Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biosens Bioelectron ; 262: 116544, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38963952

RESUMEN

In this work, a nanostructured conductive film possessing nanozyme features was straightforwardly produced via laser-assembling and integrated into complete nitrocellulose sensors; the cellulosic substrate allows to host live cells, while the nanostructured film nanozyme activity ensures the enzyme-free real-time detection of hydrogen peroxide (H2O2) released by the sames. In detail, a highly exfoliated reduced graphene oxide 3D film decorated with naked platinum nanocubes was produced using a CO2-laser plotter via the simultaneous reduction and patterning of graphene oxide and platinum cations; the nanostructured film was integrated into a nitrocellulose substrate and the complete sensor was manufactured using an affordable semi-automatic printing approach. The linear range for the direct H2O2 determination was 0.5-80 µM (R2 = 0.9943), with a limit of detection of 0.2 µM. Live cell measurements were achieved by placing the sensor in the culture medium, ensuring their adhesion on the sensors' surface; two cell lines were used as non-tumorigenic (Vero cells) and tumorigenic (SKBR3 cells) models, respectively. Real-time detection of H2O2 released by cells upon stimulation with phorbol ester was carried out; the nitrocellulose sensor returned on-site and real-time quantitative information on the H2O2 released proving useful sensitivity and selectivity, allowing to distinguish tumorigenic cells. The proposed strategy allows low-cost in-series semi-automatic production of paper-based point-of-care devices using simple benchtop instrumentation, paving the way for the easy and affordable monitoring of the cytopathology state of cancer cells.

2.
Biosens Bioelectron ; 252: 116142, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401281

RESUMEN

Nanostructured electrochemical biosensors have ushered in a new era of diagnostic precision, offering enhanced sensitivity and specificity for clinical biomarker detection. Among them, capacitive biosensing enables ultrasensitive label-free detection of multiple molecular targets. However, the complexity and cost associated with conventional fabrication methods of nanostructured platforms hinder the widespread adoption of these devices. This study introduces a capacitive biosensor that leverages laser-engraved reduced graphene oxide (rGO) electrodes decorated with gold nanoparticles (AuNPs). The fabrication involves laser-scribed GO-Au3+ films, yielding rGO-AuNP electrodes, seamlessly transferred onto a PET substrate via a press-stamping methodology. These electrodes have a remarkable affinity for biomolecular recognition after being functionalized with specific bioreceptors. For example, initial studies with human IgG antibodies confirm the detection capabilities of the biosensor using electrochemical capacitance spectroscopy. Furthermore, the biosensor can quantify CA-19-9 glycoprotein, a clinical cancer biomarker. The biosensor exhibits a dynamic range from 0 to 300 U mL-1, with a limit of detection of 8.9 U mL-1. Rigorous testing with known concentrations of a pretreated CA-19-9 antigen from human fluids confirmed their accuracy and reliability in detecting the glycoprotein. This study signifies notable progress in capacitive biosensing for clinical biomarkers, potentially leading to more accessible and cost-effective point-of-care solutions.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Humanos , Oro/química , Reproducibilidad de los Resultados , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Grafito/química , Electrodos , Glicoproteínas , Técnicas Electroquímicas/métodos , Límite de Detección
3.
Methods Mol Biol ; 2525: 297-307, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35836078

RESUMEN

Adenosine-5'-triphosphate (ATP) is the primary energy carrier in all living organisms, and its detection in living cells represents a well-established approach. ATP-driven bioluminescence (BL) relying on the D-luciferin-luciferase reaction is a bioanalytical tool widely employed for monitoring hygiene and microbial contamination of foods.Here, we report a straightforward method for ATP BL detection using an ATP sensing paper fabricated with an alternative freeze-dry procedure. The assay can be easily implemented in laboratories equipped with (i) freeze-drying, wax printing, and 3D printing technologies and (ii) instrumentation for BL detection such as benchtop luminometers and portable light detectors including a smartphone camera without the need for additional equipment.


Asunto(s)
Mediciones Luminiscentes , Teléfono Inteligente , Adenosina Trifosfato , Bioensayo , Luciferasas , Mediciones Luminiscentes/métodos
4.
ACS Nano ; 14(3): 2585-2627, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32031781

RESUMEN

Nanotheranostics is one of the biggest scientific breakthroughs in nanomedicine. Most of the currently available diagnosis and therapies are invasive, time-consuming, and associated with severe toxic side effects. Nanotheranostics, on the other hand, has the potential to bridge this gap by harnessing the capabilities of nanotechnology and nanomaterials for combined therapeutics and diagnostics with markedly enhanced efficacy. However, nanomaterial applications in nanotheranostics are still in its infancy. This is due to the fact that each disease has a particular microenvironment with well-defined characteristics, which promotes deeper selection criteria of nanomaterials to meet the disease needs. In this review, we have outlined how nanomaterials are designed and tailored for nanotheranostics of cancer and other diseases such as neurodegenerative, autoimmune (particularly on rheumatoid arthritis), and cardiovascular diseases. The penetrability and retention of a nanomaterial in the biological system, the therapeutic strategy used, and the imaging mode selected are some of the aspects discussed for each disease. The specific properties of the nanomaterials in terms of feasibility, physicochemical challenges, progress in clinical trials, its toxicity, and their future application on translational medicine are addressed. Our review meticulously and critically examines the applications of nanotheranostics with various nanomaterials, including graphene, across several diseases, offering a broader perspective of this emerging field.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Enfermedades Cardiovasculares/tratamiento farmacológico , Nanomedicina , Neoplasias/tratamiento farmacológico , Nanomedicina Teranóstica , Humanos , Nanoestructuras/uso terapéutico
5.
Biosens Bioelectron ; 150: 111902, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31786021

RESUMEN

ATP-driven bioluminescence relying on the D-luciferin-luciferase reaction is widely employed for several biosensing applications where bacterial ATP detection allows to verify microbial contamination for hygiene monitoring in hospitals, food processing and in general for cell viability studies. Several ATP kit assays are already commercially available but an user-friendly ATP biosensor characterized by low-cost, portability, and adequate sensitivity would be highly valuable for rapid and facile on site screening. Thanks to an innovative freeze-drying procedure, we developed a user-friendly, ready-to-use and stable ATP sensing paper biosensor that can be combined with smartphone detection. The ATP sensing paper includes a lyophilized "nano-lantern" with reaction components being rapidly reconstituted by 10 µL sample addition, enabling detection of 10-14 mol of ATP within 10 min. We analysed urinary microbial ATP as a biomarker of urinary tract infection (UTI), confirming the capability of the ATP sensing paper to detect the threshold for positivity corresponding to 105 colony-forming units of bacteria per mL of urine.


Asunto(s)
Adenosina Trifosfato/análisis , Técnicas Biosensibles/instrumentación , Escherichia coli/aislamiento & purificación , Papel , Infecciones Urinarias/orina , Diseño de Equipo , Humanos , Límite de Detección , Mediciones Luminiscentes/instrumentación , Teléfono Inteligente/instrumentación , Infecciones Urinarias/diagnóstico
6.
Anal Chem ; 90(9): 5850-5856, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29617110

RESUMEN

Electrochromic effect and molecularly imprinted technology have been used to develop a sensitive and selective electrochromic sensor. The polymeric matrices obtained using the imprinting technology are robust molecular recognition elements and have the potential to mimic natural recognition entities with very high selectivity. The electrochromic behavior of iridium oxide nanoparticles (IrOx NPs) as physicochemical transducer together with a molecularly imprinted polymer (MIP) as recognition layer resulted in a fast and efficient translation of the detection event. The sensor was fabricated using screen-printing technology with indium tin oxide as a transparent working electrode; IrOx NPs where electrodeposited onto the electrode followed by thermal polymerization of polypyrrole in the presence of the analyte (chlorpyrifos). Two different approaches were used to detect and quantify the pesticide: direct visual detection and smartphone imaging. Application of different oxidation potentials for 10 s resulted in color changes directly related to the concentration of the analyte. For smartphone imaging, at fixed potential, the concentration of the analyte was dependent on the color intensity of the electrode. The electrochromic sensor detects a highly toxic compound (chlorpyrifos) with a 100 fM and 1 mM dynamic range. So far, to the best of our knowledge, this is the first work where an electrochromic MIP sensor uses the electrochromic properties of IrOx to detect a certain analyte with high selectivity and sensitivity.

7.
Sci Rep ; 7(1): 976, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28428623

RESUMEN

Simple, inexpensive and rapid sensing systems are very demanded for a myriad of uses. Intrinsic properties of emerging paper-based analytical devices have demonstrated considerable potential to fulfill such demand. This work reports an easy-to-use, low cost, and disposable paper-based sensing device for rapid chemical screening with a smartphone readout. The device comprises luminescent graphene quantum dots (GQDs) sensing probes embedded into a nitrocellulose matrix where the resonance energy transfer phenomenon seems to be the sensing mechanism. The GQDs probes were synthesized from citric acid by a pyrolysis procedure, further physisorbed and confined into small wax-traced spots on the nitrocellulose substrate. The GQDs were excited by an UV LED, this, is powered by a smartphone used as both; energy source and imaging capture. The LED was contained within a 3D-printed dark chamber that isolates the paper platform from external light fluctuations leading to highly reproducible data. The cellulose-based device was proven as a promising screening tool for phenols and polyphenols in environmental and food samples, respectively. It opens up new opportunities for simple and fast screening of organic compounds and offers numerous possibilities for versatile applications. It can be especially useful in remote settings where sophisticated instrumentation is not always available.


Asunto(s)
Técnicas Biosensibles/instrumentación , Grafito/química , Puntos Cuánticos/química , Ácido Cítrico , Monitoreo del Ambiente/instrumentación , Análisis de los Alimentos/instrumentación , Luminiscencia , Papel , Fenoles/análisis , Polifenoles/análisis , Teléfono Inteligente
8.
Annu Rev Food Sci Technol ; 7: 335-52, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26772412

RESUMEN

In this review, we briefly summarize the reliability of the density functional theory (DFT)-based methods to accurately predict the main antioxidant properties and the reaction mechanisms involved in the free radical-scavenging reactions of chemical compounds present in food. The analyzed properties are the bond dissociation energies, in particular those involving OH bonds, electron transfer enthalpies, adiabatic ionization potentials, and proton affinities. The reaction mechanisms are hydrogen-atom transfer, proton-coupled electron transfer, radical adduct formation, single electron transfer, sequential electron proton transfer, proton-loss electron transfer, and proton-loss hydrogen-atom transfer. Furthermore, the chelating ability of these compounds and its role in decreasing or inhibiting the oxidative stress induced by Fe(III) and Cu(II) are considered. Comparisons between theoretical and experimental data confirm that modern theoretical tools are not only able to explain controversial experimental facts but also to predict chemical behavior.


Asunto(s)
Antioxidantes/química , Alimentos , Antioxidantes/análisis , Antioxidantes/clasificación , Fenómenos Bioquímicos , Quelantes , Transporte de Electrón , Análisis de los Alimentos , Depuradores de Radicales Libres/química , Radicales Libres/química , Humanos , Oxidación-Reducción , Estrés Oxidativo , Protones , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA