby/efectos de los fármacos , Células de Riñón Canino Madin Darby/metabolismo , Masculino , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Nitrilos , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Probenecid/administración & dosificación , Probenecid/metabolismo , Probenecid/farmacología , Propionatos/administración & dosificación , Propionatos/metabolismo , Propionatos/farmacología , Quinolinas/administración & dosificación , Quinolinas/metabolismo , Quinolinas/farmacología , Ratas , Ratas Sprague-Dawley , Distribución Tisular , Toluidinas/administración & dosificación , Toluidinas/metabolismo , Toluidinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA