Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Neurobiol ; 61(4): 2241-2248, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37870678

RESUMEN

The key role of mitochondria in neurodegenerative disease patients is well documented. Recent studies claimed that mitochondrial regulatory dysfunction might play a role in ongoing cell death and dysfunction. In the present study, we characterized ultrastructural morphometry of mitochondrial alterations occurring at the level of motor neuron cell bodies in SCI-induced rats. We applied 17ß-estradiol (E2) to determine whether it can improve mitochondria structural integrity of motor neurons. We used a rat model of acute SCI generated by spinal cord contusion at the T9-T10 level, followed by tissue processing 21 days post-SCI. Samples were divided into five groups: laminectomy, SCI, vehicle, SCI + 25 µg/kg E2, and SCI + 10 µg/kg E2. Assessments included analysis of hind limb motor recovery, quantifying tissue repair, and evaluation of morphological changes in the ultrastructure of mitochondria in motor neurons by transmission electron microscopy. In the E2-treated groups, especially the group receiving 25 µg/kg E2, less irregular mitochondria were observed, as there was a significant reduction in swelling or vacuolization, or fragmentation compared to the SCI group. Furthermore, E2 significantly reduced membrane rupture in the SCI group. E2 could be a proper therapeutic agent to relieve mitochondrial deleterious effects on neurons in neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Traumatismos de la Médula Espinal , Humanos , Ratas , Animales , Enfermedades Neurodegenerativas/metabolismo , Apoptosis , Traumatismos de la Médula Espinal/metabolismo , Estradiol/farmacología , Mitocondrias/metabolismo , Médula Espinal/metabolismo , Recuperación de la Función
2.
Mol Reprod Dev ; 88(12): 817-829, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34658106

RESUMEN

The possible relationship between dehydroepiandrosterone (DHEA)-induced polycystic ovary syndrome (PCOS) and epigenetic changes (ECs) leading to the impaired oocyte quality, has not been investigated yet. So, this study aimed to provide an insight into the relationship of the impaired oocyte quality with ECs in a mice DHEA-induced PCOS model and to further reveal the effect of metformin treatment. For this purpose, 80 female BALB/C mice were randomly divided into four equal groups, named as the control, sham, (DHEA) and DHEA + Metformin groups. The alterations in acetylation of H4K5 and H4K16, and in methylation of DNA (5MeC) and H3K9 were evaluated using immunocytochemical. Moreover, the expression of Hdac1, Hdac2, Dnmt1, and Dnmt3a genes involved in ECs were analyzed using reverse-transcription polymerase chain reaction. As well, the levels of mitochondrial membrane potential (MMP), oxidative stress (OS), embryo development, ovarian morphology, sexual hormone, ovulatory function, and AMPKα phosphorylation activity were compared in all the studied groups. Metformin attenuated the damages induced by DHEA as indicated by the normalized the estrous cycle, the improved ovarian morphology, the decreased sexual hormone and OS levels, and the increased MMP and AMPKα phosphorylation levels. In the metformin group, the Dnmt1, Dnmt3a, and Hdac2 genes have significantly upregulated compared to the DHEA group. However, metformin was found to have no effect on the expression level of Hdac1. In this regard, significant decrease and increase were observed in both the acetylated H4K16 and methylated H3K9 within MII oocytes in the DHEA + Metformin group compared with the DHEA group. Our results show that metformin could enhance the developmental competence of PCOS oocytes via reducing OS and ECs.


Asunto(s)
Metformina , Síndrome del Ovario Poliquístico , Animales , Deshidroepiandrosterona/efectos adversos , Desarrollo Embrionario , Epigénesis Genética , Femenino , Metformina/farmacología , Ratones , Ratones Endogámicos BALB C , Oocitos/metabolismo , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo
3.
Neuroscience ; 463: 116-127, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33794337

RESUMEN

Estrogen produces a beneficial role in animal models of multiple sclerosis (MS). The effect of 17ß-estradiol therapy on microglia polarization and neuroinflammation in the corpus callosum of the cuprizone-induced demyelination model has not been elucidated. In this study, mice were given 0.2% cuprizone (CPZ) for 5 weeks to induce demyelination during which they received 50 ng of 17ß-estradiol (EST), injected subcutaneously in the neck region, twice weekly. Data revealed that treatment with 17ß-estradiol therapy (CPZ+EST) improved neurological behavioral deficits, displayed by a significant reduction in escape latencies, in comparison to untreated CPZ mice. Also, administration of 17ß-estradiol caused a decrease in demyelination levels and axonal injury, as demonstrated by staining with Luxol fast blue, immunofluorescence to myelin basic protein, and transmission electron microscopy analysis. In addition, at the transcriptional level in the brain, mice treated with 17ß-estradiol (CPZ+EST) showed a decrease in the levels of M1-assosicted microglia markers (CD86, iNOS and MHC-II) whereas M2-associated genes (Arg-1, CD206 and Trem-2) were increased, compared to CPZ mice. Moreover, administration of 17ß-estradiol resulted in a significant reduction (∼3-fold) in transcript levels of NLRP3 inflammasome and its downstream product IL-18, compared to controls. In summary, this study demonstrated for the first time that exogenous 17ß-estradiol therapy robustly leads to the reduction of M1 phenotype, stimulation of polarized M2 microglia, and repression of NLRP3 inflammasome in the corpus callosum of CPZ demyelination model of MS. The positive effects of 17ß-estradiol on microglia and inflammasome seems to facilitate and accelerate the remyelination process.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Animales , Cuerpo Calloso/metabolismo , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Modelos Animales de Enfermedad , Estradiol/farmacología , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR
4.
Cell Biol Int ; 44(2): 499-511, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31631484

RESUMEN

Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS) that leads to disability in middle-aged individuals. High rates of apoptosis and inappropriate homing are limitations for the application of stem cells in cell therapy. Preconditioning of bone marrow mesenchymal stem cells (BMSCs) with stromal cell-derived factor 1α (SDF-1α), also called C-X-C motif chemokine 12 (CXCL12), is an approach for improving the functional features of the cells. The aim of this study was to investigate the therapeutic efficacy of intranasal delivery of SDF-1α preconditioned BMSCs in the cuprizone-induced chronically demyelinated mice model. BMSCs were isolated, cultured, and preconditioned with SDF-1α. Then, intranasal delivery of the preconditioned cells was performed in the C57BL/6 mice receiving cuprizone for 12 weeks. Animals were killed at 30 days after cell delivery. SDF-1α preconditioning increased C-X-C chemokine receptor type 4 (CXCR4) expression on the surface of BMSCs, improved survival of the cells, and decreased their apoptosis in vitro. SDF-1α preconditioning also improved CXCL12 level within the brain, and enhanced spatial learning and memory (assessed by Morris water maze [MWM]), and myelination (assessed by Luxol fast blue [LFB] and transmission electron microscopy [TEM]). In addition, preconditioning of BMSCs with SDF-1α reduced the protein expressions of glial fibrillary acidic protein and ionized calcium-binding adapter molecule (Iba-1) and increased the expressions of oligodendrocyte lineage transcription factor-2 (Olig-2) and adenomatous polyposis coli (APC), evaluated by immunofluorescence. The results showed the efficacy of intranasal delivery of SDF-1α-preconditioned BMSCs for improving remyelination in the cuprizone model of MS.


Asunto(s)
Quimiocina CXCL12/administración & dosificación , Cuprizona/toxicidad , Modelos Animales de Enfermedad , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Esclerosis Múltiple/terapia , Remielinización , Administración Intranasal , Animales , Movimiento Celular , Masculino , Ratones , Ratones Endogámicos C57BL , Inhibidores de la Monoaminooxidasa/toxicidad , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/patología , Acondicionamiento Pretrasplante
5.
Avicenna J Med Biotechnol ; 11(1): 35-42, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30800241

RESUMEN

BACKGROUND: Nowadays, transplantation of Bone marrow-derived Mesenchymal Stromal Cells (BMSCs) is currently an important alternative therapy for patient's type 1 diabetes mellitus. But a number of critical obstacles lie ahead of this new strategy including reducing stem cell homing to the damaged tissue due to oxidative stress. The purpose of the present study was to investigate whether preconditioning of BMSCs with SDF-1 could enhance their homing to the pancreas and promote regeneration of the pancreatic ß cells after being intravenously injected. METHODS: Mice BMSCs were isolated and expanded. Cell proliferation was assayed by MTT Assay. Preconditioning was performed with 10 ng/ml SDF-1α for 24 hr. Male NMRI mice were injected with high-dose STZ (150 mg/kg). The preconditioned or un-preconditioned BMSCs at a dose of 1×106 cells were infused via the tail vein. Blood and pancreatic tissue samples were taken from all mice for flow cytometry, biochemical and histological studies. RESULTS: Proliferation and homing of BMSCs to the pancreas were significantly increased in the BMSCs with SDF-1α preconditioning. Differentiation of transplanted BMSCs, were significantly increased in preconditioning group. Although BMSCs without SDF-1 preconditioning exhibited remarkable recovery of pancreatic islets structure but this recovery were significantly increased in the BMSCs with SDF-1α preconditioning. CONCLUSION: Our results showed the effectiveness of SDF-1α preconditioning in BMSCs transplantation of STZ induced diabetes mice which might be achieved through improvement of BMSCs homing into the injured pancreas.

6.
Metab Brain Dis ; 33(4): 1229-1242, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29658057

RESUMEN

Spinal cord injury (SCI) is a devastating traumatic event which burdens the affected individuals and the health system. Schwann cell (SC) transplantation is a promising repair strategy after SCI. However, a large number of SCs do not survive following transplantation. Previous studies demonstrated that 17ß-estradiol (E2) protects different cell types and reduces tissue damage in SCI experimental animal model. In the current study, we evaluated the protective potential of E2 on SCs in vitro and investigated whether the combination of hormonal and SC therapeutic strategy has a better effect on the outcome after SCI. Primary SC cultures were incubated with E2 for 72 h. In a subsequent experiment, thoracic contusion SCI was induced in male rats followed by sustained administration of E2 or vehicle. Eight days after SCI, DiI-labeled SCs were transplanted into the injury epicenter in vehicle and E2-treated animals. The combinatory regimen decreased neurological and behavioral deficits and protected neurons and oligodendrocytes in comparison to vehicle rats. Moreover, E2 and SC significantly decreased the number of Iba-1+ (microglia) and GFAP+ cells (astrocyte) in the SCI group. In addition, we found a significant reduction of mitochondrial fission-markers (Fis1) and an increase of fusion-markers (Mfn1 and Mfn2) in the injured spinal cord after E2 and SC treatment. These data demonstrated that E2 protects SCs against hypoxia-induced SCI and improves the survival of transplanted SCs.


Asunto(s)
Estradiol/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Células de Schwann/trasplante , Traumatismos de la Médula Espinal/terapia , Animales , Terapia Combinada , Estradiol/farmacología , Masculino , Modelos Animales , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos , Médula Espinal/cirugía , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/cirugía
7.
Int Immunopharmacol ; 51: 131-139, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28830026

RESUMEN

Demyelination of the central nervous system (CNS) has been associated to reactive microglia in neurodegenerative disorders, such as multiple sclerosis (MS). The M1 microglia phenotype plays a pro-inflammatory role while M2 is involved in anti-inflammatory processes in the brain. In this study, CPZ-induced demyelination mouse model was used to investigate the effect of progesterone (PRO) therapy on microglia activation and neuro-inflammation. Results showed that progesterone therapy (CPZ+PRO) decreased neurological behavioral deficits, as demonstrated by significantly decreased escape latencies, in comparison to CPZ mice. In addition, CPZ+PRO caused a significant reduction in the mRNA expression levels of M1-markers (iNOS, CD86, MHC-II and TNF-α) in the corpus callosum region, whereas the expression of M2-markers (Trem-2, CD206, Arg-1 and TGF-ß) was significantly increased, in comparison to CPZ mice. Moreover, CPZ+PRO resulted in a significant decrease in the number of iNOS+ and Iba-1+/iNOS+ cells (M1), whereas TREM-2+ and Iba-1+/TREM-2+ cells (M2) significantly increased, in comparison to CPZ group. Furthermore, CPZ+PRO caused a significant decrease in mRNA and protein expression levels of NLRP3 and IL-18 (~2-fold), in comparison to the CPZ group. Finally, CPZ+PRO therapy was accompanied with reduced levels of demyelination, compared to CPZ, as confirmed by immunofluorescence to myelin basic protein (MBP) and Luxol Fast Blue (LFB) staining, as well as transmission electron microscopy (TEM) analysis. In summary, we reported for the first time that PRO therapy causes polarization of M2 microglia, attenuation of M1 phenotype, and suppression of NLRP3 inflammasome in a CPZ-induced demyelination model of MS.


Asunto(s)
Encéfalo/patología , Enfermedades Desmielinizantes/tratamiento farmacológico , Microglía/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Progesterona/uso terapéutico , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cuprizona/toxicidad , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Fenotipo , Células TH1/inmunología , Balance Th1 - Th2/efectos de los fármacos , Células Th2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA