Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Parasit Vectors ; 17(1): 203, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38711063

RESUMEN

BACKGROUND: The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa and viruses but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. METHODS: We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over a 12-week infection period. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology) and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. RESULTS: We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area but not in granuloma size. Variation in organ weight was explained by egg burden and intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokine levels (IFN-γ, TNF-α), eosinophils, lymphocytes and monocyte counts. CONCLUSIONS: This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotypes impact immunopathology outcomes.


Asunto(s)
Genotipo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Schistosoma mansoni , Esquistosomiasis mansoni , Animales , Schistosoma mansoni/inmunología , Schistosoma mansoni/genética , Ratones , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/parasitología , Esquistosomiasis mansoni/patología , Femenino , Interacciones Huésped-Parásitos/inmunología , Interacciones Huésped-Parásitos/genética , Citocinas/genética , Citocinas/sangre , Citocinas/inmunología
2.
Res Sq ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38313261

RESUMEN

Background: The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa, and viruses, but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. Methods: We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over an infection period of 12 weeks. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology), and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. Results: We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area, but not in granuloma size. Variation in organ weight was explained by egg burden and by intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokines (IFN-γ, TNF-α), eosinophil, lymphocyte, and monocyte counts. Conclusions: This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotype impact immunopathology outcomes.

3.
Antimicrob Agents Chemother ; 68(3): e0143223, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289079

RESUMEN

We previously performed a genome-wide association study (GWAS) to identify the genetic basis of praziquantel (PZQ) response in schistosomes, identifying two quantitative trait loci situated on chromosomes 2 and 3. We reanalyzed this GWAS using the latest (version 10) genome assembly showing that a single locus on chromosome 3, rather than two independent loci, determines drug response. These results reveal that PZQ response is monogenic and demonstrates the importance of high-quality genomic information.


Asunto(s)
Antihelmínticos , Esquistosomiasis mansoni , Animales , Praziquantel/farmacología , Praziquantel/uso terapéutico , Schistosoma mansoni/genética , Estudio de Asociación del Genoma Completo , Resistencia a Medicamentos , Esquistosomiasis mansoni/tratamiento farmacológico , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico
4.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260613

RESUMEN

Background: The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa, and viruses, but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. Methods: We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over an infection period of 12 weeks. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology), and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. Results: We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area, but not in granuloma size. Variation in organ weight was explained by egg burden and by intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokines (IFN-γ, TNF-α), eosinophil, lymphocyte, and monocyte counts. Conclusions: This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotype impact immunopathology outcomes.

5.
Sci Transl Med ; 13(625): eabj9114, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936381

RESUMEN

Mass drug administration with praziquantel (PZQ) monotherapy is considered the mainstay for control and elimination of the parasites causing schistosomiasis in humans. This drug shows imperfect cure rates in the field, and parasites showing reduced PZQ response can be selected in the laboratory, but the extent of resistance in Schistosoma mansoni populations is unknown. We examined the genetic basis of the variation in response in a PZQ-selected S. mansoni population (SmLE-PZQ-R) in which 35% of the parasitic worms survive high-dose PZQ (73 micrograms per milliliter) treatment. We used genome-wide association to map loci underlying PZQ response and identified a transient receptor potential (Sm.TRPMPZQ) channel (Smp_246790) within the major chromosome 3 peak that is activated by nanomolar concentrations of PZQ. The PZQ response showed recessive inheritance and marker-assisted selection of parasites at a single Sm.TRPMPZQ SNP that produced populations of PZQ-enriched resistant (PZQ-ER) and PZQ-enriched sensitive (PZQ-ES) parasites, exhibiting >377-fold difference in PZQ response. The PZQ-ER parasites survived treatment in rodents at higher frequencies compared with PZQ-ES, and resistant parasites exhibited 2.25-fold lower expression of Sm.TRPMPZQ relative to sensitive parasites. Specific chemical blockers of Sm.TRPMPZQ enhanced PZQ resistance, whereas Sm.TRPMPZQ activators increased sensitivity. We surveyed Sm.TRPMPZQ sequence variations in 259 parasites from different global sites and identified one nonsense mutation that resulted in a truncated protein with no PZQ binding site. Our results demonstrate that Sm.TRPMPZQ underlies variation in PZQ responses in S. mansoni and provides an approach for monitoring emerging PZQ-resistant alleles in schistosome elimination programs.


Asunto(s)
Antihelmínticos , Parásitos , Esquistosomiasis mansoni , Canales de Potencial de Receptor Transitorio , Animales , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Estudio de Asociación del Genoma Completo , Parásitos/metabolismo , Praziquantel/farmacología , Praziquantel/uso terapéutico , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/epidemiología , Esquistosomiasis mansoni/parasitología , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/uso terapéutico
6.
Int J Parasitol Drugs Drug Resist ; 16: 140-147, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34111649

RESUMEN

Human schistosomiasis is a debilitating, life-threatening disease affecting more than 229 million people in as many as 78 countries. There is only one drug of choice effective against all three major species of Schistosoma, praziquantel (PZQ). However, as with many monotherapies, evidence for resistance is emerging in the field and can be selected for in the laboratory. Previously used therapies include oxamniquine (OXA), but shortcomings such as drug resistance and affordability resulted in discontinuation. Employing a genetic, biochemical and molecular approach, a sulfotransferase (SULT-OR) was identified as responsible for OXA drug resistance. By crystallizing SmSULT- OR with OXA, the mode of action of OXA was determined. This information allowed a rational approach to novel drug design. Our team approach with schistosome biologists, medicinal chemists, structural biologists and geneticists has enabled us to develop and test novel drug derivatives of OXA to treat this disease. Using an iterative process for drug development, we have successfully identified derivatives that are effective against all three species of the parasite. One derivative CIDD-0149830 kills 100% of all three human schistosome species within 5 days. The goal is to generate a second therapeutic with a different mode of action that can be used in conjunction with praziquantel to overcome the ever-growing threat of resistance and improve efficacy. The ability and need to design, screen, and develop future, affordable therapeutics to treat human schistosomiasis is critical for successful control program outcomes.


Asunto(s)
Descubrimiento de Drogas , Esquistosomiasis , Animales , Humanos , Oxamniquina , Praziquantel/farmacología , Schistosoma mansoni , Esquistosomiasis/tratamiento farmacológico
7.
Front Microbiol ; 6: 1424, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26733969

RESUMEN

Wolbachia is an intracellular α-proteobacterium which is transmitted vertically from mother to offspring but also frequently switches horizontally from one host to another. Our hypothesis is based on the role of immune cells and the organs that produce them, the hematopoietic organs (HOs), as primordial niches for the propagation of Wolbachia via hemocytes both (i) within hosts: to initiate and maintain the systemic infection and (ii) between hosts: to promote both vertical and horizontal transmission of Wolbachia. Therefore, we review some fundamental ideas underlying this hypothesis and go further with new empirical data that lead to a first close-up analysis of the potential role of HOs in Wolbachia propagation. The monitoring of the first steps of Wolbachia infection in horizontally infected host organs by transmission electron microscopy and qPCR suggests that (i) HOs are colonized early and extensively as soon as they are in contact with Wolbachia which find in these cells a favorable niche to multiply and (ii) infected HOs which expel hemocytes all lifelong can generate and maintain a systemic infection that could contribute to increase both vertical and horizontal propagation of these symbionts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA