Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Biol Chem ; 300(2): 105655, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237682

RESUMEN

Endoplasmic reticulum stress is associated with insulin resistance and the development of nonalcoholic fatty liver disease. Deficiency of the endoplasmic reticulum stress response T-cell death-associated gene 51 (TDAG51) (TDAG51-/-) in mice promotes the development of high-fat diet (HFD)-induced obesity, fatty liver, and hepatic insulin resistance. However, whether this effect is due specifically to hepatic TDAG51 deficiency is unknown. Here, we report that hepatic TDAG51 protein levels are consistently reduced in multiple mouse models of liver steatosis and injury as well as in liver biopsies from patients with liver disease compared to normal controls. Delivery of a liver-specific adeno-associated virus (AAV) increased hepatic expression of a TDAG51-GFP fusion protein in WT, TDAG51-/-, and leptin-deficient (ob/ob) mice. Restoration of hepatic TDAG51 protein was sufficient to increase insulin sensitivity while reducing body weight and fatty liver in HFD fed TDAG51-/- mice and in ob/ob mice. TDAG51-/- mice expressing ectopic TDAG51 display improved Akt (Ser473) phosphorylation, post-insulin stimulation. HFD-fed TDAG51-/- mice treated with AAV-TDAG51-GFP displayed reduced lipogenic gene expression, increased beta-oxidation and lowered hepatic and serum triglycerides, findings consistent with reduced liver weight. Further, AAV-TDAG51-GFP-treated TDAG51-/- mice exhibited reduced hepatic precursor and cleaved sterol regulatory-element binding proteins (SREBP-1 and SREBP-2). In vitro studies confirmed the lipid-lowering effect of TDAG51 overexpression in oleic acid-treated Huh7 cells. These studies suggest that maintaining hepatic TDAG51 protein levels represents a viable therapeutic approach for the treatment of obesity and insulin resistance associated with nonalcoholic fatty liver disease.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Muerte Celular , Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Linfocitos T/metabolismo , Masculino
2.
Clin Pharmacol Ther ; 114(4): 780-794, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37404197

RESUMEN

The US Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceuticals and Medical Devices Agency (PMDA) guidances on small-molecule drug-drug interactions (DDIs), with input from the International Transporter Consortium (ITC), recommend the evaluation of nine drug transporters. Although other clinically relevant drug uptake and efflux transporters have been discussed in ITC white papers, they have been excluded from further recommendation by the ITC and are not included in current regulatory guidances. These include the ubiquitously expressed equilibrative nucleoside transporters (ENT) 1 and ENT2, which have been recognized by the ITC for their potential role in clinically relevant nucleoside analog drug interactions for patients with cancer. Although there is comparatively limited clinical evidence supporting their role in DDI risk or other adverse drug reactions (ADRs) compared with the nine highlighted transporters, several in vitro and in vivo studies have identified ENT interactions with non-nucleoside/non-nucleotide drugs, in addition to nucleoside/nucleotide analogs. Some noteworthy examples of compounds that interact with ENTs include cannabidiol and selected protein kinase inhibitors, as well as the nucleoside analogs remdesivir, EIDD-1931, gemcitabine, and fialuridine. Consequently, DDIs involving the ENTs may be responsible for therapeutic inefficacy or off-target toxicity. Evidence suggests that ENT1 and ENT2 should be considered as transporters potentially involved in clinically relevant DDIs and ADRs, thereby warranting further investigation and regulatory consideration.


Asunto(s)
Relevancia Clínica , Transportador Equilibrativo 2 de Nucleósido , Humanos , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Descubrimiento de Drogas
3.
Drug Metab Dispos ; 51(9): 1157-1168, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37258305

RESUMEN

The blood-testis barrier (BTB) is a selectively permeable membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules of the testes that develops intercellular junctional complexes to protect developing germ cells from external pressures. However, due to this inherent defense mechanism, the seminiferous tubule lumen can act as a pharmacological sanctuary site for latent viruses (e.g., Ebola, Zika) and cancers (e.g., leukemia). Therefore, it is critical to identify and evaluate BTB carrier-mediated drug delivery pathways to successfully treat these viruses and cancers. Many drugs are unable to effectively cross cell membranes without assistance from carrier proteins like transporters because they are large, polar, and often carry a charge at physiologic pH. SCs express transporters that selectively permit endogenous compounds, such as carnitine or nucleosides, across the BTB to support normal physiologic activity, although reproductive toxicants can also use these pathways, thereby circumventing the BTB. Certain xenobiotics, including select cancer therapeutics, antivirals, contraceptives, and environmental toxicants, are known to accumulate within the male genital tract and cause testicular toxicity; however, the transport pathways by which these compounds circumvent the BTB are largely unknown. Consequently, there is a need to identify the clinically relevant BTB transport pathways in in vitro and in vivo BTB models that recapitulate human pharmacokinetics and pharmacodynamics for these xenobiotics. This review summarizes the various in vitro and in vivo models of the BTB reported in the literature and highlights the strengths and weaknesses of certain models for drug disposition studies. SIGNIFICANCE STATEMENT: Drug disposition to the testes is influenced by the physical, physiological, and immunological components of the blood-testis barrier (BTB). But many compounds are known to cross the BTB by transporters, resulting in pharmacological and/or toxicological effects in the testes. Therefore, models that assess drug transport across the human BTB must adequately account for these confounding factors. This review identifies and discusses the benefits and limitations of various in vitro and in vivo BTB models for preclinical drug disposition studies.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Masculino , Humanos , Barrera Hematotesticular/metabolismo , Xenobióticos/metabolismo , Testículo/metabolismo , Transporte Biológico , Células de Sertoli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Virus Zika/metabolismo , Infección por el Virus Zika/metabolismo
4.
Drug Metab Dispos ; 51(2): 155-164, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36328481

RESUMEN

Alterations in hepatic transporters have been identified in precirrhotic chronic liver diseases (CLDs) that result in pharmacokinetic variations causing adverse drug reactions (ADRs). However, the effect of CLD on the expression of renal transporters is unknown despite the overwhelming evidence of kidney injury in CLD patients. This study determines the transcriptomic and proteomic expression profiles of renal drug transporters in patients with defined CLD etiology. Renal biopsies were obtained from patients with a history of CLD etiologies, including nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), alcohol-associated liver disease (ALD), viral hepatitis C (HCV), and combination ALD/HCV. A significant decrease in organic anion transporter (OAT)-3 was identified in NASH, ALD, HCV, and ALD/HCV (1.56 ± 1.10; 1.01 ± 0.46; 1.03 ± 0.43; 0.86 ± 0.57 pmol/mg protein) relative to control (2.77 ± 1.39 pmol/mg protein). Additionally, a decrease was shown for OAT4 in NASH (24.9 ± 5.69 pmol/mg protein) relative to control (43.8 ± 19.9 pmol/mg protein) and in urate transporter 1 (URAT1) for ALD and HCV (1.56 ± 0.15 and 1.65 ± 0.69 pmol/mg protein) relative to control (4.69 ± 4.59 pmol/mg protein). These decreases in organic anion transporter expression could result in increased and prolonged systemic exposure to drugs and possible toxicity. Renal transporter changes, in addition to hepatic transporter alterations, should be considered in dose adjustments for CLD patients for a more accurate disposition profile. It is important to consider a multiorgan approach to altered pharmacokinetics of drugs prescribed to CLD patients to prevent ADRs and improve patient outcomes. SIGNIFICANCE STATEMENT: Chronic liver diseases are known to elicit alterations in hepatic transporters that result in a disrupted pharmacokinetic profile for various drugs. However, it is unknown if there are alterations in renal transporters during chronic liver disease, despite strong indications of renal dysfunction associated with chronic liver disease. Identifying renal transporter expression changes in patients with chronic liver disease facilitates essential investigations on the multifaceted relationship between liver dysfunction and kidney physiology to offer dose adjustments and prevent adverse drug reactions.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hepatitis C , Hepatitis Viral Humana , Enfermedad del Hígado Graso no Alcohólico , Transportadores de Anión Orgánico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteómica , Etanol , Transportadores de Anión Orgánico/metabolismo
5.
J Pharmacol Exp Ther ; 382(3): 299-312, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779861

RESUMEN

The blood-testis barrier (BTB) is formed by a tight network of Sertoli cells (SCs) to limit the movement of reproductive toxicants from the blood into the male genital tract. Transporters expressed at the basal membranes of SCs also influence the disposition of drugs across the BTB. The reversible, nonhormonal contraceptive, H2-gamendazole (H2-GMZ), is an indazole carboxylic acid analog that accumulates over 10 times more in the testes compared with other organs. However, the mechanism(s) by which H2-GMZ circumvents the BTB are unknown. This study describes the physiologic characteristics of the carrier-mediated process(es) that permit H2-GMZ and other analogs to penetrate SCs. Uptake studies were performed using an immortalized human SC line (hT-SerC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Uptake of H2-GMZ and four analogs followed Michaelis-Menten transport kinetics (one analog exhibited poor penetration). H2-GMZ uptake was strongly inhibited by indomethacin, diclofenac, MK-571, and several analogs. Moreover, H2-GMZ uptake was stimulated by an acidic extracellular pH, reduced at basic pHs, and independent of extracellular Na+, K+, or Cl- levels, which are intrinsic characteristics of OATP-mediated transport. Therefore, the characteristics of H2-GMZ transport suggest that one or more OATPs may be involved. However, endogenous transporter expression in wild-type Chinese hamster ovary (CHO), Madin-Darby canine kidney (MDCK), and human embryonic kidney-293 (HEK-293) cells limited the utility of heterologous transporter expression to identify a specific OATP transporter. Altogether, characterization of the transporters involved in the flux of H2-GMZ provides insight into the selectivity of drug disposition across the human BTB to understand and overcome the pharmacokinetic and pharmacodynamic difficulties presented by this barrier. SIGNIFICANCE STATEMENT: Despite major advancements in female contraceptives, male alternatives, including vasectomy, condom usage, and physical withdrawal, are antiquated and the widespread availability of nonhormonal, reversible chemical contraceptives is nonexistent. Indazole carboxylic acid analogs such as H2-GMZ are promising new reversible, antispermatogenic drugs that are highly effective in rodents. This study characterizes the carrier-mediated processes that permit H2-GMZ and other drugs to enter Sertoli cells and the observations made here will guide the development of drugs that effectively circumvent the BTB.


Asunto(s)
Anticonceptivos Masculinos , Transportadores de Anión Orgánico , Animales , Barrera Hematotesticular , Células CHO , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/farmacología , Cromatografía Liquida , Anticonceptivos Masculinos/metabolismo , Anticonceptivos Masculinos/farmacología , Cricetinae , Cricetulus , Perros , Femenino , Células HEK293 , Humanos , Indazoles/farmacología , Masculino , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Anión Orgánico/metabolismo , Espectrometría de Masas en Tándem
6.
Drug Metab Dispos ; 50(6): 770-780, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35307651

RESUMEN

The blood-testis barrier (BTB) is formed by basal tight junctions between adjacent Sertoli cells (SCs) of the seminiferous tubules and acts as a physical barrier to protect developing germ cells in the adluminal compartment from reproductive toxicants. Xenobiotics, including antivirals, male contraceptives, and cancer chemotherapeutics, are known to cross the BTB, although the mechanisms that permit barrier circumvention are generally unknown. This study used immunohistological staining of human testicular tissue to determine the site of expression for xenobiotic transporters that facilitate transport across the BTB. Organic anion transporter (OAT) 1, OAT2, and organic cation transporter, novel (OCTN) 1 primarily localized to the basal membrane of SCs, whereas OCTN2, multidrug resistance protein (MRP) 3, MRP6, and MRP7 localized to SC basal membranes and peritubular myoid cells (PMCs) surrounding the seminiferous tubules. Concentrative nucleoside transporter (CNT) 2 localized to Leydig cells (LCs), PMCs, and SC apicolateral membranes. Organic cation transporter (OCT) 1, OCT2, and OCT3 mostly localized to PMCs and LCs, although there was minor staining in developing germ cells for OCT3. Organic anion transporting polypeptide (OATP) 1A2, OATP1B1, OATP1B3, OATP2A1, OATP2B1, and OATP3A1-v2 localized to SC basal membranes with diffuse staining for some transporters. Notably, OATP1C1 and OATP4A1 primarily localized to LCs. Positive staining for multidrug and toxin extrusion protein (MATE) 1 was only observed throughout the adluminal compartment. Definitive staining for CNT1, OAT3, MATE2, and OATP6A1 was not observed. The location of these transporters is consistent with their involvement in the movement of xenobiotics across the BTB. Altogether, the localization of these transporters provides insight into the mechanisms of drug disposition across the BTB and will be useful in developing tools to overcome the pharmacokinetic and pharmacodynamic difficulties presented by the BTB. SIGNIFICANCE STATEMENT: Although the total mRNA and protein expression of drug transporters in the testes has been explored, the localization of many transporters at the blood-testis barrier (BTB) has not been determined. This study applied immunohistological staining in human testicular tissues to identify the cellular localization of drug transporters in the testes. The observations made in this study have implications for the development of drugs that can effectively use transporters expressed at the basal membranes of Sertoli cells to bypass the BTB.


Asunto(s)
Barrera Hematotesticular , Transportador 1 de Catión Orgánico , Xenobióticos , Barrera Hematotesticular/metabolismo , Cationes/metabolismo , Humanos , Masculino , Transportador 1 de Catión Orgánico/metabolismo , Xenobióticos/metabolismo
8.
Drug Metab Dispos ; 50(4): 492-499, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34531312

RESUMEN

Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD) and is diagnosed by a liver biopsy. Because of the invasiveness of a biopsy, the majority of patients with NASH are undiagnosed. Additionally, the prevalence of NAFLD and NASH creates the need for a simple screening method to differentiate patients with NAFLD versus NASH. Noninvasive strategies for diagnosing NAFLD versus NASH have been developed, typically relying on imaging techniques and endogenous biomarker panels. However, each technique has limitations, and none can accurately predict the associated functional impairment of drug metabolism and disposition. The function of several drug-metabolizing enzymes and drug transporters has been described in NASH that impacts drug pharmacokinetics. The aim of this review is to give an overview of the existing noninvasive strategies to diagnose NASH and to propose a novel strategy based on altered pharmacokinetics using an exogenous biomarker whose disposition and elimination pathways are directly impacted by disease progression. Altered disposition of safe and relatively inert exogenous compounds may provide the sensitivity and specificity needed to differentiate patients with NAFLD and NASH to facilitate a direct indication of hepatic impairment on drug metabolism and prevent subsequent adverse drug reactions. SIGNIFICANCE STATEMENT: This review provides an overview of the main noninvasive techniques (imaging and panels of biomarkers) used to diagnose NAFLD and NASH along with a biopsy. Pharmacokinetic changes have been identified in NASH, and this review proposes a new approach to predict NASH and the related risk of adverse drug reactions based on the assessment of drug elimination disruption using exogenous biomarkers.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Enfermedad del Hígado Graso no Alcohólico , Biomarcadores/metabolismo , Biopsia , Humanos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/patología
9.
Drug Metab Dispos ; 50(10): 1389-1395, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34921099

RESUMEN

Ochratoxin A (OTA) is an abundant mycotoxin, yet the toxicological impact of its disposition is not well studied. OTA is an organic anion transporter (OAT) substrate primarily excreted in urine despite a long half-life and extensive protein binding. Altered renal transporter expression during disease, including nonalcoholic steatohepatitis (NASH), may influence response to OTA exposure, but the impact of NASH on OTA toxicokinetics, tissue distribution, and associated nephrotoxicity is unknown. By inducing NASH in fast food-dieted/thioacetamide-exposed mice, we evaluated the effect of NASH on a bolus OTA exposure (12.5 mg/kg by mouth) after 3 days. NASH mice presented with less gross toxicity (44% less body weight loss), and kidney and liver weights of NASH mice were 11% and 24% higher, respectively, than healthy mice. Organ and body weight changes coincided with reduced renal proximal tubule cells vacuolation, degeneration, and necrosis, though no OTA-induced hepatic lesions were found. OTA systemic exposure in NASH mice increased modestly from 5.65 ± 1.10 to 7.95 ± 0.61 mg*h/ml per kg BW, and renal excretion increased robustly from 5.55% ± 0.37% to 13.11% ± 3.10%, relative to healthy mice. Total urinary excretion of OTA increased from 24.41 ± 1.74 to 40.07 ± 9.19 µg in NASH mice, and kidney-bound OTA decreased by ∼30%. Renal OAT isoform expression (OAT1-5) in NASH mice decreased by ∼50% with reduced OTA uptake by proximal convoluted cells. These data suggest that NASH-induced OAT transporter reductions attenuate renal secretion and reabsorption of OTA, increasing OTA urinary excretion and reducing renal exposure, thereby reducing nephrotoxicity in NASH. SIGNIFICANCE STATEMENT: These data suggest a disease-mediated transporter mechanism of altered tissue-specific toxicity after mycotoxin exposure, despite minimal systemic changes to ochratoxin A (OTA) concentrations. Further studies are warranted to evaluate the clinical relevance of this functional model and the potential effect of human nonalcoholic steatohepatitis on OTA and other organic anion substrate toxicity.


Asunto(s)
Micotoxinas , Enfermedad del Hígado Graso no Alcohólico , Transportadores de Anión Orgánico , Animales , Modelos Animales de Enfermedad , Humanos , Riñón/metabolismo , Ratones , Micotoxinas/metabolismo , Micotoxinas/toxicidad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ocratoxinas , Transportadores de Anión Orgánico/metabolismo , Isoformas de Proteínas/metabolismo , Tioacetamida/metabolismo
10.
Mol Pharmacol ; 100(6): 548-557, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34503974

RESUMEN

Equilibrative nucleoside transporters (ENTs) are present at the blood-testis barrier (BTB), where they can facilitate antiviral drug disposition to eliminate a sanctuary site for viruses detectable in semen. The purpose of this study was to investigate ENT-drug interactions with three nucleoside analogs, remdesivir, molnupiravir, and molnupiravir's active metabolite, ß-d-N4-hydroxycytidine (EIDD-1931), and four non-nucleoside molecules repurposed as antivirals for coronavirus disease 2019 (COVID-19). The study used three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors and Bayesian machine learning models to identify potential interactions with these transporters. In vitro transport experiments demonstrated that remdesivir was the most potent inhibitor of ENT-mediated [3H]uridine uptake (ENT1 IC50: 39 µM; ENT2 IC50: 77 µM), followed by EIDD-1931 (ENT1 IC50: 259 µM; ENT2 IC50: 467 µM), whereas molnupiravir was a modest inhibitor (ENT1 IC50: 701 µM; ENT2 IC50: 851 µM). Other proposed antivirals failed to inhibit ENT-mediated [3H]uridine uptake below 1 mM. Remdesivir accumulation decreased in the presence of 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) by 30% in ENT1 cells (P = 0.0248) and 27% in ENT2 cells (P = 0.0054). EIDD-1931 accumulation decreased in the presence of NBMPR by 77% in ENT1 cells (P = 0.0463) and by 64% in ENT2 cells (P = 0.0132), which supported computational predictions that both are ENT substrates that may be important for efficacy against COVID-19. NBMPR failed to decrease molnupiravir uptake, suggesting that ENT interaction is likely inhibitory. Our combined computational and in vitro data can be used to identify additional ENT-drug interactions to improve our understanding of drugs that can circumvent the BTB. SIGNIFICANCE STATEMENT: This study identified remdesivir and EIDD-1931 as substrates of equilibrative nucleoside transporters 1 and 2. This provides a potential mechanism for uptake of these drugs into cells and may be important for antiviral potential in the testes and other tissues expressing these transporters.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/metabolismo , Citidina/análogos & derivados , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , SARS-CoV-2/metabolismo , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/metabolismo , Alanina/administración & dosificación , Alanina/metabolismo , Antivirales/administración & dosificación , COVID-19/metabolismo , Citidina/administración & dosificación , Citidina/metabolismo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas/fisiología , Células HeLa , Humanos , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
11.
Pharmacol Res Perspect ; 9(4): e00831, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34288585

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common cancer in children and adolescents. Although the 5-year survival rate is high, some patients respond poorly to chemotherapy or have recurrence in locations such as the testis. The blood-testis barrier (BTB) can prevent complete eradication by limiting chemotherapeutic access and lead to testicular relapse unless a chemotherapeutic is a substrate of drug transporters present at this barrier. Equilibrative nucleoside transporter (ENT) 1 and ENT2 facilitate the movement of substrates across the BTB. Clofarabine is a nucleoside analog used to treat relapsed or refractory ALL. This study investigated the role of ENTs in the testicular disposition of clofarabine. Pharmacological inhibition of the ENTs by 6-nitrobenzylthioinosine (NBMPR) was used to determine ENT contribution to clofarabine transport in primary rat Sertoli cells, in human Sertoli cells, and across the rat BTB. The presence of NBMPR decreased clofarabine uptake by 40% in primary rat Sertoli cells (p = .0329) and by 53% in a human Sertoli cell line (p = .0899). Rats treated with 10 mg/kg intraperitoneal (IP) injection of the NBMPR prodrug, 6-nitrobenzylthioinosine 5'-monophosphate (NBMPR-P), or vehicle, followed by an intravenous (IV) bolus 10 mg/kg dose of clofarabine, showed a trend toward a lower testis concentration of clofarabine than vehicle (1.81 ± 0.59 vs. 2.65 ± 0.92 ng/mg tissue; p = .1160). This suggests that ENTs could be important for clofarabine disposition. Clofarabine may be capable of crossing the human BTB, and its potential use as a first-line treatment to avoid testicular relapse should be considered.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacocinética , Clofarabina/farmacocinética , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Testículo/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Tranportador Equilibrativo 1 de Nucleósido/antagonistas & inhibidores , Transportador Equilibrativo 2 de Nucleósido/antagonistas & inhibidores , Humanos , Lamivudine/sangre , Lamivudine/farmacocinética , Lamivudine/farmacología , Masculino , Ratas Sprague-Dawley , Telomerasa/genética , Tioinosina/análogos & derivados , Tioinosina/sangre , Tioinosina/farmacocinética , Tioinosina/farmacología , Tionucleótidos/sangre , Tionucleótidos/farmacocinética , Tionucleótidos/farmacología
12.
Acta Pharm Sin B ; 11(12): 3869-3878, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35024313

RESUMEN

Disease-mediated alterations to drug disposition constitute a significant source of adverse drug reactions. Cisplatin (CDDP) elicits nephrotoxicity due to exposure in proximal tubule cells during renal secretion. Alterations to renal drug transporter expression have been discovered during nonalcoholic steatohepatitis (NASH), however, associated changes to substrate toxicity is unknown. To test this, a methionine- and choline-deficient diet-induced rat model was used to evaluate NASH-associated changes to CDDP pharmacokinetics, transporter expression, and toxicity. NASH rats administered CDDP (6 mg/kg, i.p.) displayed 20% less nephrotoxicity than healthy rats. Likewise, CDDP renal clearance decreased in NASH rats from 7.39 to 3.83 mL/min, renal secretion decreased from 6.23 to 2.80 mL/min, and renal CDDP accumulation decreased by 15%, relative to healthy rats. Renal copper transporter-1 expression decreased, and organic cation transporter-2 and ATPase copper transporting protein-7b increased slightly, reducing CDDP secretion. Hepatic CDDP accumulation increased 250% in NASH rats relative to healthy rats. Hepatic organic cation transporter-1 induction and multidrug and toxin extrusion protein-1 and multidrug resistance-associated protein-4 reduction may contribute to hepatic CDDP sequestration in NASH rats, although no drug-related toxicity was observed. These data provide a link between NASH-induced hepatic and renal transporter expression changes and CDDP renal clearance, which may alter nephrotoxicity.

13.
J Proteome Res ; 19(8): 3326-3339, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32544340

RESUMEN

Methotrexate (MTX) is a chemotherapeutic agent that can cause a range of toxic side effects including gastrointestinal damage, hepatotoxicity, myelosuppression, and nephrotoxicity and has potentially complex interactions with the gut microbiome. Following untargeted UPLC-qtof-MS analysis of urine and fecal samples from male Sprague-Dawley rats administered at either 0, 10, 40, or 100 mg/kg of MTX, dose-dependent changes in the endogenous metabolite profiles were detected. Semiquantitative targeted UPLC-MS detected MTX excreted in urine as well as MTX and two metabolites, 2,4-diamino-N-10-methylpteroic acid (DAMPA) and 7-hydroxy-MTX, in the feces. DAMPA is produced by the bacterial enzyme carboxypeptidase glutamate 2 (CPDG2) in the gut. Microbiota profiling (16S rRNA gene amplicon sequencing) of fecal samples showed an increase in the relative abundance of Firmicutes over the Bacteroidetes at low doses of MTX but the reverse at high doses. Firmicutes relative abundance was positively correlated with DAMPA excretion in feces at 48 h, which were both lower at 100 mg/kg compared to that seen at 40 mg/kg. Overall, chronic exposure to MTX appears to induce community and functionality changes in the intestinal microbiota, inducing downstream perturbations in CPDG2 activity, and thus may delay MTX detoxication to DAMPA. This reduction in metabolic clearance might be associated with increased gastrointestinal toxicity.


Asunto(s)
Microbioma Gastrointestinal , Metotrexato , Animales , Cromatografía Liquida , Heces , Masculino , Metotrexato/toxicidad , ARN Ribosómico 16S/genética , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
14.
Biochem Pharmacol ; 174: 113780, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31881192

RESUMEN

The downregulation of hepatic uptake transporters, including those of the OATP family, are a well known consequence of nonalcoholic steatohepatitis (NASH). Prior studies have shown that the combination of NASH and Oatp1b2 knockout synergistically reduces the clearance of pravastatin (PRAV) in the methionine and choline deficient (MCD) mouse model of NASH, and the current study therefore aimed to determine the impact of NASH and genetic heterozygosity of Oatp1b2 on PRAV clearance, modeling the overlap between the 24% of the human population who are heterozygous for non-functioning OATP1B1, and the ~15% with NASH, potentially placing these people at higher risk of statin-induced myopathy. Therefore, male C57BL/6 wild-type (WT), Oatp1b2+/- (HET), and Oatp1b2-/- (KO) mice were fed either a control (methionine and choline sufficient) or methionine and choline-deficient (MCD) diet to induce NASH. After six weeks of feeding, pravastatin was administered via the carotid artery. Blood and bile samples were collected throughout 90 min after PRAV administration. The concentration of PRAV in plasma, bile, liver, kidney, and muscle was determined by liquid chromatography-tandem mass spectrometry. MCD diet did not alter the plasma AUC values of PRAV in either WT or HET mice. However, the MCD diet increased plasma AUC by 4.4-fold in KO mice. MCD diet and nonfunctional Oatp1b2 synergistically increased not only plasma AUC but also the extrahepatic tissue concentration of pravastatin, whereas the partially decreased function of Oatp1b2 and NASH together were insufficient in significantly altering PRAV pharmacokinetics. These data suggest that a single copy of fully functional OATP1B1 in NASH patients may be sufficient to avoid the increase of pravastatin toxicity.


Asunto(s)
Expresión Génica , Inhibidores de Hidroximetilglutaril-CoA Reductasas/sangre , Transportador 1 de Anión Orgánico Específico del Hígado/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Pravastatina/sangre , Animales , Modelos Animales de Enfermedad , Dosificación de Gen , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Tasa de Depuración Metabólica , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/genética , Pravastatina/uso terapéutico
15.
Toxicol Appl Pharmacol ; 368: 49-54, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30794826

RESUMEN

INTRODUCTION: Nonalcoholic steatohepatitis (NASH) afflicts 20-36% of individuals with nonalcoholic fatty liver disease (NAFLD). A lipotoxic hepatic environment, altered innate immune signaling and inflammation are defining features of progression to NASH. Activated resident liver macrophages express folate receptor beta (FR-ß) which may be an indicator of progression from steatosis to NASH. The goals of this study were to characterize FR-ß protein expression in human NAFLD and rodent models of NASH, and demonstrate liver targeting of an FR-ß imaging agent to the liver of a rodent NASH model using FR-ß. METHODS: Rat liver lysates from methionine choline deficient (MCD) fed rats, high fat diet (HFD) and methionine choline sufficient (MC+) rat controls were analyzed for hepatic FR-ß protein. The FR-ß-targeted agent, Etarfolatide was injected into MCD and MC + -fed C57BL/6 mice for efficient FastSPECT hepatic imaging. Additionally, FR-ß expression across the stages of human NAFLD from normal to NASH was assessed. RESULTS: FastSPECT images show targeting of Etarfolatide to the liver of mice fed 8 weeks of MCD diet but not control-fed mice. The MCD rat model exhibited significantly increased protein expression of hepatic FR-ß in contrast to HFD or normal samples. Similarly human liver samples categorized as NASH Fatty or NASH Not Fatty showed elevated FR-ß protein when compared to normal liver. FR-ß transcript expression levels were elevated across both NASH Fatty and NASH Not Fatty samples. CONCLUSION: The findings in this study indicate that FR-ß expression in NASH may be harnessed to target agents directly to the liver.


Asunto(s)
Receptor 2 de Folato/metabolismo , Hígado/diagnóstico por imagen , Hígado/metabolismo , Macrófagos/metabolismo , Imagen Molecular/métodos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Tomografía Computarizada de Emisión de Fotón Único , Animales , Biomarcadores/metabolismo , Deficiencia de Colina/complicaciones , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Receptor 2 de Folato/genética , Ácido Fólico/administración & dosificación , Ácido Fólico/análogos & derivados , Humanos , Masculino , Metionina/deficiencia , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Compuestos de Organotecnecio/administración & dosificación , Valor Predictivo de las Pruebas , Radiofármacos/administración & dosificación , Ratas Sprague-Dawley
16.
Reproduction ; 156(6): R187-R194, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30328342

RESUMEN

The blood-testis barrier protects developing germ cells by limiting the entry of xenobiotics into the adluminal compartment. There is strong evidence that the male genital tract can serve as a sanctuary site, an area of the body where tumors or viruses are able to survive treatments because most drugs are unable to reach therapeutic concentrations. Recent work has classified the expression and localization of endogenous transporters in the male genital tract as well as the discovery of a transepithelial transport pathway as the molecular mechanism by which nucleoside analogs may be able to circumvent the blood-testis barrier. Designing drug therapies that utilize transepithelial transport pathways may improve drug disposition to this sanctuary site. Strategies that improve disposition into the male genital tract could reduce the rate of testicular relapse, decrease viral load in semen, and improve therapeutic strategies for male fertility.


Asunto(s)
Barrera Hematotesticular/metabolismo , Células Epiteliales/metabolismo , Fertilidad , Proteínas de Transporte de Membrana/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Antivirales/administración & dosificación , Antivirales/farmacocinética , Transporte Biológico , Anticonceptivos Masculinos/administración & dosificación , Anticonceptivos Masculinos/farmacocinética , Fertilidad/efectos de los fármacos , Fármacos para la Fertilidad/administración & dosificación , Fármacos para la Fertilidad/farmacocinética , Humanos , Masculino , Distribución Tisular
17.
Drug Metab Dispos ; 46(11): 1478-1486, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30166404

RESUMEN

Disease progression to nonalcoholic steatohepatitis (NASH) has profound effects on the expression and function of drug-metabolizing enzymes and transporters, which provide a mechanistic basis for variable drug response. Breast cancer resistance protein (BCRP), a biliary efflux transporter, exhibits increased liver mRNA expression in NASH patients and preclinical NASH models, but the impact on function is unknown. It was shown that the transport capacity of multidrug resistance protein 2 (MRP2) is decreased in NASH. SN-38, the active irinotecan metabolite, is reported to be a substrate for Bcrp, whereas SN-38 glucuronide (SN-38G) is a Mrp2 substrate. The purpose of this study was to determine the function of Bcrp in NASH through alterations in the disposition of SN-38 and SN-38G in a Bcrp knockout (Bcrp-/- KO) and methionine- and choline-deficient (MCD) model of NASH. Sprague Dawley [wild-type (WT)] rats and Bcrp-/- rats were fed either a methionine- and choline-sufficient (control) or MCD diet for 8 weeks to induce NASH. SN-38 (10 mg/kg) was administered i.v., and blood and bile were collected for quantification by liquid chromatography-tandem mass spectrometry. In Bcrp-/- rats on the MCD diet, biliary efflux of SN-38 decreased to 31.9%, and efflux of SN-38G decreased to 38.7% of control, but WT-MCD and KO-Control were unaffected. These data indicate that Bcrp is not solely responsible for SN-38 biliary efflux, but rather implicate a combined role for BCRP and MRP2. Furthermore, the disposition of SN-38 and SN-38G is altered by Bcrp-/- and NASH in a gene-by-environment interaction and may result in variable drug response to irinotecan therapy in polymorphic patients.


Asunto(s)
Deficiencia de Colina/metabolismo , Colina/metabolismo , Irinotecán/metabolismo , Metionina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Bilis/metabolismo , Sistema Biliar/metabolismo , Dieta/métodos , Interacción Gen-Ambiente , Hígado/metabolismo , Masculino , Tasa de Depuración Metabólica/fisiología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
18.
J Biochem Mol Toxicol ; 32(3): e22035, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29341352

RESUMEN

Nonalcoholic steatohepatitis (NASH) remodels the expression and function of genes and proteins that are critical for drug disposition. This study sought to determine whether disruption of membrane protein trafficking pathways in human NASH contributes to altered localization of multidrug resistance-associated protein 2 (MRP2). A comprehensive immunoblot analysis assessed the phosphorylation, membrane translocation, and expression of transporter membrane insertion regulators, including several protein kinases (PK), radixin, MARCKS, and Rab11. Radixin exhibited a decreased phosphorylation and total expression, whereas Rab11 had an increased membrane localization. PKCδ, PKCα, and PKA had increased membrane activation, whereas PKCε had a decreased phosphorylation and membrane expression. Radixin dephosphorylation may activate MRP2 membrane retrieval in NASH; however, the activation of Rab11/PKCδ and PKA/PKCα suggest an activation of membrane insertion pathways as well. Overall these data suggest an altered regulation of protein trafficking in human NASH, although other processes may be involved in the regulation of MRP2 localization.


Asunto(s)
Membrana Celular/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transporte Biológico Activo , Membrana Celular/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas del Citoesqueleto/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Proteína Quinasa C/metabolismo , Proteínas de Unión al GTP rab/metabolismo
19.
Oncotarget ; 8(38): 63370-63381, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28968997

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is categorized into nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH) and has emerged as a risk factor for more critical clinical conditions. However, the underlying mechanisms of NAFLD pathogenesis are not fully understood. In this study, expression of proteins associated with endoplasmic reticulum (ER) stress, apoptosis and autophagy were analyzed in normal, NAFL and NASH human livers by western blotting. Levels of some ER stress-transducing transcription factors, including cleaved activating transcription factor 6, were higher in NASH than in the normal tissues. However, the expression of a majority of the ER chaperones and foldases analyzed, including glucose-regulated protein 78 and ER protein 44, was lower in NASH than in the normal tissues. Levels of apoptosis markers, such as cleaved poly (ADP-ribose) polymerase, were also lower in NASH tissues, in which expression of some B-cell lymphoma-2 family proteins was up- or down-regulated compared to the normal tissues. The level of the autophagy substrate p62 was not different in NASH and normal tissues, although some autophagy regulators were up- or down-regulated in the NASH tissues compared to the normal tissues. Levels of most of the proteins analyzed in NAFL tissues were either similar to those in one of the other two types, NASH and normal, or were somewhere in between. Together, these findings suggest that regulation of certain important tissues processes involved in protein quality control and cell survival were broadly compromised in the NAFLD tissues.

20.
Liver Int ; 37(7): 1074-1081, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28097795

RESUMEN

BACKGROUND & AIMS: N-linked glycosylation of proteins is critical for proper protein folding and trafficking to the plasma membrane. Drug transporters are one class of proteins that have reduced function when glycosylation is impaired. N-linked glycosylation of plasma proteins has also been investigated as a biomarker for several liver diseases, including non-alcoholic fatty liver disease (NAFLD). The purpose of this study was to assess the transcriptomic expression of genes involved in protein processing and glycosylation, and to determine the glycosylation status of key drug transporters during human NAFLD progression. METHODS: Human liver samples diagnosed as healthy, steatosis, and non-alcoholic steatohepatitis (NASH) were analysed for gene expression of glycosylation-related genes and for protein glycosylation using immunoblot. RESULTS: Genes involved in protein processing in the ER and biosynthesis of N-glycans were significantly enriched for down-regulation in NAFLD progression. Included in the down regulated N-glycan biosynthesis category were genes involved in the oligosaccharyltransferase complex, N-glycan quality control, N-glycan precursor biosynthesis, N-glycan trimming to the core, and N-glycan extension from the core. N-glycan degradation genes were unaltered in the progression to NASH. Immunoblot analysis of the uptake transporters organic anion transporting polypeptide-1B1 (OATP1B1), OATP1B3, OATP2B1, and Sodium/Taurocholate Co-transporting Polypeptide (NTCP) and the efflux transporter multidrug resistance-associated protein 2 (MRP2) demonstrated a significant loss of glycosylation following the progression to NASH. CONCLUSIONS: These data suggest that the loss of glycosylation of key uptake and efflux transporters in humans NASH may influence transporter function and contribute to altered drug disposition observed in NASH.


Asunto(s)
Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Procesamiento Proteico-Postraduccional , Transporte Biológico , Western Blotting , Estudios de Casos y Controles , Retículo Endoplásmico/metabolismo , Perfilación de la Expresión Génica , Glicosilación , Humanos , Proteínas de Transporte de Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA